JPS58193059A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS58193059A
JPS58193059A JP7611682A JP7611682A JPS58193059A JP S58193059 A JPS58193059 A JP S58193059A JP 7611682 A JP7611682 A JP 7611682A JP 7611682 A JP7611682 A JP 7611682A JP S58193059 A JPS58193059 A JP S58193059A
Authority
JP
Japan
Prior art keywords
refrigerant
way valve
compressor
valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7611682A
Other languages
Japanese (ja)
Inventor
荒巻 辰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7611682A priority Critical patent/JPS58193059A/en
Publication of JPS58193059A publication Critical patent/JPS58193059A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はヒートポンプ式空気調和装置にかかり、特に
圧縮機の吐出側圧、吸込側圧の差圧を使って冷・暖切換
動作を行なうスライド弁を備えた四方弁を採用したヒー
トポンプ式空気調和装置の改善に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a heat pump type air conditioner, and in particular includes a slide valve that performs cooling/heating switching operation using the differential pressure between the discharge side pressure and the suction side pressure of a compressor. This paper relates to improvements to heat pump air conditioners that employ four-way valves.

〔発明の技術的背景〕[Technical background of the invention]

ヒー)/ング式空気調和装置においては、圧縮機、四方
弁、室内側熱交換器、減圧器、室外側熱交換器を連結し
て構成したものが知られているが、その中で第1図で示
すような四方弁1きの冷媒の流れを示す。この四方弁と
しては、従来から、第2図(、) 、 (b)で示すよ
うに弁本体すの内部にスライド弁Cを内装し、このスラ
イド弁Cのスライド方向両側にあたる弁本体すの側部を
制御器としての電磁四方弁dの流路切換部・に連通管f
、gを使りてそれぞれ連結し、さヒ らに流路切換部書に弁本体be圧縮機tの吐出炬 口を結ぶ冷媒循環路りおよび、弁本体すと圧縮機tの吸
込口とを結ぶ冷媒循環路りを連通管i。
Among the heat/cooling type air conditioners, one is known in which a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, and an outdoor heat exchanger are connected. The flow of refrigerant through the four-way valve 1 as shown in the figure is shown. Conventionally, this four-way valve has a slide valve C installed inside the valve body as shown in Figures 2(,) and (b), and the sides of the valve body on both sides of the slide valve C in the sliding direction. The flow path switching part of the electromagnetic four-way valve d, which serves as a controller, and the communication pipe f
, g to connect the refrigerant circulation path connecting the valve body to the discharge port of the compressor t, and connecting the valve body to the suction port of the compressor t. Pipe i connecting the refrigerant circulation path.

jを使ってそれぞれ連結して構成される。They are constructed by connecting each using j.

そして、暖房運転時においては、第2図8で示すように
、電磁四方弁dの励磁によって連通管lと連通管fを連
通、さらに連通管ごと連通管jを連通させることにより
、スライド弁Cが圧縮機tの吐出側圧(高圧)、吸込側
圧(低圧)の差圧によってスライドし、スライド弁Cに
よる流路切換えで暖房サイクルが形成される。まま た除霜を含めた冷房運転時においては、第1図(b)で
示すように、連通管1と連通管gを連通、さらに連通管
fと連通管jと連通させることにより、スライド弁Cが
差圧によってスライドし、同様なスライド弁Cによる流
路切換えで冷房サイクルが形成されるようになっている
。なお、kは室内側熱交換器mに向う冷媒循環路、nは
室外側熱交換器Oに向う冷媒循環路を示す。
During the heating operation, as shown in FIG. 2, the four-way electromagnetic valve d is energized to connect the communication pipe l and the communication pipe f, and the communication pipe j is also brought into communication with the communication pipe, whereby the slide valve C is connected. is slid by the pressure difference between the discharge side pressure (high pressure) and the suction side pressure (low pressure) of the compressor t, and a heating cycle is formed by switching the flow path by the slide valve C. In addition, during cooling operation including defrosting, as shown in FIG. 1(b), the slide valve is C slides due to the differential pressure, and a cooling cycle is formed by switching the flow path using a similar slide valve C. Note that k indicates a refrigerant circulation path toward the indoor heat exchanger m, and n indicates a refrigerant circulation path toward the outdoor heat exchanger O.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、スライド弁Cをたんに差圧によって動作
させた上述の技術によると、6冷・暖房および除霜運転
の開始および終了時のとき、すなわち四方弁が切換る際
、高・低圧の圧力差が四方弁2の内部で、急激(瞬時)
にバランスしてしまうという問題がある。このような急
激なバランス動が行なわれると、ノ々ランスの際におけ
る冷媒音および振動は著しく、しかも瞬時に高圧の圧力
がスライド弁Cを経て圧縮機tに加わるので、圧縮機t
および周辺配管に異常な振動、それに伴ない振動音をき
たし、また液冷媒が多量に瞬時に圧縮機tに戻ってしま
う。−この結果、騒音の増加はもとより四方弁aおよび
圧縮機りの耐久性の劣化は著しく、また周辺配管におけ
る配管応力の増加をきたしてしまう欠点を伴なう。しか
も、各運転の立上がりが急激となってしまうので、消費
電力もかさむといった欠点がある。
However, according to the above-mentioned technique in which the slide valve C is operated simply by a pressure difference, the pressure difference between high and low pressures occurs at the start and end of cooling/heating and defrosting operations, that is, when the four-way valve switches. is suddenly (instantaneous) inside the four-way valve 2.
There is a problem that it becomes unbalanced. When such a rapid balance movement is performed, the refrigerant noise and vibration during no-no-lance are significant, and high pressure is instantaneously applied to the compressor t via the slide valve C.
This causes abnormal vibrations and accompanying vibration noise in the surrounding piping, and a large amount of liquid refrigerant instantly returns to the compressor t. - As a result, there is an increase in noise, a significant deterioration in the durability of the four-way valve a and the compressor, and an increase in piping stress in the surrounding piping. Furthermore, since each operation starts rapidly, there is a drawback that power consumption increases.

〔発明の目的〕[Purpose of the invention]

この発明は上記事情に着目してなされたものでその目的
とするところは、四方弁におけるバランス動を徐々に行
なわせることができるヒー   □トIンプ式空気調和
装置を提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and its object is to provide a heat pump type air conditioner in which a four-way valve can be gradually balanced.

〔発明の概要〕[Summary of the invention]

この発明は、四方弁の弁本体の外側に冷媒路を構成し、
この冷媒路を四方弁から圧縮機の吸込口に至る冷媒循環
路上に介装することにより、スライド弁を動作制御する
高圧側の冷媒を冷却により液化させ、この液化の冷媒を
抵抗媒体として四方弁の切換時における高・低圧のバラ
ンス動を徐々にとろうとするものである。
This invention configures a refrigerant path outside the valve body of a four-way valve,
By interposing this refrigerant path on the refrigerant circulation path from the four-way valve to the suction port of the compressor, the high-pressure side refrigerant that controls the operation of the slide valve is liquefied by cooling, and this liquefied refrigerant is used as a resistance medium for the four-way valve. The aim is to gradually balance the high and low pressures when switching.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明を図面に示す一実施例にもとづいて説明
する。第3図中1は圧縮機、2は四方弁、3&は室内側
熱交換器、4は減圧器としてのキャピラリチュー!、5
は室外側熱交換器である。そし−C1これら各機器はそ
れぞれ、冷媒循環路6で順次連結され、冷凍サイクル回
路7を構成している。またこのように構成されたヒート
ポンプ式空気調和装置の四方5f2にはスライド弁3を
内装したものが採用されている。
The present invention will be described below based on an embodiment shown in the drawings. In Figure 3, 1 is a compressor, 2 is a four-way valve, 3 & is an indoor heat exchanger, and 4 is a capillary tube as a pressure reducer! , 5
is an outdoor heat exchanger. -C1 Each of these devices is sequentially connected through a refrigerant circulation path 6 to form a refrigeration cycle circuit 7. Furthermore, the heat pump type air conditioner configured in this manner is equipped with slide valves 3 on all four sides 5f2.

そして、その四方弁2の構造としては、第4図(、)で
示すようになっている。
The structure of the four-way valve 2 is as shown in FIG. 4 (,).

すなわち、四方弁2の構造について説明すれば、図中8
は内部に直線状の弁室を備えた弁本体で、この弁本体8
の弁室内には中央に連通用の凹部9を、両側に連通用の
透孔10.10を備えた上述のスライド弁3がスライド
自在に設けられる。また弁本体8の上部側には圧縮機1
の吐出口に向う冷媒循環路61が連結され、同じく下部
側には中央に位置して左側から室内側熱交換器3mに向
う冷媒循環路6b、圧縮機1の吸込口に向う冷媒循環路
6c、室外側熱交換器5に向う冷媒循環路6dが並んで
連結されており、スライド弁3が右側に移動したときは
左側の透孔10を通じて冷媒循環路6aと冷媒循環路6
bとが連通するとともに同時に凹部9を通じて、冷媒循
環路6cと冷媒循環路6dとが連通するようになってい
る。またスライド弁3が左側に移動したときには、右側
の透孔10を通じて冷媒循環路6mと冷媒循環路6dと
が連通、さらに同時に凹部9を通じ冷媒循環路6bと冷
媒循環路6cとが連通ずるようになっている。一方、図
中11は制御器としての電磁四方弁で、この電磁四方弁
1ノには、ケーシング12a内に連通用の凹部12b1
透孔12c1その他溝12dを備えた弁体12を内装し
てなる流路切換s13が設けられている。そして、この
流路切換部13の溝12d@には冷媒循環路6aを結ぶ
連通管14aが接続され、さらに凹部12bおよび透孔
12c@には左側から、スライド弁3の左側に形成され
るピストン室1 / aを結ぶ連通管14b、圧縮機1
の吸込側を結ぶ連通管14e、スライド弁3の右側に形
成されるピストン室15bを結ぶ連通管14dがそれぞ
れ接続されており、弁体12が前進動したときには、連
通管14g、14dを通じて圧m機1の吐出側とピスト
ン室15bとか連通、さらに連通v14b+14cを通
じて圧縮機1の吸込側とピストン室151とが連通して
冷房(除霜)運転へ切換えることができるようになって
いる。また弁体12が励磁によって後退勤したときには
、連通管14m、14bを通じて圧縮機1の吐出側とピ
ストン室15mとが連通、さらに連通管14e、14d
を通じて圧縮機1の吸込側とピストン室すとが連通して
暖房運転へ切換えることができるようになっている。し
たがって、圧縮機1の吐出側圧および吸込側圧の差圧を
使ってスライド弁3で冷・暖切換えを行なうことができ
るようになっている。なお、17は弁体12を復帰させ
るための復帰ばねである。
That is, to explain the structure of the four-way valve 2, 8 in the figure
is a valve body with a linear valve chamber inside, and this valve body 8
The above-mentioned slide valve 3 having a communication recess 9 in the center and communication holes 10 and 10 on both sides is slidably provided in the valve chamber. In addition, a compressor 1 is installed on the upper side of the valve body 8.
A refrigerant circulation path 61 toward the discharge port of the compressor 1 is connected to the refrigerant circulation path 61, and a refrigerant circulation path 6b toward the indoor heat exchanger 3m located in the center from the left side and a refrigerant circulation path 6c toward the suction port of the compressor 1 are connected to the lower side. , the refrigerant circulation path 6d facing the outdoor heat exchanger 5 are connected side by side, and when the slide valve 3 moves to the right side, the refrigerant circulation path 6a and the refrigerant circulation path 6 are connected through the through hole 10 on the left side.
b communicate with each other, and at the same time, the refrigerant circulation path 6c and the refrigerant circulation path 6d communicate with each other through the recess 9. Further, when the slide valve 3 moves to the left side, the refrigerant circulation path 6m and the refrigerant circulation path 6d communicate through the through hole 10 on the right side, and at the same time, the refrigerant circulation path 6b and the refrigerant circulation path 6c communicate with each other through the recess 9. It has become. On the other hand, 11 in the figure is an electromagnetic four-way valve as a controller, and this electromagnetic four-way valve 1 has a recess 12b1 for communication in the casing 12a.
A flow path switching s13 is provided, which includes a valve body 12 having a through hole 12c1 and a groove 12d. A communication pipe 14a connecting the refrigerant circulation path 6a is connected to the groove 12d@ of the flow path switching portion 13, and a piston formed on the left side of the slide valve 3 is connected to the recess 12b and the through hole 12c@ from the left side. Communication pipe 14b connecting chamber 1/a, compressor 1
A communication pipe 14e connecting the suction side of the slide valve 3 and a communication pipe 14d connecting the piston chamber 15b formed on the right side of the slide valve 3 are connected to each other. When the valve body 12 moves forward, pressure m is transferred through the communication pipes 14g and 14d. The discharge side of the compressor 1 communicates with the piston chamber 15b, and the suction side of the compressor 1 communicates with the piston chamber 151 through communication v14b+14c, allowing switching to cooling (defrosting) operation. Further, when the valve body 12 is moved backward due to excitation, the discharge side of the compressor 1 and the piston chamber 15m communicate through the communication pipes 14m and 14b, and the communication pipes 14e and 14d communicate with each other.
Through this, the suction side of the compressor 1 and the piston chamber are communicated with each other, so that it is possible to switch to heating operation. Therefore, the slide valve 3 can switch between cooling and heating using the differential pressure between the discharge side pressure and the suction side pressure of the compressor 1. Note that 17 is a return spring for returning the valve body 12.

そして、このように構成された四方弁2の弁本体8の外
側には、この発明の要旨とする冷媒路18が設けられる
。この冷媒路18としては、第5図で示すような弁本体
8の外形形状にならう筒形状で、かつ弁本体8の外形よ
りも大きい寸法値を備える2つに分割したケース18凰
A refrigerant passage 18, which is the gist of the present invention, is provided on the outside of the valve body 8 of the four-way valve 2 configured as described above. The refrigerant passage 18 is a case 18 divided into two parts, which has a cylindrical shape that follows the outer shape of the valve body 8 as shown in FIG. 5, and has dimensions larger than the outer shape of the valve body 8.

IIImを弁本体8の周りに同心円的に取着してなり、
ケース18a、 Z 8cJの内面と弁本体8の外面と
の間に一定の間隔(1!lii間)をもたせることによ
って構成されている。なお、ケースI 8a。
IIIm is attached concentrically around the valve body 8,
It is constructed by providing a constant distance (between 1!lii) between the inner surfaces of the cases 18a and Z8cJ and the outer surface of the valve body 8. In addition, case I 8a.

J Ilaを取着するにあたっては、冷媒循環路6を構
成する配管も取着されることはもちろんで、ケース18
Ql、18*にはそのための透孔19・・・が設けられ
る。そして、ケース18m、111mの一方の側部に上
記弁本体8から出た冷媒循環路6eが連結され、さらに
そのケース18aの他方の側部を通じてその冷媒循環路
6cが圧Jlil!1の吸込口に連結される。したがっ
て、冷媒路18は四方弁2から圧縮機1の吸込口に至る
冷媒循環路6c上に介装されることになり、吸込みに供
される冷媒は常に冷媒路18を通じて圧縮機1へ吸込ま
れるようになっている。なお、連通管24dは冷媒路1
8から出た冷媒循環路cd上と電磁四方弁11とを結ん
でおり、また冷媒′路18は吸込みに供される冷媒に対
し圧損を生じない間隔(隙間)で形成されることはいう
までもない。
When installing J Ila, it goes without saying that the piping that constitutes the refrigerant circulation path 6 is also installed, and the case 18
A through hole 19 for this purpose is provided in Ql, 18*. The refrigerant circulation path 6e from the valve body 8 is connected to one side of the cases 18m and 111m, and the refrigerant circulation path 6c is connected to the pressure Jlil! through the other side of the case 18a. 1 suction port. Therefore, the refrigerant passage 18 is interposed on the refrigerant circulation passage 6c from the four-way valve 2 to the suction port of the compressor 1, and the refrigerant to be sucked is always sucked into the compressor 1 through the refrigerant passage 18. It is now possible to Note that the communication pipe 24d is the refrigerant path 1.
It goes without saying that the refrigerant circulation path 18 is connected to the solenoid four-way valve 11 and the refrigerant circulation path cd coming out from the refrigerant circuit 8, and that the refrigerant path 18 is formed at intervals (gaps) that do not cause pressure loss for the refrigerant being sucked. Nor.

なお、第4図(b)に四方弁2の伽1面な示す。Incidentally, FIG. 4(b) shows the first side of the four-way valve 2.

つぎにこのように構成されたヒートポンノ式空気調和装
置の作用について説明する。
Next, the operation of the heat pump type air conditioner configured as described above will be explained.

暖房運転を行なうときには、電磁四方弁11を暖房側へ
切換えるとともに圧縮機1を運転することにより、スラ
イド弁3が冷媒の吐出圧(高圧)と吸込圧(低圧)との
差圧によって右方弁2、室内側熱交換器3a、キャピラ
リチューブ4、室外側熱交換器5をループして圧縮機1
に戻る暖房サイクルが構成される。かくして、暖房が行
なわれる。
When performing heating operation, by switching the electromagnetic four-way valve 11 to the heating side and operating the compressor 1, the slide valve 3 is activated by the differential pressure between the refrigerant discharge pressure (high pressure) and suction pressure (low pressure). 2. The compressor 1 is connected by looping the indoor heat exchanger 3a, the capillary tube 4, and the outdoor heat exchanger 5.
The heating cycle is then configured. Heating is thus performed.

また冷房あるいは除霜運転を行なうときには、電磁四方
弁11を冷房側へ切換えることにより、スライド弁3が
冷媒の吐出圧と吸込圧との差圧縮機1、四方弁2、室外
側熱交換器5、キャビラリチー−プ4、室内側熱交換器
3をループして圧縮機1に戻る冷房(除霜)サイクルが
構成される。かくして、冷房あるいは除霜が行なわれる
In addition, when performing cooling or defrosting operation, by switching the solenoid four-way valve 11 to the cooling side, the slide valve 3 is set to the differential compressor 1, four-way valve 2, and outdoor heat exchanger 5 between the refrigerant discharge pressure and suction pressure. , a cooling (defrosting) cycle that loops through the cavity ceiling 4 and the indoor heat exchanger 3 and returns to the compressor 1. In this way, cooling or defrosting is performed.

一方、このような運転中における四方弁2の状況として
は、暖房運転時においては、第6図(、)で示すように
室外側熱交換器5で蒸発して圧縮機1の吸込口側に流れ
る冷媒が冷媒路18を流通するところから、弁本体8は
冷却され、これに伴いピストン室15mに溜ったガス状
の冷媒は冷却により液化され、ピストン室15aの冷媒
は非圧縮性をもつようになる。
On the other hand, the situation of the four-way valve 2 during such operation is that during heating operation, as shown in FIG. Since the flowing refrigerant flows through the refrigerant path 18, the valve body 8 is cooled, and the gaseous refrigerant accumulated in the piston chamber 15m is liquefied by cooling, so that the refrigerant in the piston chamber 15a becomes incompressible. become.

また冷房(除霜)運転時においては、第6図(b)で示
すように室内側熱交換器3aで蒸発して圧縮器1の吸込
口側に流れる冷媒が冷媒路18を流通するところから、
同様にピストン室166に溜ったガス状の冷媒は冷却に
より液化され、非圧縮性をもつようになる。
In addition, during cooling (defrosting) operation, as shown in FIG. ,
Similarly, the gaseous refrigerant accumulated in the piston chamber 166 is liquefied by cooling and becomes incompressible.

しかして、これら暖・冷運転に際し問題とされる四方弁
2のバランス動としては、暖・冷運転が停止したときは
、液化した冷媒、さらには連通管14b、14dの径が
小さいという理由から、液化した冷媒が抵抗媒体となっ
て、暖房時は連通管14bを、また冷房あるいは除霜時
は連通管14dを通じて徐々に冷媒が流出することにな
り、スライド弁3の移動と相合りて徐徐にバランス動す
ることになる。
However, the balance movement of the four-way valve 2, which is a problem during these warm and cool operations, is caused by the liquefied refrigerant and the small diameter of the communication pipes 14b and 14d when the warm and cool operations are stopped. The liquefied refrigerant becomes a resistance medium, and the refrigerant gradually flows out through the communication pipe 14b during heating and through the communication pipe 14d during cooling or defrosting, and as the slide valve 3 moves, the refrigerant gradually flows out. The balance will move.

また暖房運転から停止期間をおいて暖房運転あるいは冷
房運転から同じく停止時間をおいて冷房運転に切換ると
きでは、連通管14bあるいは連通管J4dに流出した
液化した冷媒が、液化した冷媒が溜りたピストン室15
aあるいはピストン室15bへ小径な流路を通じて徐々
に戻り、徐々に高圧化させることになり、液化した冷媒
を抵抗媒体として、スライド弁3の移動と相合って徐々
にバランス動することになる。
In addition, when switching from heating operation to cooling operation after a stop period from heating operation or from cooling operation to cooling operation after the same stop period, the liquefied refrigerant that has flowed out into the communication pipe 14b or the communication pipe J4d may accumulate. Piston chamber 15
The refrigerant gradually returns to the piston chamber 15a or the piston chamber 15b through a small-diameter flow path and is gradually raised to a high pressure, and the liquefied refrigerant is used as a resistance medium to gradually balance the movement of the slide valve 3.

また暖房運転から除霜運転に切換えるときでは、ピスト
ン室15aに溜った液化した冷媒が連通管14bへ流出
しようとする先程述べた運転停止時のときと同様な抵抗
の働きで、急激にピストン室15a@へ移動しようとす
るスライド弁3を抑えつつ徐々にバランス動することに
なる。なお、除霜運転から暖房運転に切換るときでもス
ライド弁3が逆の方向へ移動すること   □を除いて
その作用は全く同じである。
In addition, when switching from heating operation to defrosting operation, the liquefied refrigerant accumulated in the piston chamber 15a tries to flow out into the communication pipe 14b, due to the same resistance as when the operation is stopped, and the piston chamber suddenly The slide valve 3 is gradually moved in a balanced manner while suppressing the movement of the slide valve 3 to 15a@. Note that even when switching from defrosting operation to heating operation, the operation is exactly the same except that the slide valve 3 moves in the opposite direction.

このようなことから、四方弁2では停止および開始を含
めた各運転の切替えに際し、従来のように急激、かつ瞬
時のバランス動をきたすことなく徐々に四方弁2の内部
で圧力的なバランスをとることができる、つまりゆっく
りとした圧力の変化を達成できるものである。
For this reason, the four-way valve 2 gradually maintains the pressure balance inside the four-way valve 2 when switching between operations, including stopping and starting, without causing sudden and instantaneous balance movements like in the past. ie one that can achieve slow changes in pressure.

したがって、バランス動の際に発生する冷媒音および振
動を著しく低下させることができ、また同時に冷媒が圧
縮機1の吸込口へ急激に戻ることがなくなるから、圧縮
機1およびその周辺配管への異常振動を防止することが
でき、圧縮機1の耐久性の向上、さらには配管応力を低
下させることができる。しかも、バランスに伴ってスラ
イド弁3も徐々に移動することから、四方弁2の切換音
の発生を防止することができるとともに、併せて四方弁
2における耐久性の向上を図ることかできるものである
。またバランスを徐々にとったことで、運転停止時から
暖房運転開始時の運転立上り、冷房(除1り運転開始時
の運転立上りを急激なものでなくスムーズに開始するこ
とができる。実験によれば、暖力的ニバランスするため
四方弁2でハ小サイ冷媒通過面積から大きい冷媒通過面
積に順次移行することにより明らかに運転立上りはスム
ーズなものであった。また、除霜(冷房)運転開始時に
おける運転立上りについても第8図から同様な結果が見
られ、運転の切換えはスムーズなもので、切換時の消費
電力、さらには起動前を低減することができ、また液圧
縮を防止できる利点がある。
Therefore, the refrigerant noise and vibration that occur during balance operation can be significantly reduced, and at the same time, the refrigerant will not return suddenly to the suction port of the compressor 1, so there will be no abnormalities in the compressor 1 and its surrounding piping. Vibration can be prevented, the durability of the compressor 1 can be improved, and pipe stress can be reduced. Furthermore, since the slide valve 3 gradually moves with the balance, it is possible to prevent the switching noise of the four-way valve 2 from occurring, and at the same time, it is possible to improve the durability of the four-way valve 2. be. In addition, by gradually balancing the balance, the start-up of operation from the time of stopping the operation to the start of the heating operation, and the start-up of the operation when starting the cooling operation (excluding 1) can be started smoothly instead of abruptly. For example, in order to balance the heating power, the four-way valve 2 was used to sequentially shift from a small refrigerant passage area to a large refrigerant passage area, which clearly made the start-up of operation smooth. Similar results can be seen in Figure 8 regarding the start-up of operation at the time of starting, and the switching between operations is smooth, reducing power consumption at the time of switching and even before starting, and preventing liquid compression. There are advantages.

なお、Cは従来のスライド弁の移動完了位置を、Dはこ
の発明を採用したときのスライド弁の移動完了位置を示
す・ また、弁本体8に設けた冷媒路18を四方弁2から圧縮
1flklの吸込口に至る冷媒循環W:rec上に介装
したことで、四方弁2を通じて圧縮機1の吐出側冷媒と
吸込冷媒とが熱交換して吸込側冷媒の温度を上昇させる
ことができるもので、冷凍能力、さらにはEER(冷凍
能力と消費電力の比)を向上させることができる。特に
除霜(冷房)運転開始時、終了時においては、冷媒のス
ムーズなるバランスと併せて圧縮機1におけるケース温
度を適切な使用範囲内にすることができる利点もある。
In addition, C shows the movement completion position of the conventional slide valve, and D shows the movement completion position of the slide valve when this invention is adopted. Also, the refrigerant passage 18 provided in the valve body 8 is connected from the four-way valve 2 to the compression 1flkl. Refrigerant circulation leading to the suction port W: By being installed on the rec, the discharge side refrigerant of the compressor 1 and the suction refrigerant can exchange heat through the four-way valve 2 to increase the temperature of the suction side refrigerant. This makes it possible to improve the refrigeration capacity and further improve the EER (ratio of refrigeration capacity to power consumption). Particularly at the start and end of defrosting (cooling) operation, there is an advantage that the refrigerant is smoothly balanced and the case temperature of the compressor 1 can be kept within an appropriate usage range.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、四方弁の弁本体
の外側に冷媒路を構成し、この冷媒路を四方弁から圧縮
機の吸込口に至る冷媒循環路上に介装したから、スライ
ド弁を動作制御すル高圧側の冷媒は冷却により液化され
ることになり、この液化した冷媒が抵抗媒体として四方
弁内で働き四方弁の切換時における高・低圧のバランス
を徐々にとることができるようになる。
As explained above, according to the present invention, the refrigerant path is formed outside the valve body of the four-way valve, and this refrigerant path is interposed on the refrigerant circulation path from the four-way valve to the suction port of the compressor. The refrigerant on the high pressure side that controls the operation is liquefied by cooling, and this liquefied refrigerant works as a resistance medium in the four-way valve, gradually balancing the high and low pressures when switching the four-way valve. It becomes like this.

したがって、冷媒音、振動および切換音の発生を防止す
ることができ、圧縮機および四方弁の耐久性の向上、さ
らには周辺配管における配管応力の低減を図ることがで
きる。そのうえ、バランスが徐々に行なわれることから
、液圧縮を防止することができ、故障の原因を取り外く
と同時に各冷凍サイクルの運転開始および終了をスムー
ズにして切換時における消費電力の低減を図ることがで
きる。また冷媒路を冷媒循環路上に介装したことにより
、四方弁を通じて行なわれる熱交換で吸込側の冷媒の温
度を上昇させることができ、冷凍能力、EERの向上、
さらには圧縮機のケース温度を適切な温度範囲内にする
ことができるものである。
Therefore, the generation of refrigerant noise, vibration, and switching noise can be prevented, and the durability of the compressor and four-way valve can be improved, and furthermore, the piping stress in the surrounding piping can be reduced. Furthermore, since the balancing is done gradually, it is possible to prevent liquid compression, eliminate the cause of the failure, and at the same time smooth the start and end of operation of each refrigeration cycle, reducing power consumption during switching. be able to. In addition, by interposing the refrigerant path on the refrigerant circulation path, the temperature of the refrigerant on the suction side can be increased by heat exchange performed through the four-way valve, improving refrigerating capacity and EER.
Furthermore, the case temperature of the compressor can be kept within an appropriate temperature range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のヒートポンプ式空気調和装置を示す構成
鴫、第2図(J # (b)はその四方弁の構造および
動作状況を示す断面図、第3図はこの発明の一実施例の
ヒートポンプ式空気調和装置を示す構成図、第4図(a
) t (b)はその四方弁を示す断面図および側面図
、第5図はその四方弁に冷媒路を構成したケースを示す
斜視図、第6図、(a)e(b)はその四方弁の動作状
況を示す状態図、第7図はその四方弁の暖房運転の運転
立上り状態を従来の運転立上り状態と対比して示した圧
力状況図、第8図は除霜運転の運転立上り状態を従来の
運転立上り状態と対比して示した圧力状況図である。 1・・・圧縮機、2・・・四方弁、3&・・・室内側熱
交換器、S・・・スライド弁、4・・・キャピラリチュ
ーブ(減圧器)、5・・・室外側熱交換器、6・・・冷
媒循環路、8・・・弁本体、18・・・冷媒路。 出願人代理人  弁理士 鈴 江 武 彦第5図 (a)             (b)第7図 44−4−外よ一土−Jll− 第8図
Fig. 1 shows the configuration of a conventional heat pump type air conditioner, Fig. 2 (b) is a sectional view showing the structure and operating status of its four-way valve, and Fig. 3 shows an embodiment of the present invention. A configuration diagram showing a heat pump type air conditioner, Fig. 4 (a
) t (b) is a sectional view and side view showing the four-way valve, FIG. 5 is a perspective view showing a case in which a refrigerant path is configured in the four-way valve, and FIGS. A state diagram showing the operation status of the valve. Figure 7 is a pressure status diagram showing the start-up state of heating operation of the four-way valve in comparison with the start-up state of conventional operation. Figure 8 is a start-up state of defrosting operation. FIG. 3 is a pressure situation diagram showing a conventional operation start-up state in comparison with the conventional operation startup state. 1...Compressor, 2...Four-way valve, 3&...Indoor heat exchanger, S...Slide valve, 4...Capillary tube (pressure reducer), 5...Outdoor heat exchanger 6... Refrigerant circulation path, 8... Valve body, 18... Refrigerant path. Applicant's agent Patent attorney Takehiko Suzue Figure 5 (a) (b) Figure 7

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方弁、室内側熱交換器、減圧器、室外側熱交
換器を順次冷媒循環路で連結して冷凍サイクル回路を構
成し、かつ上記四方弁を弁本体内にスライド弁を内装し
て構成し、上記スライド弁を上記圧縮機の吐出側圧およ
び吸込側圧の差圧を使って冷・暖切換動作させるヒート
ポンプ式空気調和装置において、上記四方弁の弁本体の
外側に冷媒路を構成し、この冷媒路を上記四方弁から上
記圧縮機の吸込口に至る冷媒循環路上に介装したことを
特徴とするヒートポンプ式空気調和装置。
A refrigeration cycle circuit is constructed by sequentially connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, and an outdoor heat exchanger through a refrigerant circulation path, and the four-way valve is equipped with a slide valve inside the valve body. In the heat pump type air conditioner, the slide valve is configured to switch between cooling and heating using a pressure difference between the discharge side pressure and the suction side pressure of the compressor, and a refrigerant path is configured outside the valve body of the four-way valve. A heat pump type air conditioner, characterized in that this refrigerant path is interposed on a refrigerant circulation path from the four-way valve to the suction port of the compressor.
JP7611682A 1982-05-07 1982-05-07 Heat pump type air conditioner Pending JPS58193059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7611682A JPS58193059A (en) 1982-05-07 1982-05-07 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7611682A JPS58193059A (en) 1982-05-07 1982-05-07 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPS58193059A true JPS58193059A (en) 1983-11-10

Family

ID=13595929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7611682A Pending JPS58193059A (en) 1982-05-07 1982-05-07 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS58193059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202588A (en) * 2011-03-24 2012-10-22 Fujitsu General Ltd Four-way valve and heat pump device with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202588A (en) * 2011-03-24 2012-10-22 Fujitsu General Ltd Four-way valve and heat pump device with the same

Similar Documents

Publication Publication Date Title
EP2336681A1 (en) Oil equalizing device, compressor unit and oil equalizing method
CN111365896B (en) Oilless bearing external cooling system with secondary supercooling function
JP2011208860A (en) Air conditioner
JP2008512639A (en) Hot gas bypass flow through a four-way backwash valve
US20180299173A1 (en) Reversing valve and cooling system having same
JP2009109062A (en) Refrigerating cycle device using four-way switch valve
JP6261008B2 (en) Sliding switching valve and refrigeration cycle system
CN201739561U (en) Self-force type three-way valve
WO1999064744A1 (en) Multi-stage capacity control scroll compressor
JP6446542B2 (en) Variable capacity compressor and refrigeration apparatus including the same
JP5982871B2 (en) Four-way valve and heat pump device equipped with it
US7673465B2 (en) Air-conditioning system and apparatus for protecting the same
JPS58193059A (en) Heat pump type air conditioner
CA3107528C (en) Compressor and refrigeration device
CN205245597U (en) Two compressor formula refrigerating system
CN107642835B (en) Multi-split outdoor unit and multi-split with same
CN104344014A (en) Four-way valve and air-conditioner
KR100539595B1 (en) Multi type air conditioner
JP3321579B2 (en) Refrigerant rectification unit and air conditioner
KR100329923B1 (en) Apparatus for selecting directional refrigerant passage of a cooling and heat pump type air-conditioner
WO2021009850A1 (en) Refrigeration cycle device
JPS61192974A (en) Four way type valve for refrigerating cycle
JPS62196477A (en) Four-way valve for refrigerating cycle
JP2006145129A (en) Four way valve, and outdoor unit using it
KR200326219Y1 (en) Structure of refrigerants pipe for multi air-conditioner