JPS58192995A - Scroll pump - Google Patents

Scroll pump

Info

Publication number
JPS58192995A
JPS58192995A JP7584982A JP7584982A JPS58192995A JP S58192995 A JPS58192995 A JP S58192995A JP 7584982 A JP7584982 A JP 7584982A JP 7584982 A JP7584982 A JP 7584982A JP S58192995 A JPS58192995 A JP S58192995A
Authority
JP
Japan
Prior art keywords
pump
impeller
casing
shaft
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7584982A
Other languages
Japanese (ja)
Inventor
Matsusuke Miyasaka
松甫 宮坂
Kazuo Kinoshita
和夫 木下
Katsuhiro Ichikawa
市川 克弘
Norimitsu Kitajima
北嶋 宣光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP7584982A priority Critical patent/JPS58192995A/en
Publication of JPS58192995A publication Critical patent/JPS58192995A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/06Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being hot or corrosive, e.g. liquid metals

Abstract

PURPOSE:To make the flow of liquid in a low flow speed part active and prevent generation of corrosion near the pump shaft of a pump casing by a method wherein a liquid path, passing from the center of a packing for a rotary body including an impeller to the low-pressure part of a pump chamber, is provided. CONSTITUTION:High-pressure liquid in a scroll chamber 18, which is increased in the speed and the pressure thereof by an impeller 4, is passed through the back side of an impeller main plate 9, is injected from a gap between a linering 8 and a wearing part, collides against the wall surface 16 of an intermediate casing 2 as shown by arrow signs 17, is sucked out of a balance hole entrance 113A at a shaft packing side of a part near the center of the rotary body including the impeller 4 to the suction side low-pressure part of a pump chamber through a balance hole 113, and thereby balancing the impeller 4. Accordingly, the surface facing to the vicinity of the pump shaft 3 in the back chamber 10 for the impeller in a shaft packing house 11 is contacted by high-speed current shown by the arrow sign 17', therefore, the flow in the low-speed part is made active and the corrosion of said part may be prevented.

Description

【発明の詳細な説明】 体を取扱液とするポンプ特に海水など電解質浴液を扱う
ポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pump that handles body fluids, particularly pumps that handle electrolyte bath fluids such as seawater.

例えば海水を取扱うポンプにおいて、ケーシング舌部お
よびその近傍、あるいはケーシング軸近傍などの腐食が
優先的に進行し、ポンプ寿命を縮めることがある。
For example, in a pump that handles seawater, corrosion preferentially progresses in and around the casing tongue, or in the vicinity of the casing shaft, which can shorten the life of the pump.

本発明の目的は例えば海水など電解質溶液を扱うポンプ
におけるポンプケーシングのポンプ軸近傍の腐食を防止
したポンプを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a pump that handles electrolyte solutions such as seawater, in which corrosion in the vicinity of the pump shaft of the pump casing is prevented.

ケーシング舌部およびその近傍の腐食はここが高流速の
流体が衝突する部分であることから、エロージョンが作
用して加速されるものとして理解される。
Corrosion of the casing tongue and its vicinity is understood to be accelerated due to erosion, since this is the area where high-velocity fluid collides.

ところで腐食が酸素消費形で進む場合、一般には流速が
高いほど金属表面への溶存酸素の拡 。
By the way, when corrosion progresses in an oxygen-consuming manner, generally speaking, the higher the flow rate, the more dissolved oxygen spreads to the metal surface.

散が速くなって腐食が増す。Dispersion becomes faster and corrosion increases.

ポンプケーシングのポンプ軸近傍にみられる優先的な腐
食は、ここが流速が遅い部分であることから、流速が遅
いと腐食量が少ないという一般的な傾向からFi理解し
難い現象である。
The preferential corrosion seen near the pump shaft of the pump casing is a phenomenon that is difficult to understand because this is the area where the flow velocity is slow, and there is a general tendency that the slower the flow velocity, the less corrosion there is.

そこで発明者らは、ポンプケーシングのポンプ軸近傍な
ど流速が遅い箇所が優先的に腐食する原因を以下のよ5
に推察した。
Therefore, the inventors discovered the following five reasons why areas of the pump casing where the flow velocity is slow, such as near the pump shaft, preferentially corrode.
I guessed that.

稼動中のポンプ内部には、必然的に流速が異なる箇所が
存在するが流速の違いによってそれぞれ電位が異なって
くる。それぞれ電位が異なった箇所は、ポンプという導
体で結ばれているので、海水など電解質溶液中ではマク
ロセルを形成するため、ポンプ内の腐食分布は、それぞ
れ異なった流速下で独立に発生する流速−腐食量の関係
には従わなくなる。上述のマクロセルは、流れが速い部
分がカソード、流れが遅い部分がアノードとなるもので
、流れが遅いケーシング軸近傍などの腐食を加速するも
のである。
Inside the pump during operation, there are inevitably locations where the flow velocity differs, and the potential differs at each location due to the difference in flow velocity. Points with different potentials are connected by a conductor called the pump, so they form macrocells in electrolyte solutions such as seawater, so the corrosion distribution inside the pump is a flow rate-corrosion phenomenon that occurs independently at different flow rates. It no longer follows the relationship of quantity. In the above-mentioned macrocell, the part where the flow is fast is the cathode, and the part where the flow is slow is the anode, which accelerates corrosion near the casing axis where the flow is slow.

発明者らは、以上のような推察を裏付けるため、稼動中
のポンプケーシングのポンプ軸近傍のマクロ腐食電流を
測定した。稼動中のポンプケーシングのマクロ腐食電流
は発明者らが初めて測定し、明かKしたものである。
In order to support the above speculation, the inventors measured the macrocorrosion current near the pump shaft of the pump casing during operation. The inventors measured and clearly determined the macrocorrosion current of the pump casing during operation for the first time.

稼動中のポンプケーシング内部にマクロセルが形成する
ことを実際に確かめ、そこに流れるマクロ腐食電流を測
定するため、発明者らが考案し実施した方法を以下に示
す。
The following is a method devised and implemented by the inventors in order to actually confirm the formation of macrocells inside the pump casing during operation and to measure the macrocorrosion current flowing therein.

すなわちポンプケーシングを切断、分割し、ポンプケー
シングのポンプ軸近傍を、ポンプケーシングポンプ軸近
傍以外の部分とは絶縁した状態で再び組み上げた。それ
ぞれの部分にはあらかじめリード線をハンダ付けしてお
き無抵抗電流針に導き、両者の間に流れるマクロ腐食電
流を測定した。あらかじめ測っておいたポンプケーシン
グのポンプ軸近傍の、接液面積でマクロ腐食電流を割っ
たものが、ポンプケーシングポンプ軸近傍の接液部に流
れるマクロ腐食電流密度である。
That is, the pump casing was cut and divided, and reassembled with the pump casing in the vicinity of the pump shaft insulated from the portion of the pump casing other than the vicinity of the pump shaft. Lead wires were soldered to each part in advance and led to a non-resistance current needle, and the macrocorrosion current flowing between the two was measured. The density of the macrocorrosion current flowing in the wetted part of the pump casing near the pump shaft is obtained by dividing the macrocorrosion current by the wetted area of the pump casing near the pump shaft, which has been measured in advance.

llI&1図は従来例の供試した片吸込内ライナリング
の縦断面図である。
Figure llI & 1 is a vertical cross-sectional view of a single suction inner liner ring used as a conventional example.

ポンプケーシングは吸込側のケーシングlとポンプ軸3
を駆動する側の中間ケーシングコが嵌合して締結された
もので、中間ケーシング本体の図示されない軸受部に支
持されるポンプ軸JK固定された羽根車参には両@に円
筒形ウェアリング部S、美を、ケーシングlに圧入した
ライナリング7と中間ケーシングコに圧入されたライナ
リングtとは隙間束く配し、羽根車主板9には羽根車ダ
の中心より11れた位置にバランスホール13が設けで
ある。そしてライナリングlとウェアリング部6よpポ
ンプ軸3@の、羽根車主板?と中間ケーシング−間は羽
根車の背部室lOとなっている。
The pump casing consists of the suction side casing l and the pump shaft 3.
The intermediate casing on the driving side is fitted and fastened, and the impeller, which is fixed to the pump shaft JK supported by a bearing (not shown) of the intermediate casing body, has cylindrical wear rings on both sides. The liner ring 7 press-fitted into the casing l and the liner ring t press-fitted into the intermediate casing co are arranged with a gap between them, and the impeller main plate 9 is balanced at a position 11 points away from the center of the impeller da. A hole 13 is provided. And the impeller main plate of the liner ring l, wear ring part 6, p pump shaft 3 @? The space between and the intermediate casing is the back chamber lO of the impeller.

マクロ腐食電流測定のため切断、分割し、ケーシング本
体とは絶縁して組み立てたポンプケーシングのポンプ軸
近傍とは第1図においてA点よシもポンプ軸側の部分で
ある。
The vicinity of the pump shaft of the pump casing, which was cut and divided for macro-corrosion current measurement and assembled insulated from the casing body, is the part on the pump shaft side as well as point A in FIG.

第一図は、ポンプケーシングのポンプ軸近傍における腐
食電流密度の経時変化を曲線/11で示している。縦軸
には腐食電流密度μA2々iそして横軸にはポンプ運転
時間をとったものである。
FIG. 1 shows the change over time in the corrosion current density in the vicinity of the pump shaft of the pump casing as a curve /11. The vertical axis shows the corrosion current density μA2i, and the horizontal axis shows the pump operating time.

運転条件は回転数/j00min−’、流量八〇@ ’
/m iへnであシ、ポンプ材質は鋳鉄(rI8 FC
−〇)で、取違液は3−食塩水である。
Operating conditions are rotation speed/j00min-', flow rate 80@'
/m to i, pump material is cast iron (rI8 FC
-〇), the incorrect solution is 3-saline solution.

図より明らかなように、ポンプケーシング内には流速差
によってマクロセルが形成し、流速が遅いポンプケーシ
ングのポンプ軸近傍にはマクロアノード電流が流れてこ
の部分の腐食を助長していることがわかった。
As is clear from the figure, macrocells are formed within the pump casing due to the difference in flow velocity, and macro anode current flows near the pump shaft of the pump casing where the flow velocity is slow, promoting corrosion in this area. .

供試ポンプを3ケ月間運転した後切断し、ポンプケーシ
ングポンプ軸近傍の腐食状説を調べたところ第3図の如
くであった。
After operating the test pump for three months, it was cut off and the corrosion near the pump shaft of the pump casing was investigated, as shown in Figure 3.

fl?!IIK示すように、軸封ハクスl/のポンプ軸
3@、即ち羽根車qのボスlコ端面と対峙している端面
isが約1%、右上シの斜線の断面線を用いて示した部
分が腐食しており、羽根車の背部室lOに面する中間ケ
ーシング−の壁面l乙の外周方向に向って次第に腐食は
小さくなっている。
Fl? ! As shown in IIK, the pump shaft 3@ of the shaft sealing hub 1/, that is, the end surface is facing the end surface of the boss 1 of the impeller q is approximately 1%, and the portion shown using the diagonal cross-sectional line in the upper right corner. is corroded, and the corrosion gradually decreases toward the outer periphery of the wall surface lO of the intermediate casing facing the back chamber lO of the impeller.

第一図と第3図により、電解質の液体を扱うポンプにお
いて、ポンプケーシングのポンプ軸近傍のように流速が
低い部分が優先的に腐食する現象があり、その原因が、
流速差によって形成されるマクロセルに起因するもので
あることがわかった。
Figures 1 and 3 show that in pumps that handle electrolyte liquids, there is a phenomenon in which parts of the pump casing where the flow rate is low, such as near the pump shaft, corrode preferentially, and the cause is:
It was found that this was caused by macrocells formed due to the difference in flow velocity.

以上に示したように本願発明の発明者らは電解質の液体
を扱う片吸込の渦巻ポンプにおけるポンプ軸近傍の優先
的な腐食の原因を実験と考察によって求めたのである。
As described above, the inventors of the present invention determined through experiments and considerations the cause of preferential corrosion near the pump shaft in single-suction centrifugal pumps that handle electrolyte liquids.

本発明は始めにのべたようK例えば海水のような電解質
を取扱うポンプケーシングのポンプ軸近傍の腐食を防止
することを目的とするもので片吸込両うイナ形ポンプに
おいて羽根車を含む回転体の軸封部側中心部よシポンプ
室低圧部へ通ずる流体通路を設けることによって低流速
部の流動を活発ならしめたものである。
As stated in the introduction, the purpose of the present invention is to prevent corrosion near the pump shaft of a pump casing that handles electrolyte such as seawater. By providing a fluid passage leading from the center portion of the shaft sealing portion to the low pressure portion of the pump chamber, the flow in the low flow rate portion is made more active.

なお、従来からあるバランスホールは、単に羽根車回転
によって生ずるスラスト荷重をバランスさせるためだけ
の目的で存在するものであるのに対し、本発明による前
記流体通路は、スラスト荷重をバランスさせる作用もむ
ろん有しているが、その位置を積極的に軸心を近づけた
ものであるので、ポンプケーシングのポンプ軸近傍の腐
食防止という全く新しい作用をもたらすものである。
Note that while conventional balance holes exist solely for the purpose of balancing the thrust load generated by the rotation of the impeller, the fluid passage according to the present invention has the function of balancing the thrust load as well. However, since the shaft center is actively moved closer to the shaft center, it brings about a completely new effect of preventing corrosion of the pump casing near the pump shaft.

以下図面に従って本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

Ipc4I−図は本発明の実施例を示すポンプの縦断面
図である。ポンプの構造は、第1図と同じであり、ポン
プケーシングは鋳鉄製である。第ダ図には第1図で説明
された部分は符号のみ記載し、説明は省略する。
Ipc4I- is a vertical sectional view of a pump showing an embodiment of the present invention. The structure of the pump is the same as in Figure 1, and the pump casing is made of cast iron. In FIG. 1, only the reference numerals are shown for the parts explained in FIG. 1, and their explanation will be omitted.

バランスホールl13は羽根車の背部室10側の開口端
をポンプ軸3に近接し、ポンプ室低圧部へ向ってボスl
−中を頁通して設ける。
The balance hole l13 has an opening end on the back chamber 10 side of the impeller close to the pump shaft 3, and a boss l13 toward the pump chamber low pressure part.
- Provided with pages running through the inside.

軸封ハウス//は端部をバランスホール//、7の入口
//3ムに向って円錐形とし取扱い液体の流れをよくす
る。
The shaft sealing house // has a conical end toward the balance hole // and the inlet //3 of the balance hole to improve the flow of the handled liquid.

第ダ図において羽根車ダが回転すると図示矢印/7(細
線で示される)のように吸込口から吸込音れた液体は羽
根車ダによシ増速昇圧されて渦巻室/II/C出て図示
されない渦巻室ljK続く吐出口より吐き出される。渦
巻室/1の高圧液体は羽根車主板デの裏側をとおり、ラ
イナリングtとウェアリング部6の隙間より噴出して、
液体は矢印/ ?’のように中間ケーシング−の壁WJ
1611C当ル、バランスホール入口//3ムからバラ
ンスホール//、7をとおシ、ポンプ室吸込憫低圧部へ
吸出され、羽根単ダの軸方向バランスがとられる。従っ
て軸封ハウス//の羽根車の背部室10のポンプ軸3近
傍に面する表面は矢印/71の速度の早い流れが接する
0第3図社本発明のポンプケーシングのポンプ軸近傍の
腐食電流密度を示す線図である。縦軸には腐食電流密度
μムA−そして横軸にはポンプ運転時間(月)をとった
もので点線で示す111/lが本発明における腐食電流
密度の経時変化、実線で示す+111−〇が第1図に示
す従来形のバランスホールを備えるポンプケーシングの
腐食電流密度を示す。
In Figure D, when the impeller rotates, the liquid sucked in from the suction port as shown by arrow /7 (indicated by a thin line) is accelerated and pressurized by the impeller and exits from the volute chamber /II/C. The liquid is discharged from a discharge port following a spiral chamber ljK (not shown). The high-pressure liquid in the volute chamber/1 passes through the back side of the impeller main plate D and is ejected from the gap between the liner ring T and the wear ring part 6.
Liquid is an arrow / ? 'Intermediate casing-wall WJ
1611C, from the balance hole inlet //3 through the balance hole //, 7, it is sucked out to the pump chamber suction low pressure section, and the axial balance of the blade is maintained. Therefore, the surface facing the vicinity of the pump shaft 3 of the back chamber 10 of the impeller of the shaft sealing house // is in contact with the high-velocity flow indicated by the arrow /71. It is a diagram showing density. The vertical axis shows the corrosion current density μm A-, and the horizontal axis shows the pump operating time (months). 111/l shown by the dotted line is the change over time of the corrosion current density in the present invention, +111-〇 shown by the solid line. shows the corrosion current density of the pump casing with the conventional balance hole shown in FIG.

図より明らかなように1従来例ではポンプケーシングポ
ンプ軸近傍には大きなマクロアノード電流が流れていた
が、本発明のものは微94ながらマクロカンード電流が
流れておシ、腐食の進行が殆んどないことが期待できる
As is clear from the figure, in the conventional example 1, a large macroanode current flows near the pump shaft of the pump casing, but in the case of the present invention, a macroanode current of only 94% flows, and corrosion hardly progresses. I can hope that there will be no.

第6図乃至第10図は夫々が本発明の他の実施例を示す
要部のみ表わす縦断面図である。
FIGS. 6 to 10 are longitudinal sectional views showing only essential parts of other embodiments of the present invention.

第6図は羽根車亭のボスlコに軸方向に行止りの短い穴
//3Bを軸封部側からあけ、ポンプ室低圧部から該穴
1t3BK向けて斜めに穴//JCjをあけたものであ
る。
Figure 6 shows a short dead-end hole //3B drilled in the axial direction in the boss L of the impeller bow from the shaft seal side, and a hole //JCj diagonally directed from the pump chamber low pressure section toward the hole 1t3BK. It is something.

第7図は羽根車参のボス/JK軸方向の穴//JDをあ
けたものであル、加工容品な利点がある。
Figure 7 shows a hole in the impeller boss/JK axis direction//JD, which has the advantage of being easy to process.

第1図は羽根車参のボス/JK軸封部側から軸方向に行
止)の穴//3Ieを深く入れ、端部においてポンプ室
低圧部側から穴//311をあけてつないだものである
Figure 1 shows the impeller boss/JK hole 3Ie (stopped in the axial direction from the side of the shaft sealing part) inserted deeply, and the hole //311 made from the pump chamber low pressure part side at the end and connected. be.

第を図は羽根車ダのボスl−のポンプ軸3の入る穴にポ
ンプ軸3とキーを介して係合するキー溝以外にキー溝コ
lを設け、ボスノコの両端面に半径方向に溝ココを設け
たものである。このキー#1コlはボスl−に設けたも
のであるがポンプ軸3に回転力伝達用のキーを嵌入する
キー溝以外にキー溝を設け、骸キー溝にボスl−両端の
溝ココを一致させるようにしてもよい。
In the figure, a key groove l is provided in addition to the key groove that engages with the pump shaft 3 through a key in the hole into which the pump shaft 3 of the impeller boss l- is inserted, and grooves are provided in the radial direction on both end surfaces of the boss saw. This is what we set up here. This key #1 is provided on the boss l-, but a keyway is provided in addition to the keyway into which the key for transmitting rotational force is inserted into the pump shaft 3, and the grooves on both ends of the boss l- may be made to match.

第10図は軸封ハウス//と羽根車ダのボスlコの端面
間に現われているポンプ軸3の外周より半径方向に穴−
Jを設け、ポンプ軸3の羽根車l@端よ)中心を軸方向
に向って行止蒙るようVC6けた穴J4Iに連通したも
ので半径方向の穴コ3は等配して設ける。この場合は矢
印コjの流れは軸封ハウスl/の端面/JK沿って渦巻
状に半径方向の穴コ3の入口//、?ムよシ液体が流入
する。そして中心の穴コダをとおシ、ポンプ室吸込側中
心に出る。
Figure 10 shows a hole extending radially from the outer periphery of the pump shaft 3 that appears between the shaft sealing house and the end face of the impeller boss.
J is provided, and the center of the impeller l of the pump shaft 3 is connected to the VC6-shaped hole J4I so as to face the end in the axial direction, and the holes 3 in the radial direction are equally spaced. In this case, the flow indicated by arrow Cj is spirally radial along the end face /JK of shaft sealing house l/, at the entrance of hole 3 //, ? Liquid will flow in. Then pass through the hole in the center and exit from the center on the suction side of the pump chamber.

以上各実施例共軸封ハウス//の羽根車の背部室1or
1c面する壁面を流体が速い速度で流れるので、この部
分の腐食が流速差マクロセルによって助長されることが
なくなplむしろカンード傾向となり、腐食は防止され
る。
The back chamber of the impeller of the coaxial sealing house // in each of the above embodiments is 1 or
Since the fluid flows at a high speed on the wall surface facing 1c, corrosion in this part is not promoted by the flow rate difference macrocell, and instead tends to be cand, and corrosion is prevented.

尚、各実施例共バランスホールの機能を持つがバランス
力が不足するときは従来からあるようなバランスホール
を併用しても差支えはないのである。
Incidentally, each of the embodiments has the function of a balance hole, but when the balance force is insufficient, there is no problem in using a conventional balance hole in combination.

Iた各実施例において、ポンプケーシングのポンプ軸近
傍に液の流動をもたらす穴祉、鋳込みKよって設けても
よいし、加工によって設けてもよい。
In each of the above embodiments, the holes for causing liquid flow in the vicinity of the pump shaft of the pump casing may be provided by casting or may be provided by machining.

以上のとお夛、本発明は、従来ポンプケーシングのポン
プ軸近傍の腐食が海水のような電解質浴液中で急速に進
む原因を、流速差マクロセルの形成によってマクロ腐食
電流が生じている現象であることを見出し、これKよっ
てポンプケーシングのポンプ軸近傍の取扱液体の流速を
高めるようにポンプ羽根車を含む回転体の中心に近い部
分の軸封部側に液体流入通路入口を設けてポンプ室低圧
部へ貫通させたものであるからポンプケーシングのポン
プ軸近傍の腐食がなくなシ、ポンプの寿命を著しく伸ば
すことができる。
In addition to the above, the present invention solves the phenomenon in which macrocorrosion current is generated due to the formation of flow velocity differential macrocells, which is the cause of rapid corrosion of conventional pump casings near the pump shaft in electrolyte bath liquids such as seawater. Therefore, in order to increase the flow rate of the handled liquid near the pump shaft of the pump casing, a liquid inflow passage inlet is provided on the shaft sealing side of the part near the center of the rotating body including the pump impeller, thereby reducing the pump chamber's low pressure. Since it penetrates into the pump shaft, corrosion of the pump casing near the pump shaft is eliminated, and the life of the pump can be significantly extended.

【図面の簡単な説明】 第1図は従来例の渦巻ポンプの9部を示す縦断面図、第
2図は第1図のポンプのケーシングの腐食電流密度の経
時変化を示す線図、第3図は第1図のポンプのケーシン
グの一部を示す縦断面図、第1図は本発明の渦巻ポンプ
の実施例の縦断面図、第3図は第ダ図のポンプのケーシ
ングの腐食電流密度の経時変化を示す線図、第6図乃至
第10図は夫々が本発明の他の実施例を示す縦断面図で
ある。 l・・ケーシング コ・・中間ケーシング3・・ポンプ
軸 ダ・・羽根車 j、6・・ウェアリング部 ?・・
羽根車主板 lO・・羽根車の背部室 //・・軸封ハ
ウス ノコ嗜・ボス /、7.//、7・@バランスホ
ール //3ム・・バランスホールの入口 //、7B
、//、70.//、7D。 ti、yE、ii、yv−・穴 /41・・曲、I! 
 is・・端面 16・・壁面 /り /71am矢印
 15・・渦巻室 /9.−〇・・線 コト・キー溝コ
コ・・溝 コ3.コダ・・穴 コ1−・矢印。 特許出願人  株式会社荏原製作所 代 理 人   新  井  −部 第1図 時間(月) 第3図 第4図 第5図 莢 日毎MCFA) 第6図 第7v11 1 第8図 第9図 第10図
[Brief Description of the Drawings] Fig. 1 is a vertical cross-sectional view showing 9 parts of a conventional centrifugal pump, Fig. 2 is a diagram showing changes over time in the corrosion current density of the pump casing of Fig. 1, and Fig. 3 The figure is a longitudinal sectional view showing a part of the casing of the pump shown in Fig. 1, Fig. 1 is a longitudinal sectional view of an embodiment of the centrifugal pump of the present invention, and Fig. 3 is the corrosion current density of the casing of the pump shown in Fig. 6 to 10 are longitudinal sectional views showing other embodiments of the present invention. l...Casing Co...Intermediate casing 3...Pump shaft Da...Impeller j, 6...Wearing part?・・・
Impeller main plate lO・・Back chamber of impeller //・・Shaft sealing house Saw/boss /, 7. //, 7・@Balance Hall //3mu・Entrance of Balance Hall //, 7B
, //, 70. //, 7D. ti, yE, ii, yv-・hole /41・・song, I!
is... end face 16... wall surface /ri /71am arrow 15... spiral chamber /9. -〇...line here key groove here...groove 3. Koda...hole Ko1-arrow. Patent Applicant Ebara Corporation Agent Arai - Department Figure 1 Time (month) Figure 3 Figure 4 Figure 5 Daily MCFA) Figure 6 Figure 7v11 1 Figure 8 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】[Claims] l 羽根車の両側とポンプケーシングとの間を水封リン
グによシ水封した片吸込両うイナ形ポンプにおいて羽根
車を含む回転体の中心部に羽根車の背面とポンプケーシ
ングの水封部よシ軸側の室に開口し該室の液体の流入す
る入口があるようにポンプ室低圧部に向って流体の通路
を設け、ポンプケーシングの軸近傍の防食を行うことを
特徴とする渦巻ポンプ。
l In a single-suction dual-cabinet pump with a water seal ring between both sides of the impeller and the pump casing, there is a water seal between the back of the impeller and the water seal part of the pump casing at the center of the rotating body including the impeller. A centrifugal pump characterized in that a fluid passage is provided toward a low-pressure part of the pump chamber so that there is an inlet opening in the chamber on the horizontal axis side and into which liquid flows into the chamber, thereby preventing corrosion near the axis of the pump casing. .
JP7584982A 1982-05-06 1982-05-06 Scroll pump Pending JPS58192995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7584982A JPS58192995A (en) 1982-05-06 1982-05-06 Scroll pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7584982A JPS58192995A (en) 1982-05-06 1982-05-06 Scroll pump

Publications (1)

Publication Number Publication Date
JPS58192995A true JPS58192995A (en) 1983-11-10

Family

ID=13588070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7584982A Pending JPS58192995A (en) 1982-05-06 1982-05-06 Scroll pump

Country Status (1)

Country Link
JP (1) JPS58192995A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631055A1 (en) * 1993-06-16 1994-12-28 ITT Flygt Aktiebolag A pump impeller
EP0696681A1 (en) * 1994-08-13 1996-02-14 KSB Aktiengesellschaft Impeller for a centrifugal pump
WO2016062416A1 (en) * 2014-10-23 2016-04-28 Sulzer Management Ag A method of pumping a liquid medium, a centrifugal pump and an impeller therefor
WO2019058669A1 (en) * 2017-09-22 2019-03-28 株式会社 荏原製作所 Centrifugal pump
WO2023286263A1 (en) * 2021-07-16 2023-01-19 株式会社Tbk Impeller of fluid pump

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631055A1 (en) * 1993-06-16 1994-12-28 ITT Flygt Aktiebolag A pump impeller
US5542817A (en) * 1993-06-16 1996-08-06 Itt Flygt Ab Impeller for a rotary pump
EP0696681A1 (en) * 1994-08-13 1996-02-14 KSB Aktiengesellschaft Impeller for a centrifugal pump
WO2016062416A1 (en) * 2014-10-23 2016-04-28 Sulzer Management Ag A method of pumping a liquid medium, a centrifugal pump and an impeller therefor
RU2633211C1 (en) * 2014-10-23 2017-10-11 Зульцер Мэнэджмент Аг Method of pumping liquid medium, centrifugal pump and its working wheel
CN107567545A (en) * 2014-10-23 2018-01-09 苏尔寿管理有限公司 Method, centrifugal pump and its impeller of pumping of liquid medium
WO2019058669A1 (en) * 2017-09-22 2019-03-28 株式会社 荏原製作所 Centrifugal pump
WO2023286263A1 (en) * 2021-07-16 2023-01-19 株式会社Tbk Impeller of fluid pump

Similar Documents

Publication Publication Date Title
CA2477293C (en) Submersible pump impeller design for lifting gaseous fluid
US7999424B2 (en) Arrangement with an electric motor and a pump
CA2905848C (en) Centrifugal pump for handling abrasive-laden fluid
US4708584A (en) Shrouded inducer pump
JP2007198270A (en) Double suction centrifugal pump
JPS58192995A (en) Scroll pump
EP0322504B1 (en) Shrouded inducer pump
US20060120866A1 (en) Centrifugal impeller and pump apparatus
CN111594542B (en) Oil bath type bearing device and rotary machine
JPS5885398A (en) Spiral pump
RU2560105C2 (en) Stage of submersible multi-stage high flow rate centrifugal pump
JPH085358Y2 (en) Gas seal type motor pump device
JPH0259314B2 (en)
EP3904695A1 (en) Bowl pump and vertical bowl pump arrangement
CN211525172U (en) Industrial wear-resisting corrosion-resistant mixed flow pump impeller
JP2019085935A (en) Single suction vertical pump
RU2239725C2 (en) Centrifugal pump
JPH01208599A (en) Centrifugal pump
JPH06159282A (en) Regenerative pump
SU1285198A1 (en) Two-stage turbomolecular vacuum pump
JPS6193297A (en) Volute pump
JPS63263300A (en) Cavitation resistance inducer
JPS6157959B2 (en)
JPH025119Y2 (en)
RU162421U1 (en) STEP OF A HIGH SPEED MULTI-STAGE SUBMERSIBLE CENTRIFUGAL PUMP