JPS58192941A - Fuel-air mixture control device for modified gas engine - Google Patents

Fuel-air mixture control device for modified gas engine

Info

Publication number
JPS58192941A
JPS58192941A JP57073318A JP7331882A JPS58192941A JP S58192941 A JPS58192941 A JP S58192941A JP 57073318 A JP57073318 A JP 57073318A JP 7331882 A JP7331882 A JP 7331882A JP S58192941 A JPS58192941 A JP S58192941A
Authority
JP
Japan
Prior art keywords
gas
fuel
ratio
engine
reformed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57073318A
Other languages
Japanese (ja)
Inventor
Toshio Hirota
広田 寿男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP57073318A priority Critical patent/JPS58192941A/en
Publication of JPS58192941A publication Critical patent/JPS58192941A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0628Determining the fuel pressure, temperature or flow, the fuel tank fill level or a valve position
    • F02D19/0631Determining the fuel pressure, temperature or flow, the fuel tank fill level or a valve position by estimation, i.e. without using direct measurements of a corresponding sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To improve response of the titled device to an abrupt change in an engine load, by arranging such that a modified gas flow ratio and an excess air ratio may be predetermined in their maximum levels in accordance with a capability of a modifier to modify gas properties, in an engine adapted to use both liquid fuels and modified gases. CONSTITUTION:Supplied to an engine 4 is an air passing through an air valve 28, a modified gas flowing via a gas valve 25 out of a modifier (not shown) and a liquid fuel passing through an injection valve 27. A controller 29 adapted to input signals indicative of operating conditions computes required levels of gas- fuel ratio (a flow ratio of modified gas to a total fuel rate) and an excess air ratio from a magnitude of accelerator operation and an engine speed, while at the same time computing maximum limit levels of gas-fuel ratio and the excess air ratio utilizing signals outputted from a gas pressure sensor 33 and a modified catalyst temperature sensor 32. Smaller ones of these required and maximum limit levels are selected to control each supplying valve, and thereby making it possible to control the excess air ratio in a stable state even when an abrupt change takes place in an engine load as experienced in burning a poorly modified gas.

Description

【発明の詳細な説明】 本発明は、自動車用原動機等として使用される改質ガス
エンジンの混合気制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mixture control device for a reformed gas engine used as a motor vehicle, etc.

メタノール、エタノール、ガソリン、灯油等の液体燃料
は触媒を介して水素、−飯化戻累を多量に含むガスに改
質することかでき、この改質ガスは燃焼性に優れ熱効率
が高いため燃費特性が改善でれ、しかも排気も清浄であ
ることから、この改質ガスを燃料とするエンジンが近都
注目されている。ところが改質ガスのみでは必ずしも光
分な”出力を得がたいので、改質ガスの他に未改質の液
体燃料をみ加供給することが望まれる。
Liquid fuels such as methanol, ethanol, gasoline, and kerosene can be reformed through catalysts into gases containing large amounts of hydrogen and -hydrogen-hydrogen, and this reformed gas has excellent combustibility and high thermal efficiency, resulting in low fuel consumption. Engines that use this reformed gas as fuel are attracting attention in recent years because of their improved characteristics and clean exhaust. However, it is not necessarily possible to obtain an optical output with only the reformed gas, so it is desirable to supply unreformed liquid fuel in addition to the reformed gas.

このようK、改質ガスと未改質の液・体燃料とを併用す
る場合はエンジンの運転状態に応じて混合気の空燃比及
び供給される改質ガスと液体燃料とのム量訛量比を制御
してエンジンの熱効率、排気特性、出力特性を良好に保
持させる必要がわる。
In this way, when reformed gas and unreformed liquid/solid fuel are used together, the air-fuel ratio of the mixture and the amount of difference between the supplied reformed gas and liquid fuel depend on the operating conditions of the engine. It is necessary to control the ratio to maintain good thermal efficiency, exhaust characteristics, and output characteristics of the engine.

以下本出願人が先に提案1j開昭55−104542号
公報参照)したアルコール改質ガスエンジンの混合気制
御装置管例に第1図に基づいて説明する。ガス人口1よ
り導入され友改質ガスは、ガス流量計2′t−経てガス
パルプ3で流量制御されてエンジン4に供給される。エ
アクリーナ5より導入された空気は、並行する一次空気
供給路6と二次突気供給路1とに流入する。両供給路6
.7には−次空気パルプ8、二次空気バルブ9が設けら
れ、両バルブ8.「で流量制御された1次空気と二次空
気とが合流してエンジン4に供給される。
An example of the air-fuel mixture control system for an alcohol reformed gas engine, which was previously proposed by the applicant of the present invention (see Japanese Patent Publication No. 55-104542), will be described below with reference to FIG. The reformed gas introduced from the gas port 1 is supplied to the engine 4 through a gas flow meter 2't-, the flow rate of which is controlled by a gas pulp 3. Air introduced from the air cleaner 5 flows into a primary air supply path 6 and a secondary air supply path 1 that are parallel to each other. Both supply channels 6
.. 7 is provided with a secondary air pulp 8 and a secondary air valve 9, both valves 8. The primary air and secondary air, whose flow rates are controlled at 1, are combined and supplied to the engine 4.

尚、改質ガス人口1及び空気の入口であるエアクリーナ
5人口は大気圧と略等しく、エンジン4の吸入負圧で改
質ガス及び空気がそれぞれの通路を流れ未改質のアルコ
ールはアルコールインジェクタ10により流量を制御さ
れてエンジン4に供給される。又、前記ガスバルブ3と
開法空気バルブ8とは連動装置11を介して連動され、
運転者により操作手段としてのアクセルペダル(図示省
略)でアクセルワイヤ12を介して操作されるが、二次
空気バルブ9はガス流量計2によって検出された改質ガ
スの流量に基づいて制御すれる。尚、−次空気流tは、
アクセルペダルの操作流量に対応し、この−次空気流蓋
に比例して要求燃料sitが設定されるようになってい
る。そして、改質ガスの供給が充分である時に、改質ガ
スで要求燃料流量をまかなうと共に、二次空気バルブ9
を開いて混合気を希薄化する。逆に改質ガスの供給が不
充分又り制限される場合は、要求燃料流量に対する改質
ガスの不足分をアルコールの供給で補償すると共に、二
次空気バルブ9を閉じて空気流量を減少させる。13は
一次空気流量に基づいて設定された要求燃料流量と改質
ガス流量との差を演算してアルコール供給量を算出し、
これに基づいてアルコールインジェクタ10を制御する
コントローラである。
The reformed gas population 1 and the air cleaner 5 population, which is the inlet of air, are approximately equal to atmospheric pressure, and the reformed gas and air flow through their respective passages under the negative intake pressure of the engine 4, and unreformed alcohol is transported to the alcohol injector 10. The flow rate is controlled by and supplied to the engine 4. Further, the gas valve 3 and the open air valve 8 are interlocked via an interlocking device 11,
It is operated by the driver via an accelerator wire 12 using an accelerator pedal (not shown) as an operating means, and the secondary air valve 9 is controlled based on the flow rate of the reformed gas detected by the gas flow meter 2. . In addition, the −th airflow t is
The required fuel sit is set in proportion to this secondary air flow cover in response to the operating flow rate of the accelerator pedal. When the supply of reformed gas is sufficient, the required fuel flow rate is covered by the reformed gas, and the secondary air valve 9
open to dilute the mixture. Conversely, if the supply of reformed gas is insufficient or limited, the shortage of reformed gas relative to the required fuel flow rate is compensated for by supplying alcohol, and the secondary air valve 9 is closed to reduce the air flow rate. . 13 calculates the alcohol supply amount by calculating the difference between the required fuel flow rate and the reformed gas flow rate, which are set based on the primary air flow rate;
This is a controller that controls the alcohol injector 10 based on this.

しかしながら、このような従来の改質ガスエンジンの混
合気制御装置にあっては、アルコール等の液体燃料をガ
スに改質する改質器の改質能力不足等によって改質ガス
流量が不足した場合に、前記したように、要求燃料流量
と改質ガス流量の差を検出して液体燃料流量を制御する
構成となっていたため、エンジンの過渡運転時(特に加
速時)における応答性が悪く、空気過剰率の一時的な希
薄化或いは濃化が発生し、燃費、排気特性を悪化させる
のみならず、改質器の圧力を変動させる要因となシ圧力
制御が困難となる婢の開祖を生じてい友。
However, in such a conventional mixture control device for a reformed gas engine, if the reformed gas flow rate is insufficient due to insufficient reforming capacity of the reformer that reformes liquid fuel such as alcohol into gas, As mentioned above, since the configuration was such that the liquid fuel flow rate was controlled by detecting the difference between the required fuel flow rate and the reformed gas flow rate, the response during transient operation of the engine (especially during acceleration) was poor, and the air Temporary dilution or enrichment of the excess ratio occurs, which not only deteriorates fuel efficiency and exhaust characteristics, but also causes fluctuations in the reformer pressure, making pressure control difficult. friend.

本発明はこのような従来の開祖点に鑑み為されたもので
、改質ガスの圧力と、改質触媒の温度又はこれに関連す
る温度に基づいて全燃料amに対する改質ガス流量割合
及び空気過剰率を制御することによシ前記間趙点を解決
した改質ガスエンジンの混合気制御装置を提供すること
を目的とする。
The present invention has been made in view of the origin of the conventional art, and the present invention is based on the pressure of the reformed gas and the temperature of the reforming catalyst or a temperature related thereto. It is an object of the present invention to provide a mixture control device for a reformed gas engine that solves the above-mentioned problem by controlling the excess ratio.

以下に本発明を図示実施例に基づいて説明する。The present invention will be explained below based on illustrated embodiments.

第2図は本発明の一実施例を示すシステム図であり、エ
ンレフ210図示しない排気通路に介装された改質器に
よって例えばアルコールを改質して侍られた改質ガスは
、遮断弁22t−備えたガス通路23及びその下流端に
連結されるガスマニホールド24を介してガスバルブ2
5から吸気i!i路26に供給される。一方、アルコー
ルはアルコールインジェクタ27を介して吸気通路26
の吸気ボート付近に噴射供給される。ガスバルブ25よ
シ上流側の吸気通路26にVi窒気気パルプ28介装さ
れ、該空気バルブ28はリンク29、空気パルプha比
アクチュエータ30、アクセルワイヤ31を介してアク
セルペダル(図示せず)に連結される。前記アクチュエ
ータ29は、アクセル操作量に対する空気パルプ28の
開度比をコントローラ2sからの信号により空気過剰7
4(以下λという)が大患い時に大きくするように駆動
される。
FIG. 2 is a system diagram showing an embodiment of the present invention, in which the reformed gas, which is obtained by reforming alcohol, for example, by a reformer installed in the exhaust passage (not shown) of the enref 210, is supplied to the cutoff valve 22t. - a gas valve 2 through a gas passage 23 provided with a gas manifold 24 connected to its downstream end;
Inhale from 5! It is supplied to the i-way 26. On the other hand, alcohol enters the intake passage 26 via the alcohol injector 27.
is injected near the intake boat. A Vi nitrogen air pulp 28 is interposed in an intake passage 26 upstream of the gas valve 25, and the air valve 28 is connected to an accelerator pedal (not shown) via a link 29, an air pulp ha ratio actuator 30, and an accelerator wire 31. Concatenated. The actuator 29 adjusts the opening ratio of the air pulp 28 to the accelerator operation amount according to a signal from the controller 2s to determine if there is an excess air 7.
4 (hereinafter referred to as λ) is driven to increase when the patient is seriously ill.

ガス1ニホールド24には改質ガスの温度を検出するガ
ス温度センサ32、改質ガスの圧力を検出するガス圧力
センサ33が設けられ、前記アクチュエータ30にはそ
のアクセルワイヤ31@に連結される部材に連動してア
クセル操作量を検出するアクセル操作量センサ34が設
けられる。又、ディストリビュータ35にはエンジン回
転速度及びクランク角を検出する回転速度・クランク角
センサ36、空気バルブ28上流側の吸気通路26には
吸入空気流量を検出する空気流量センサ37、図示しな
い改質器には改質触媒の温度を検出する触媒温度センサ
38が夫々設けられる。
The gas 1 nifold 24 is provided with a gas temperature sensor 32 for detecting the temperature of the reformed gas, and a gas pressure sensor 33 for detecting the pressure of the reformed gas, and the actuator 30 includes a member connected to the accelerator wire 31@. An accelerator operation amount sensor 34 is provided to detect the accelerator operation amount in conjunction with the accelerator operation amount. Further, the distributor 35 is equipped with a rotation speed/crank angle sensor 36 that detects the engine rotation speed and crank angle, the intake passage 26 on the upstream side of the air valve 28 is equipped with an air flow sensor 37 that detects the intake air flow rate, and a reformer (not shown). are each provided with a catalyst temperature sensor 38 for detecting the temperature of the reforming catalyst.

そして、これら各センサからの信号はコントローラ29
に入力され、コントローラ29はこれら入力信号に基づ
きガスパルプ25、アルコールインジェクタ27.空気
パルプ28を制御し、もつて改質ガス及びアルコールの
供給蓋、空気流量を%+1J(ii41するようになっ
ている。
The signals from each of these sensors are sent to the controller 29.
Based on these input signals, the controller 29 controls the gas pulp 25, alcohol injector 27 . The air pulp 28 is controlled so that the reformed gas and alcohol supply lid and the air flow rate are %+1J (ii41).

次に1かかる構成からなる実施例装置の具体的なI+I
IJ御方法を第3図〜第5図をも参照して説明する。第
3図はコントローラ2Sの信号処理手順の一例を示すブ
ロック図(データフロー図)でちゃ、負荷演算ユニット
39はアクセル操作量センサ34で検出したアクセル操
作1kSと、回転速度・クランク角センサ36で検出し
たエンジン回転速1ineとからエンジンの要求負荷、
即ち負荷率りを算出する。そして、基本ガス/燃比演算
ユニット40は、上記負荷率りに対応する基本ガス/燃
比αg。
Next, 1. Specific I+I of the embodiment device having the above configuration.
The IJ control method will be explained with reference to FIGS. 3 to 5. FIG. 3 is a block diagram (data flow diagram) showing an example of the signal processing procedure of the controller 2S. From the detected engine rotation speed 1ine, the required load of the engine,
That is, the load factor is calculated. Then, the basic gas/fuel ratio calculation unit 40 calculates the basic gas/fuel ratio αg corresponding to the load factor.

を演算し、基本空気過剰率演算ユニツ)41#′i負荷
率りに対応する基本空気過剰率λ0を演算する。
, and calculates the basic excess air ratio λ0 corresponding to the basic excess air ratio calculation unit 41#'i load factor.

ここで、基本ガス/燃比αgoと基本空気過剰率とは負
荷″4Lに対してそれぞれ独立に設定されるため、共に
最適値をとることができる。
Here, since the basic gas/fuel ratio αgo and the basic excess air ratio are set independently for the load "4L," both of them can take optimum values.

一方、ガス/燃比限界値演算ユニット42は触媒温度セ
ンサ38及びガス圧力センサ33で検出された改質触媒
温度及び改質ガス圧力に基づいてガス/燃比の最大限界
値αgtirnを算出し、空気過m1l1軍限界値演算
ユニット43は6141mに対応して空気過剰率の最大
限界値λtim゛を算出する。
On the other hand, the gas/fuel ratio limit value calculation unit 42 calculates the maximum limit value αgtirn of the gas/fuel ratio based on the reforming catalyst temperature and reformed gas pressure detected by the catalyst temperature sensor 38 and gas pressure sensor 33, and calculates the maximum limit value αgtirn of the gas/fuel ratio. The m1l1 army limit value calculation unit 43 calculates the maximum limit value λtim' of the excess air ratio corresponding to 6141m.

ここで、α141mとλA1mとは後述するように設定
される。即ち、改質ガスの燃焼性能は改質触媒温H(t
aata)が高く改質能力が高い時程優れている丸め、
改質ガース供給量の最大限界a Ggtlmは触媒温度
が高い程又改質ガス圧力が高い程大きく設定することが
でき例えはその特性は第4図に示すようになる。従って
改質ガス供給量の限界値Ggt1mに対応してα141
m及び第5図に示す如く6141mに対して比例特性を
もつ2141mも夫々改質触座温度及び改質ガス圧力の
増大に伴なって増大するように設定する。
Here, α141m and λA1m are set as described later. That is, the combustion performance of the reformed gas depends on the reforming catalyst temperature H(t
The higher the aata) and the higher the reforming ability, the better the rounding,
The maximum limit a Ggtlm of the reforming gas supply amount can be set to be larger as the catalyst temperature is higher or the reformed gas pressure is higher, and its characteristics are shown in FIG. 4, for example. Therefore, α141 corresponds to the limit value Ggt1m of reformed gas supply amount.
m and 2141m, which has a proportional characteristic with respect to 6141m as shown in FIG. 5, are also set to increase as the reforming contact temperature and reformed gas pressure increase, respectively.

そして、ガス/燃比演算ユニット44が前記基本ガス/
燃比αgoとガス/燃比の最大限界値αgt1mとのい
ずれか小さい方を選択してガス/燃比αgt−設定する
と共に、空気過剰率演算ユニット45が基本空気過剰率
λ0と空気過剰率の限界値λAimとのいずれか小さい
方を選択して空気過剰率λを設定する。液/燃比演算1
ニット46は液/燃比←液体アルコール流′jl/#に
、斜流量;重量比)αノをαt−1一αgとして算出す
る。燃料演算ユニット47はエアフロメータ37で検出
した空気流量Gaと前記空気過剰率λとを入力して要求
燃料流量Gfを演算する。ガス流量演算ユニット48は
要求燃料流′jIkGfとガス/燃比αgとを入力して
ガ?流量(重Ik) G gを演算し、アルコール流量
演算ユニット49は要求燃料流蓋Gfと液/燃比αtと
を入力してアルコール流IGtを演算スル。
Then, the gas/fuel ratio calculation unit 44
The smaller of the fuel ratio αgo and the maximum limit value αgt1m of the gas/fuel ratio is selected and the gas/fuel ratio αgt- is set, and the excess air ratio calculation unit 45 calculates the basic excess air ratio λ0 and the excess air ratio limit value λAim. The excess air ratio λ is set by selecting the smaller one of the following. Liquid/fuel ratio calculation 1
The unit 46 calculates the diagonal flow rate (weight ratio) α as αt−1−αg, where the liquid/fuel ratio←liquid alcohol flow′jl/#. The fuel calculation unit 47 inputs the air flow rate Ga detected by the air flow meter 37 and the excess air ratio λ, and calculates the required fuel flow rate Gf. The gas flow rate calculation unit 48 inputs the required fuel flow 'jIkGf and the gas/fuel ratio αg and calculates the gas/fuel ratio αg. The alcohol flow calculation unit 49 calculates the alcohol flow IGt by inputting the required fuel flow cover Gf and the liquid/fuel ratio αt.

ガスバルブ制御ユニット50はガス流量Gg、ガス圧力
Pg、ガス温11tg及び機関回転数no、クランク角
の信号を入力してガスバルブ25の開度を制御し所定の
改質ガス供給量を得る。インジェクタ制御ユニット51
はアルコール流量atと機関回転数・クランク角の信号
を入力して所定の噴射時期にインジェクタ2Tを駆動し
て所定のアルコール供給量を得る。空気バルブ制御ユニ
ット52は空気過剰率λを入力して空気バルブ28を所
定の一度に制御する。このようにして所望のガス/燃比
αg及び空気過剰率λを得るように混合気を制御するこ
とができる。そして、前記したようにガス/燃比の最大
限界値αgt1m及び空気過剰率の最大限界値λgti
m金改質ガス圧カ及び触媒温度の増大に応じて増大する
ように設定したため、改質器の改質能力に応じて改質ガ
ス供給量が制御される。従って改質能力不足時には改質
ガス供給量を制限してその分液体アルコールの供給量を
大きくすることができるため、エンジンの急激な負荷変
動に対しても応答性が良く空気過剰率を安定させること
ができるので燃費、排気特性を改善でき、又、改質器の
圧力が安定するため改質ガス圧力の制御性を高めること
もできる。
The gas valve control unit 50 inputs signals of the gas flow rate Gg, gas pressure Pg, gas temperature 11tg, engine speed no., and crank angle to control the opening degree of the gas valve 25 to obtain a predetermined reformed gas supply amount. Injector control unit 51
inputs signals of the alcohol flow rate at, engine speed and crank angle, and drives the injector 2T at a predetermined injection timing to obtain a predetermined alcohol supply amount. The air valve control unit 52 inputs the excess air ratio λ and controls the air valves 28 at a predetermined time. In this way, the air-fuel mixture can be controlled to obtain the desired gas/fuel ratio αg and excess air ratio λ. As described above, the maximum limit value αgt1m of the gas/fuel ratio and the maximum limit value λgti of the excess air ratio
The amount of reformed gas supplied is controlled in accordance with the reforming capacity of the reformer because it is set to increase as the m-gold reformed gas pressure and catalyst temperature increase. Therefore, when the reforming capacity is insufficient, the amount of reformed gas supplied can be restricted and the amount of liquid alcohol supplied can be increased by that amount, which improves responsiveness to sudden engine load changes and stabilizes the excess air ratio. As a result, fuel efficiency and exhaust characteristics can be improved, and since the pressure in the reformer is stabilized, controllability of reformed gas pressure can also be improved.

尚、本実施例では改質触媒温度を直接検出する*成とし
たが、改質器本体の温度で間接的に検出する構成として
もよい。
In this embodiment, the temperature of the reforming catalyst is directly detected, but it may be configured to be indirectly detected using the temperature of the reformer body.

以上説明したように本発明によればガス/燃比及び空気
過剰率を改質ガス圧力と改質触媒温度又はこれに関連す
る温度の検出にょシ改質器の改質能力に対応して制御す
る構成としたため、エンジンの急激な負荷変動に対して
鬼応答性に優れた混合気制御性能が得られ、空気過剰率
が安定して燃費排気特性を改善することができると共に
、改質ガス圧力の制御性を高めることができる等優れた
%長を備えるものである。
As explained above, according to the present invention, the gas/fuel ratio and excess air ratio are controlled in accordance with the reforming capacity of the reformer by detecting the reformed gas pressure and the reforming catalyst temperature or related temperatures. As a result of this configuration, it is possible to obtain mixture control performance with excellent responsiveness to sudden engine load fluctuations, stabilize the excess air ratio, improve fuel consumption and exhaust characteristics, and improve the reformed gas pressure. It has an excellent % length that can improve controllability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の改質ガスエンジンの混合気制御装置の一
例を示す構成図、第2図は本発明の一実施例を示す構成
図、第3図は同上実施例の制御ブロック図(データフロ
ー図)、第4図は同上実施例装置における改質ガス供給
量限界値の特性を示す線図、第5図は同上実施例装置に
おけるαgt1m−λ71mの特性を示す線図である。 21・・エンジン  25・・・ガスバルブ  2T・
・・インジェクタ  28・・・空気バルブ  29・
・・コントローラ  33・・・ガス圧力センサ  3
4・・・アクセル操作蓋センサ  36・・・回転速度
・クランク角七ンサ  37・・・空気流量センサ 3
8・・・触媒温度センサ  42・・・ガス/燃比限界
値演算ユニット  43・−・空気過剰sw&界値慣算
ユニット 特許 出 願人 日産自動車株式会社 代場人 弁堆士 笹 鳥 蔦二扇
Fig. 1 is a block diagram showing an example of a conventional mixture control device for a reformed gas engine, Fig. 2 is a block diagram showing an embodiment of the present invention, and Fig. 3 is a control block diagram (data FIG. 4 is a diagram showing the characteristics of the limit value of the reformed gas supply amount in the device of the above embodiment, and FIG. 5 is a diagram showing the characteristics of αgt1m-λ71m in the device of the embodiment. 21...Engine 25...Gas valve 2T...
・・Injector 28・Air valve 29・
...Controller 33...Gas pressure sensor 3
4...Accelerator operation lid sensor 36...Rotation speed/crank angle sensor 37...Air flow rate sensor 3
8...Catalyst temperature sensor 42...Gas/fuel ratio limit value calculation unit 43...Excess air sw & limit value calculation unit patent Applicant: Nissan Motor Co., Ltd. Daiba person Benkoushi Sasa Tori Tsuta Nifan

Claims (1)

【特許請求の範囲】[Claims] 液体燃料を改質触媒の存在下で改質して得た可燃成分を
主成分とする改質ガスと、未改質の液体燃料とを燃料と
しエンジンの各種運転条件の検出に基づいて前記両燃料
の供給量割合と混合気の空気過剰率とを設定するように
した改質ガスエンジンにおいて、改質ガス圧力及び改質
触媒温度又はこれに一連する温度を検出し、これら検出
値の増大に従って全燃料供給量に対する改質ガス供給量
の割合及び空気過m率の最大限界値を増大する制御手段
を設けたことを付値とする改質ガスエンジンの混合気制
御装置。
A reformed gas whose main component is a combustible component obtained by reforming liquid fuel in the presence of a reforming catalyst and an unreformed liquid fuel are used as fuel, and both of the above are determined based on the detection of various operating conditions of the engine. In a reformed gas engine in which the fuel supply rate and air-fuel mixture excess ratio are set, the reformed gas pressure and the reforming catalyst temperature or a series of temperatures thereof are detected, and as these detected values increase, A mixture control device for a reformed gas engine, which is provided with a control means for increasing the ratio of the amount of reformed gas supplied to the total amount of fuel supplied and the maximum limit value of the air ratio.
JP57073318A 1982-05-04 1982-05-04 Fuel-air mixture control device for modified gas engine Pending JPS58192941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57073318A JPS58192941A (en) 1982-05-04 1982-05-04 Fuel-air mixture control device for modified gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57073318A JPS58192941A (en) 1982-05-04 1982-05-04 Fuel-air mixture control device for modified gas engine

Publications (1)

Publication Number Publication Date
JPS58192941A true JPS58192941A (en) 1983-11-10

Family

ID=13514698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57073318A Pending JPS58192941A (en) 1982-05-04 1982-05-04 Fuel-air mixture control device for modified gas engine

Country Status (1)

Country Link
JP (1) JPS58192941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1371834A1 (en) * 2001-02-27 2003-12-17 Eduard Alexandrovich Ulanovsky Regulating method for gas and liquid internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1371834A1 (en) * 2001-02-27 2003-12-17 Eduard Alexandrovich Ulanovsky Regulating method for gas and liquid internal combustion engine
EP1371834A4 (en) * 2001-02-27 2007-05-09 Eduard Alexandrovich Ulanovsky Regulating method for gas and liquid internal combustion engine

Similar Documents

Publication Publication Date Title
US4646702A (en) Air pollution preventing device for internal combustion engine
US20220099043A1 (en) Internal Combustion Engine Control Device
US6226981B1 (en) Air to fuel ratio control for gas engine and method of operation
JPS6340259B2 (en)
US3961477A (en) Process and system for detoxicating the exhaust gases of an internal combustion engine
JPH07253048A (en) Air-fuel mixture forming method of gaseous fuel engine and device thereof
JPS58192941A (en) Fuel-air mixture control device for modified gas engine
JP6481567B2 (en) Fuel reforming method and fuel reforming apparatus
JP4427788B2 (en) Fuel reformer and operation method thereof
US4119061A (en) Method and equipment for control of internal combustion engine including a fuel-reforming device
JP3725713B2 (en) Engine air-fuel ratio control device
JP3328745B2 (en) Valve timing control device for alcohol engine
JPS6018807B2 (en) Secondary air injection amount control device for internal combustion engine
JPS5851142B2 (en) Excess air ratio control device for alcohol reformed gas engine
JP3009228B2 (en) Exhaust gas purification method and apparatus for natural gas engine
US11746719B2 (en) Internal combustion engine control device
WO2023223504A1 (en) Device and method for controlling oxygen storage amount in three-way catalyst
US4329944A (en) Excess air factor control device for an alcohol reformed gas engine
JPS628358Y2 (en)
JPH0741879Y2 (en) Combustion control device for gas engine
JPS6030443Y2 (en) Exhaust gas purification device
JP3328887B2 (en) Operation control device for gaseous fuel engine
JPS6380055A (en) Fuel supply device for engine
JPS609399Y2 (en) Fuel supply system for LP gas engine
JPS5867938A (en) Abnormal combustion preventing device in alcohol- reformed gas engine