JPS58192662A - Method for recovering heat from continuous casting mold for steel - Google Patents

Method for recovering heat from continuous casting mold for steel

Info

Publication number
JPS58192662A
JPS58192662A JP7519982A JP7519982A JPS58192662A JP S58192662 A JPS58192662 A JP S58192662A JP 7519982 A JP7519982 A JP 7519982A JP 7519982 A JP7519982 A JP 7519982A JP S58192662 A JPS58192662 A JP S58192662A
Authority
JP
Japan
Prior art keywords
mold
temperature
water
metal
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7519982A
Other languages
Japanese (ja)
Inventor
Masao Onozawa
昌男 小野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7519982A priority Critical patent/JPS58192662A/en
Publication of JPS58192662A publication Critical patent/JPS58192662A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the generation of any cracking defect in an ingot in the stage of cooling a continuous casting mold for steel with liquid alkali metal by specifying the temp. of the liquid metal flowing out from the casting mold. CONSTITUTION:A NaK alloy (about 56% Na, about 44% K) is used as liquid alkali metal, and is introduced through a heat exchanger 5, a tank 4, a pump 3, a filter 2 and a flowmeter 6 into a casting mold 1 to cool the mold, whereafter the metal is circulated again to the heat exchanger 5. Cold water or hot water is supplied by a circulation pump 11 to the water side of the heat exchanger 5 to control the temp. of the liquid metal. The temp. of the liquid alkali metal flowing out through the outlet of the mold 1 is controlled by such cooling mechanism so that said temp. is kept always in a specified range of <=330 deg.C, and particularly in the case of the liquid metal in upward current to<=250 deg.C. The generation of any defect such as breakout in the ingot is thus prevented.

Description

【発明の詳細な説明】 この発明は鋼の連続鋳造鋳型より熱回収ケ行う方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for recovering heat from continuous steel casting molds.

鋼の連続鋳造は近年インゴット−分塊圧延法を駆逐しつ
つある方法で、溶鋼を鋳型に入れて表層部を形成させ、
これを、続くスプレーシンでガイドロールで支持しつつ
注水冷却して完全凝固させ、これケピンチロールで引き
出して、その後で一定長さに切断して成品とする。
Continuous casting of steel is a method that has been replacing the ingot-blooming rolling method in recent years, and involves placing molten steel in a mold to form the surface layer.
This is then completely solidified by pouring water and cooling while supported by guide rolls in a spray machine, pulled out with cap pinch rolls, and then cut to a certain length to form finished products.

このとき鋳型には連続的に高温の浴湯が供給されるから
大きな熱負荷がかかる。このため連続鋳造飴J1”)は
、一般に熱伝導度のよい純銅捷たは銅合金でつくられ、
周囲または内部に良質の淡水を^流速で流入させて高度
の冷却を行なわせている。
At this time, the mold is continuously supplied with high-temperature bath water, which places a large heat load on it. For this reason, continuous casting candy J1") is generally made of pure copper or copper alloy, which has good thermal conductivity.
High-quality fresh water is allowed to flow into the surrounding area or inside at a high flow rate to achieve a high degree of cooling.

そのため鋳型を透過しての冷却水温の上昇も、通常4〜
5℃に抑えられている。
Therefore, the temperature of the cooling water that passes through the mold usually increases by 4~
The temperature is kept at 5℃.

連続鋳造鋳型は、直接鋼片に接して冷却を行なう銅部材
の形状にもとづいて、チューブ鋳型、ブロック鋳型1紐
立鋳型に分類される。前二者は小へ′ノの鋼片を製造に
用いられ、現在は組立@型が多く用いられている。本発
明の方法は勿論鋳型の制限なく用い得るが、以「組立鋳
型にもとづいて説明する。
Continuous casting molds are classified into tube molds, block molds, and single-strand molds, based on the shape of the copper member that cools in direct contact with the steel billet. The first two types are used to manufacture small-sized steel pieces, and currently assembled @types are often used. Although the method of the present invention can of course be used without mold limitations, the following explanation will be based on an assembled mold.

組合−鋳型は、厚肉の銅板を鋼板または鋼構造で支持し
て各辺を構成するもので、制氷の外面に溝が切ら几るか
、内部に管路を形成するし、これを閉水路として冷却水
を導入して銅板を冷却している。このようにして構成さ
れた各迎を四辺集めて。
A combination mold consists of a thick copper plate supported by a steel plate or steel structure on each side, with grooves cut on the outside of the anti-icing material or conduits formed inside, which are then closed. Cooling water is introduced as a water channel to cool the copper plate. Gather the four sides of each section constructed in this way.

正方形−iたは矩形の断面tなすように構成したのが組
立柘型である。
The assembled box shape is constructed to have a square cross section or a rectangular cross section t.

鋳型は鋳型振動装置架台上に載架され、数ないし数十ミ
リメートルの振巾と、毎分数十ないし百数士サイクルの
振動数で上下動させつつ鋳造作業を行なう。第1図に組
立鋳型の一辺の構成を示す。
The mold is mounted on a mold vibrator stand, and the casting operation is performed while moving it up and down with a vibration width of several to several tens of millimeters and a frequency of several tens to hundreds of cycles per minute. Figure 1 shows the configuration of one side of the assembled mold.

第1図は連続鋳造用組立鋳型の縦断面の概念図で、広巾
面の向いあった状態である。21は鋳片の接する銅板、
22は鋼製の支持板、23は窮べ“シフレームである。
FIG. 1 is a conceptual diagram of a longitudinal section of an assembled mold for continuous casting, with the wide surfaces facing each other. 21 is the copper plate in contact with the slab;
22 is a steel support plate, and 23 is a frame.

24は冷却水道路溝で、例えば本文のように数n×士数
非の断面であるが、鋳型の長さ方向はソ全長に延びる道
路である。25は冷却水枕管、26は冷却水入口、27
は冷却水出口を示している。
Reference numeral 24 denotes a cooling water road groove, which has a cross section of, for example, a number n times a number n as shown in the main text, but is a road extending over the entire length of the mold in the longitudinal direction. 25 is a cooling water pillow pipe, 26 is a cooling water inlet, 27
indicates the cooling water outlet.

本発明者は、このような連続鋳造鋳型を液体アルカリ金
属で冷却する方法として、第2図のような実、験装置を
構成した。
The present inventor constructed an experimental apparatus as shown in FIG. 2 as a method for cooling such a continuous casting mold with a liquid alkali metal.

第2−1図は鋳型内の溶融金属が第1図の水冷鋳型と同
様の上向流の場合、第2−2図は鋳型内ド呻流を形成し
た場合の実験装置のフローシートである。記号は共通で
ある。lは鋳型銅板、2はフィルタ、3は浴融金属循環
ポンプ、4は浴融金属溜。
Figure 2-1 is a flow sheet of the experimental apparatus when the molten metal in the mold is in an upward flow similar to the water-cooled mold in Figure 1, and Figure 2-2 is a flow sheet of the experimental apparatus when a downward flow is formed in the mold. . The symbols are the same. 1 is a mold copper plate, 2 is a filter, 3 is a bath molten metal circulation pump, and 4 is a bath molten metal reservoir.

5は熱交換器、6は流量計、7は熱水溜、7−2は大気
開放、8は熱水供給バルブ、9は冷淡水供給バルブ、1
0は今加水調整バルブ、11は冷却水循環ポンプ、12
は温度計、13は膨張タンクで、アルカリ金属ラインの
溶湯の過不足を吸収する。
5 is a heat exchanger, 6 is a flow meter, 7 is a hot water reservoir, 7-2 is open to the atmosphere, 8 is a hot water supply valve, 9 is a cold fresh water supply valve, 1
0 is the current water adjustment valve, 11 is the cooling water circulation pump, 12
13 is a thermometer, and 13 is an expansion tank, which absorbs excess or deficiency of molten metal in the alkali metal line.

第2−3し1に蒸気回収の実施例におけるフローシート
を示す。1〜6は第2−1 、 2−2図と同一でるる
。冷却器7は図示していない冷淡水で冷却する。
2-3-1 shows a flow sheet in an example of steam recovery. 1 to 6 are the same as those in Figures 2-1 and 2-2. The cooler 7 is cooled with cold fresh water (not shown).

8は溶融金属流量調整バルブ、9は膨張タンクでライン
タンクの過不足を吸収する。系内の不足や管内点検の場
合、貯蔵タンク10にメタル全部を出し人へできる。(
12はボイラ循環ポンプ。
8 is a molten metal flow rate adjustment valve, and 9 is an expansion tank that absorbs excess or deficiency in the line tank. In case of a shortage in the system or inspection of the pipe, all the metal can be taken out into the storage tank 10 and given to someone. (
12 is the boiler circulation pump.

13は純水装置、14は復水、15は蒸気使用元。13 is a pure water device, 14 is a condensate water source, and 15 is a steam usage source.

16はボイラタンク、17.18はアルカリ金属温度計
、19は水温度計ケ示す。ボイラ系統については各部の
詳細は省略した。) 連続柄型は前述した実機の連続鋳造鋳型をその    
□ま\用いた。熱交換器は同じく銅製であり、鋳型と同
様に溝の管路が外壁に多数形成されている。
16 is a boiler tank, 17.18 is an alkali metal thermometer, and 19 is a water thermometer. Details of each part of the boiler system have been omitted. ) The continuous pattern mold is based on the continuous casting mold of the actual machine mentioned above.
□I used it. The heat exchanger is also made of copper, and like the mold, many grooved pipes are formed on the outer wall.

この例では中4脂、深さ16龍の溝が36W11ピンチ
で溝切されている。一方水管路は銅板内に液体金属流路
溝と交互に同じ方法の管路を形成した。
In this example, a groove with a diameter of 4 mm and a depth of 16 grooves is cut with a 36W11 pinch. On the other hand, water conduits were formed in the same way as liquid metal channel grooves alternately within the copper plate.

液体アルカリ金属の管路は、前述した熱交換器。The liquid alkali metal conduit is the heat exchanger mentioned above.

ポンプ、フィルタ、タンクおよび流量制御配管とからな
り、制御配管i二よって鋳型内の冷却管路での流速を、
1771/Sからsm/sまで変えられるようにした。
Consisting of a pump, filter, tank, and flow control piping, the control piping controls the flow rate in the cooling pipe in the mold.
It was possible to change from 1771/S to sm/s.

また連続鋳造鋳型内の液体金属管路は第2−2図のよう
に上方から下方に流トする方式も実験できるようにした
In addition, we also made it possible to experiment with a method in which the liquid metal conduit in the continuous casting mold flows from the top to the bottom as shown in Figure 2-2.

熱交換器の水側には冷水または熱水を流し、更にその流
量を調整することによって液体金属の温度を制御する。
Cold water or hot water is passed through the water side of the heat exchanger, and the temperature of the liquid metal is controlled by adjusting the flow rate.

このようにして熱又換器を出て鋳型に向う液体金属温度
を、約40℃から230 ’Cの広い範囲に変更するこ
とができる。
In this way, the temperature of the liquid metal exiting the heat exchanger and into the mold can be varied over a wide range from about 40°C to 230'C.

アルカリ土類金属としてはNα;56%、に;44%の
いわゆるN、2K (チック)合金を主として用いたが
、一部は特に低流速条件で熱伝導のよい純]=J、)を
用いる試験を行なった。
As the alkaline earth metal, we mainly used the so-called N2K (tic) alloy with Nα of 56% and 44%, but we also used pure J, which has good thermal conductivity especially under low flow rate conditions. I conducted a test.

中1n′LX厚み200”のスラブヶ鋳造する垂直型連
続鋳造装置において、CO,12%、  Mn O,4
5%、Si0.30%(目標成分)の普通鋼を、1m/
min  の鋳造速度で鋳込み、浴融アルカリ金属の管
路内流速および鋳型人口温度を種々変更して。
In a vertical continuous casting machine that casts a medium 1n'L x 200" thick slab, CO, 12%, Mn O, 4
5% Si, 0.30% Si (target composition), 1m/
Casting was carried out at a casting speed of min, and the flow rate of the bath molten alkali metal in the pipe and the mold temperature were varied.

鋳型出口温度を測定するとともに、運転上の問題点およ
び鋳片におよぼす影響をみた。鋳片は冷却後酸素プロパ
ン焔でスカーフして表面欠陥を調査した。
In addition to measuring the mold outlet temperature, we also looked at operational problems and the effect on the slab. After cooling, the slab was scarfed with an oxygen-propane flame to investigate surface defects.

第1表に試験結果の一部を示す。Table 1 shows some of the test results.

第1表 C−+I:)その他条件にN、iと記載ないときはすべ
てN、にとした。
Table 1 C-+I:) When N and i were not written in other conditions, all conditions were set to N.

第1表から見るように、一般に出口液温が高いときは一
片に欠陥が多い。鋳片で良好とあるのは。
As seen from Table 1, generally when the outlet liquid temperature is high, there are many defects in one piece. The slabs are said to be in good condition.

JI!1′常の水冷鋳ノ(ツの柄片状況と比較して少な
くとも同等(かより欠陥が少ない)のものである。やX
不良はスカーフによる欠陥除去で大体使用にたえる程度
の表面欠陥であるが、不良のものは1例えば2回のスカ
ーフによる疵除去が必髪な程度の重度の欠陥である。表
面欠陥は主としてたて割れおよびひひわれであり、後者
は鋳I〜Vから削りとられた銅が、鋼衣面上に拡散した
ため′[じるものである。
JI! 1' It is at least the same (or has fewer defects) than the usual water-cooled casting (with fewer defects).
Defects are surface defects that can be used by removing them with a scarf, but defects are so severe that they require removal with a scarf once, for example, twice. The surface defects are mainly vertical cracks and cracks, the latter being due to the copper scraped off from castings I to V being diffused onto the steel coating surface.

興味あることには、鋳片が不良のとさは鋳片が鋳型にく
っつき引出抵抗が増加する。また延べ10[]間程度の
実験であったが、たまたま妨片が不良の条件Fで、1回
ブレークアウト事故(s tta′J、+−’で駒片表
面がやぶれ、中の未凝固浴湯が漏出する)が発生し−C
おり、これらのことは欠陥の増加と対応しているものと
考えられる。
Interestingly, when the slab is defective, the slab sticks to the mold, increasing the pull-out resistance. In addition, although the experiment lasted about 10[] hours in total, there was one breakout accident (stta'J, +-' caused the surface of the piece to break, and the unsolidified bath inside (hot water leaks) -C
These factors are thought to correspond to an increase in defects.

、J、、1表の結果を分りやすくするために、第3図 
   「に上向流とド降流とを別々に図示してボす。即
ち第3−]図は、上向流における溶融金属流速と、@シ
1′1出ロ金属温度との関係における鋳造銅片の品質状
況を示した図である。図中a域:鋳片良好、b域:一片
は\゛良好C域:鋳片不良、d城:鋳片やX不良を示し
た。
,J,,To make the results in Table 1 easier to understand, Fig. 3 is used.
Figure 3 shows the upward flow and downward flow separately. In other words, Figure 3 shows the relationship between the molten metal flow velocity in the upward flow and the temperature of the outgoing metal. It is a diagram showing the quality status of copper pieces. In the figure, area a: The slab was good, area b: One piece was good, area C: defective, and d: the slab was defective.

第3−2図は、同じく下降流におけるそれである。FIG. 3-2 is also in the downward flow.

データは第1表のものであり、Oは一片が良好、・はは
ソ良好、△はやX不良、×は不良を示す。
The data are from Table 1, where O indicates one piece is good, .

第1表のデータおよび記載されないデータを含めて1図
中のような境界線によって良好な鋳片が(1)られる範
囲が示される。
Including the data in Table 1 and data not listed, the boundary line in Figure 1 shows the range in which a good slab can be produced (1).

第]衣に示した以外のデータも含めて、鋳片の性状の境
界線を引いてみた。この結果をまとめると次のように言
える。@型冷却管路の浴融金属流が上向流のときは、溶
融金属の種類にC余り関係なく、棲だ鋳へ”!内流速に
も余り関係なく、浴融金属のN jr’a出口幅度が2
00℃以下のときは、シー1り−1、良好である。しか
し溶融金属の′trJへ”月1110温度が25 (1
□C以上のときは割れ欠陥が増加する。この中間の2 
(1(1〜250 ’Cであれに、鋳片ははり良好で使
用には堪える。
I tried to draw the boundaries of the properties of slabs, including data other than those shown in [Part 1]. The results can be summarized as follows. When the flow of the bath molten metal in the @-type cooling pipe is upward, the flow rate of the bath molten metal is "N jr'a", regardless of the type of molten metal, and the N jr'a of the bath molten metal, regardless of the internal flow velocity. Exit width is 2
When the temperature is 00°C or lower, the seal is 1-1, which is good. However, the temperature of the molten metal 'trJ' on January 1110 is 25 (1
When the temperature is □C or higher, cracking defects increase. This middle two
(1) Regardless of the temperature from 1 to 250'C, the slab has good shape and is usable.

一方ド降流のときは一片が良好である範囲は」・d大す
る。υ[jち溶融金属に1拍を使った場合も會めて。
On the other hand, when there is a downward flow, the range in which one piece is good is increased by d. υ[j Also, if you use one beat for molten metal, meet.

M 71i出ロ温度が250℃以ドのときは鋳片は良好
である。また330°C以上では欠陥が増加し、運転上
も問題が出てくるが、この間2.50”Cす、上330
 ’C以トでは溶融金属流速が遅いほど良好域は広く、
浴融金属流速か早いと、はy良好ないしやX不良とンf
千表面品質は低トーする。
When the M71i tapping temperature is 250°C or higher, the slab is in good condition. Furthermore, at temperatures above 330°C, defects increase and operational problems arise;
'C and above, the slower the molten metal flow rate, the wider the good range;
If the flow rate of the bath molten metal is high, y is good or X is bad.
1,000 surface quality is to low.

それ政調の連続鋳造鋳型會アルカリ土類金属をつかって
冷却するときの条件は、実験の結果きわめて簡潔にまと
められる。即ち浴融金属の鋳型用[J温度は330 ’
C以トに抑えることが必須の条件であり、通常の上向流
で鋳型を冷眉Jするときは更に低く、250℃以ドに抑
えねはならないということである。
The conditions for cooling continuous casting molds using alkaline earth metals can be summarized very simply as a result of experiments. That is, for molds of bath molten metal [J temperature is 330'
It is an essential condition to keep the temperature below 250°C, and when cooling the mold with normal upward flow, it must be even lower, not below 250°C.

なお第1表には省略したが、 NLK合金を用いて2 
m/6の場合は、この別型では250 ”C以1−に抑
えるには人口温度をほとんど常trA−1で1・−げる
必要があった。またL 5 m7’s以トでは上向流で
は250−C以)にすることは勿論、下降流で330℃
以ドの条件とすることも困難であった。そのため1゜5
m/S以Fはほとんどかや一不良ないし不良の結果とな
ったが、これらデータは省略した。
Although omitted in Table 1, 2
In the case of m/6, it was almost always necessary to raise the population temperature by 1-1 in trA-1 to keep it below 250 ''C with this variant. Not only can the temperature be lower than 250°C in countercurrent flow, but also 330°C in downward flow.
It was also difficult to set the following conditions. Therefore 1゜5
For m/S and F, almost all results were one defect or one defect, but these data have been omitted.

しかし理論的に考えれば流路面積を広げて流量をふやし
てやれは液温は低下するはずであり、第3図における傾
向が2 m/s以Fで急に変わるとは考えられないこと
、N、2による2 m/Sのデータが同一の結果を示し
ていることを含めて、前述した詰型出口液温のみで制約
できるという結論は十分外挿できると考えられる。
However, theoretically speaking, expanding the channel area and increasing the flow rate should lower the liquid temperature, and it is unlikely that the trend in Figure 3 would suddenly change at 2 m/s or more. Including the fact that the 2 m/S data with N.2 shows the same results, it is considered that the conclusion that the above-mentioned constraint can be limited only by the mold outlet liquid temperature can be sufficiently extrapolated.

溶融金属流を下降流にした場合は、出口溶融金属温度の
許容範囲を広く取れるという以外に、更に三つの重要な
利点があることが分った。一つは当然の帰結で、浴融金
属の熱を水に伝えて蒸気を発生させる場合、加熱側の溶
融金属温度は10℃でも5°Cでも商いたけ熱効率が上
る。それ故50゛C〜80゛Cも出口温度を高めうる下
降流は利点が大きい。
It has been found that, in addition to allowing a wider range of exit molten metal temperature tolerances, there are three additional important advantages of having a downward flow of molten metal. One is a natural conclusion: when the heat of the molten metal in the bath is transferred to water to generate steam, the thermal efficiency increases regardless of whether the temperature of the molten metal on the heating side is 10°C or 5°C. Therefore, a downward flow that can increase the outlet temperature by 50°C to 80°C is of great advantage.

第二は鋳片の表面が良好なことである。ます鋳片表面は
通常水冷鋳型で注入した場合に比較して、上H1l&の
溶融金属冷却の場合でも、良好と評価される条件では、
特に割れにおいて、脣た表面皮−ドのピンホール、介在
物においても僅かながらすぐれていることが分った。と
ころが十−降tN、を採用する場合は、割れ疵の発生率
が一段と少ないことが分った。
The second is that the surface of the slab is good. Compared to the case of pouring in a normal water-cooled mold, the surface of the slab is evaluated as good even when the molten metal is cooled at the upper H1l&
In particular, it was found that cracks, pinholes and inclusions in the extended surface skin were slightly superior. However, it has been found that when 10 - tN is used, the incidence of cracks is even lower.

こうした結果の理由は推測の域を出ないが、下降流を用
いた場合は1次の第三の利点とからんで釣11”)内表
面の温度が均一化し、鋳型の歪みが少ないためと考えら
れる。また表面のピンホール、介在物が少ないのid、
第1表からもみられるように。
The reason for these results is only speculation, but it is thought that when using a downward flow, the temperature on the inner surface becomes uniform due to the third advantage of the first order, and there is less distortion of the mold. Also, there are fewer pinholes and inclusions on the surface.
As can be seen from Table 1.

通常鋳型に入る温度は100 ’Cτこえているため。This is because the temperature entering the mold is usually over 100'Cτ.

鋳型1自身も水冷却に比して温度が高いことによって、
凝固初期の介在物やピンホールのトラップを(ソノぐ効
果があるためと考えられる。第三には鋳型の寿命が水冷
の場合に比し約3割も増加(延長)したことである。
Because the temperature of the mold 1 itself is higher than that of water cooling,
This is thought to be due to the effect of trapping inclusions and pinholes in the early stages of solidification.Thirdly, the life of the mold is increased (extended) by about 30% compared to water cooling.

さて、このようにして200″Cないし250℃程度に
昇温さ7′した溶融金属から熱回収をでテなうことが、
本発明の利点、目的を完結させることである。第2−1
.2〜2図の冷却水管路をボイラ系統とすることによっ
てこのことが可能になる。これは既存の技術によって容
易になしつるが、実施例によって説明する。
Now, in this way, it is possible to recover heat from the molten metal that has been heated to about 200"C to 250C.
The advantages and objectives of the present invention are to be completed. 2-1
.. This becomes possible by using the cooling water pipes shown in Figures 2 and 2 as a boiler system. Although this is easily accomplished with existing technology, it will be explained by way of example.

実施例 前述したIil 1 m X厚み200−のスラブを鋳
造する垂直型連続鋳造装置において、M種の普通鋼を0
.8〜1.2 m/minの鋳造速度で鋳造した。
Example: In the vertical continuous casting equipment for casting slabs of Iil 1 m x 200 mm in thickness, class M ordinary steel was
.. Casting was performed at a casting speed of 8 to 1.2 m/min.

第2− 、’3図に示したボイラ系統を含む装置を用い
鋳型銅板も前述したような寸法のものを採用した。
The equipment including the boiler system shown in Figures 2-3 was used, and the molded copper plate had the dimensions described above.

鋳型にはN。K合金を4 m/sの流速で1人口温度が
120℃になるように制御しつつ下降流で供給した。鋳
型を出る溶融金属の@度は230 ”C前後であった。
N for the mold. The K alloy was supplied in a downward flow at a flow rate of 4 m/s while controlling the temperature of one population to be 120°C. The temperature of the molten metal exiting the mold was around 230"C.

この浴融金属は熱交換器でボイラ循環水を加熱し、約1
64℃で出てゆく。この温度では鋳型に直接供給するた
めには温度が高すさるので、冷却器で所定温度捷で冷却
して循環ポンプに入れる。
This bath molten metal heats the boiler circulating water in a heat exchanger, and
It leaves at 64℃. At this temperature, the temperature is too high to feed it directly to the mold, so it is cooled down to a predetermined temperature in a cooler and then fed into a circulation pump.

熱交換器には圧力20醇/〜のボイラ循環ボングから供
給さJしるl 25 ”Cの熱水を循環し、約200′
Cに昇温する。
The heat exchanger circulates hot water of 25"C supplied from a boiler circulation bong with a pressure of 20"/~200"
Raise the temperature to C.

このようにして鋳造時間中3 Kg/crI−Gの蒸気
を1100 Kg/h  の割合で発生させることがで
きた。
In this way, it was possible to generate steam of 3 Kg/crI-G at a rate of 1100 Kg/h during the casting time.

さて以上述べて来たように、本発明は従来実施例の極め
て少ない金属の凝固潜熱を回収する方法である。更に特
に困難である融点の商い鋼から、連続鋳造鋳型Jにおい
て熱回収を行なうため、鋳型の冷却媒体として、従来の
水に替え溶融アルカリ金属金用いることにより、実験の
結果から鋳型用1−】温度として330″C以Fの狭い
範囲、特に従来の水冷鋳型と同様の上昇流を採用すると
きは、zbOc以ドに抑えなければならないという知見
をIQたことに基いている。
As described above, the present invention is a method for recovering the latent heat of solidification of metal, which is extremely rare in conventional embodiments. Furthermore, in order to recover heat in the continuous casting mold J from commercial steel, which has a particularly difficult melting point, by using molten alkali metal gold instead of conventional water as a cooling medium for the mold, experimental results showed that it was possible to recover the heat in the continuous casting mold J. This is based on IQ's knowledge that the temperature must be kept within a narrow range of 330''C or higher, particularly when using an upward flow similar to a conventional water-cooled mold, to below zbOc.

これによって従来利用できなかった鋼の凝固潜熱を蒸気
として回収することが可能になり、鋳片の品質も割れ、
ピンホール、介在物等も改善が見られた。
This makes it possible to recover the latent heat of solidification of steel as steam, which could not be used in the past, and the quality of slabs also deteriorates.
Improvements were also seen in pinholes, inclusions, etc.

本発明を実施する上で商めて何効な用ルジは釣賀の冷却
媒体の流れt下降流としたことである。これによって出
口温度の許容範囲を広げて運転の自由度を広げ、出口温
度を高めて熱回収の効率を高め、蒸気圧力も高め得る利
点を得たほか、鋳型寿命の延長、鋳片品質の更に一層の
向上等の副次的な利点が発見された。
A commercially advantageous advantage in carrying out the present invention is that the flow of the cooling medium is made downward. This has the advantage of widening the allowable range of the outlet temperature, increasing the degree of freedom in operation, increasing the outlet temperature, increasing the efficiency of heat recovery, and increasing the steam pressure. Secondary benefits such as further improvements have been discovered.

鋼の通続鋳造で、冷却媒体に下降流を採用することは水
冷鋳型では殆んど行なわれていなし旨それ故上述の利点
を発見して下降流とすることは新規性の^いものである
。一方水冷鋳型で下降流が採用されない理由は、流量の
均一性を保ちにくいこと、上部に伝熱を阻害するエアポ
ケットが出来やすい等の難点があったためである。これ
らを除くため、入口の柱管の容量を増大する。柱管金従
来より高く長くし、また管路の形態をスムーズな形態と
する。出口配管内に絞り資金設置する等の配慮が払われ
た。
In the continuous casting of steel, the use of downward flow as a cooling medium has almost never been done in water-cooled molds, so it is novel to discover the above-mentioned advantages and adopt downward flow. . On the other hand, the reason why downward flow is not used in water-cooled molds is that it is difficult to maintain uniformity of flow rate, and air pockets are likely to form in the upper part, which inhibits heat transfer. To remove these, the capacity of the inlet column pipe will be increased. The column pipe metal is made higher and longer than before, and the shape of the pipe is made smooth. Considerations were taken, such as installing a throttling fund inside the exit piping.

鋳型勿出た浴融金属は熱交換器で水に熱を徴えるか、1
50″C以下の温度ではほとんど蒸気は回収できない。
The molten metal released from the mold will heat the water in a heat exchanger.1
Little steam can be recovered at temperatures below 50''C.

数Kg/cr1以上の蒸気を発生させるため、好ましく
は200℃以上でなけれはならない。
In order to generate steam of several kg/cr1 or more, the temperature must preferably be 200° C. or higher.

それ故150 ”Cり上または好捷しくは200℃以上
であり−330”C以十−1場合によっては250℃以
上でなければならないので、本発明の制約条件は厳しい
ものであることが分る。
Therefore, the temperature must be above 150"C or preferably above 200°C, and in some cases above -330"C and above 250°C, so it can be seen that the constraints of the present invention are severe. Ru.

このように厳しい温度条件を守るためには出口温度の制
御が必須条件となる。このためには実施例においてポし
た如く、溶融金属の鋳型人口温度と流量とによって行な
うことになる。
In order to maintain such strict temperature conditions, control of the outlet temperature is an essential condition. This is accomplished by adjusting the mold temperature and flow rate of the molten metal, as described in the embodiment.

浴融金属の出口温度は第1表に示した如く、入口温度と
管内流速によって決定される。この場合管内流速を大巾
に変えると、第3−2図のように条件が複雑になるほか
、流量をかえられるよう装置的にも容量が大きくなる。
As shown in Table 1, the outlet temperature of the bath molten metal is determined by the inlet temperature and the flow rate in the pipe. In this case, if the flow velocity in the pipe is changed widely, the conditions will become complicated as shown in Fig. 3-2, and the capacity of the device will also be increased in order to be able to change the flow rate.

それ改築−には人口温度によって制御すべきである。It should be controlled by the population temperature for renovation.

ところで第2−3図のフローノートにおいて、熱交換器
を出る溶融金属の温度は、通常鋳型に戻すためには高す
き゛るので、冷却器全通して温度金下げてから循環する
必要があること力1多い。本フ・   −一で採用した
冷却器も構造的には既述の熱交換器と同一の横通のもの
で、冷却側には淡水を循環させて用いる。
By the way, in the flow notes in Figure 2-3, the temperature of the molten metal leaving the heat exchanger is usually too high to return to the mold, so it is necessary to lower the temperature through the entire cooler before circulating. 1 more. The cooler adopted in this project is structurally the same cross-through type as the heat exchanger described above, and fresh water is circulated on the cooling side.

本発明は以上の説明により明らかであるが、特にその効
果を発揮する上で有効な条件として次のようなことがあ
げられる。
Although the present invention is clear from the above description, the following conditions are especially effective for exhibiting its effects.

(1)  鋳型からの出口温度または熱交換4人1]の
溶融アルカリ金属の温度が、常時330℃以上の一定温
度範囲となるようにアルカリ金属の鋳型人口温度および
アルカリ金属流量のうち少なくとも一つで制御すること
を特徴とする特許請求の範囲に記載した方法。
(1) At least one of the mold population temperature of the alkali metal and the alkali metal flow rate so that the exit temperature from the mold or the temperature of the molten alkali metal in the heat exchanger 1] is always within a constant temperature range of 330°C or higher. The method according to the claims, characterized in that the method is controlled by:

(2)鋳型人口の溶融アルカリ金属の温度を所定温度と
するために、アルカリ金属の流路に蒸気発生のための熱
交換器のほかに、冷却器を有することを特徴とする前項
(1)に記載する特許請求の範囲の方法。
(2) In order to maintain the temperature of the molten alkali metal in the mold at a predetermined temperature, the alkali metal flow path is provided with a cooler in addition to a heat exchanger for steam generation. The claimed method as recited in .

(3)鋳型からの出口温度が特に好ましくは250″C
以下であり、鋳型に流入する溶融アルカリ金属が鋳型内
を丁方から上方へと流れるように* hy、されること
を特徴とする特許請求の範囲に記載した方法・ (4)  鋳型に流入する溶融アルカリ金1萬が、鋳型
内を上方から上方に流れるように構成されることを特徴
とする特許請求の範囲に記載した方法。
(3) The exit temperature from the mold is particularly preferably 250″C
(4) The method according to the claims, characterized in that the molten alkali metal flowing into the mold is caused to flow from the top to the top in the mold. (4) Flowing into the mold 10. A method as claimed in claim 1, characterized in that 10,000 ml of molten alkali gold is arranged to flow upwardly through the mold.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は組)γ詰習の構成の説明図、第2図は本発明装
置の構成の説明し1.第3図は本発明装置の効果説明図
表である。 1:鋳型銅板     2;フィルタ 4:l@融金属溜    5:熱交換器・/:熱水f?
1     9:冷淡水供給バルプ扇2−2図 壓2−3閉 扇3−1目 麓3−2閏 2  4   乙   8         「−八 
遍番  /+/+\
FIG. 1 is an explanatory diagram of the configuration of the group) γ practice, and FIG. 2 is an explanatory diagram of the configuration of the apparatus of the present invention. FIG. 3 is a diagram explaining the effects of the device of the present invention. 1: Mold copper plate 2; Filter 4: l @ molten metal reservoir 5: Heat exchanger /: Hot water f?
1 9: Cold fresh water supply valve fan 2-2 Figure 2-3 Closing fan 3-1 Foot of eye 3-2 Leap 2 4 Otsu 8 "-8
Henban /+/+\

Claims (1)

【特許請求の範囲】[Claims] 鋼の連続鋳造鋳型を閉回路をなして循環する液体アルカ
リ金属によって冷却し、この液体アルカリ金属を、帰還
路において熱水と熱交換器によって熱交換し蒸気を回収
せしめ、その際鋳型から流出する液体金属の温度を33
0℃以丁で運転することを特徴とする鋼の連続鋳造鋳型
より熱回収を行なう方法。
A steel continuous casting mold is cooled by a liquid alkali metal circulating in a closed circuit, and the liquid alkali metal is exchanged with hot water in a return path through a heat exchanger to recover steam, which then flows out of the mold. The temperature of the liquid metal is 33
A method for recovering heat from a steel continuous casting mold, which is characterized by operating at temperatures below 0°C.
JP7519982A 1982-05-07 1982-05-07 Method for recovering heat from continuous casting mold for steel Pending JPS58192662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7519982A JPS58192662A (en) 1982-05-07 1982-05-07 Method for recovering heat from continuous casting mold for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7519982A JPS58192662A (en) 1982-05-07 1982-05-07 Method for recovering heat from continuous casting mold for steel

Publications (1)

Publication Number Publication Date
JPS58192662A true JPS58192662A (en) 1983-11-10

Family

ID=13569284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7519982A Pending JPS58192662A (en) 1982-05-07 1982-05-07 Method for recovering heat from continuous casting mold for steel

Country Status (1)

Country Link
JP (1) JPS58192662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102905818A (en) * 2010-06-01 2013-01-30 西门子Vai金属科技有限责任公司 Method and device for generating hot steam in continuous casting machine
CN104148600A (en) * 2014-08-12 2014-11-19 北京首钢股份有限公司 Slab solidifying system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102905818A (en) * 2010-06-01 2013-01-30 西门子Vai金属科技有限责任公司 Method and device for generating hot steam in continuous casting machine
CN104148600A (en) * 2014-08-12 2014-11-19 北京首钢股份有限公司 Slab solidifying system and method

Similar Documents

Publication Publication Date Title
US7264038B2 (en) Method of unidirectional solidification of castings and associated apparatus
AU638305B2 (en) Method for horizontal continuous casting of metal strip and apparatus therefor
CN100457923C (en) Low thermal resistance cast-iron cooling wall and manufacturing method thereof
JP2007269500A (en) Method and apparatus for forming glass
JP3265148B2 (en) Blast furnace water-cooled slag gutter
JP2009006395A (en) Exhaust heat recovering method and exhaust heat recovering device
JP2003062647A (en) Direct rolling method for continuous cast steel piece
JP2007533459A (en) Nonferrous metal and light metal belt casting method and apparatus therefor
JPS58192662A (en) Method for recovering heat from continuous casting mold for steel
JPH09225613A (en) Method for cooling roll for strip continuous casting
JP3009738B2 (en) Bottom of reverse casting tank
JP5896811B2 (en) Mold for continuous casting of ingot made of titanium or titanium alloy and continuous casting apparatus provided with the same
JPS61123449A (en) Continuous casting method of metallic strip
US3575230A (en) Method of making steel
JP4232491B2 (en) Continuous casting mold
JPH0381049A (en) Method for mater-cooling continuous casting mold
JPH03297541A (en) Mold for continuous casting equipment
JPS61238453A (en) Method for controlling secondary cooling water in continuous casting installation
JP3402286B2 (en) Continuous casting method
JPS617049A (en) Continuous casting device for steel plate
JP2695089B2 (en) Method and apparatus for continuous casting of metal ribbon
JPH079093A (en) Method for adjusting temperature of cooling water for casting
JPS58215255A (en) Device for recovering sensible heat in continuous casting machine
JPH07116783A (en) Mold for continuous casting and cooling method of cast slab using it
JP2004114076A (en) Rapidly cooling and casting apparatus