JPS5819265A - Membrane type artificial lang apparatus by blood dialyzing system - Google Patents

Membrane type artificial lang apparatus by blood dialyzing system

Info

Publication number
JPS5819265A
JPS5819265A JP11614881A JP11614881A JPS5819265A JP S5819265 A JPS5819265 A JP S5819265A JP 11614881 A JP11614881 A JP 11614881A JP 11614881 A JP11614881 A JP 11614881A JP S5819265 A JPS5819265 A JP S5819265A
Authority
JP
Japan
Prior art keywords
dialysate
blood
oxygenator
hemodialysis
artificial lung
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11614881A
Other languages
Japanese (ja)
Other versions
JPS6121424B2 (en
Inventor
吉田 文武
伸 清水
松延 政一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seisan Kaihatsu Kagaku Kenkyusho
Zaidan Hojin Seisan Kaihatsu Kenkyusho
Original Assignee
Seisan Kaihatsu Kagaku Kenkyusho
Zaidan Hojin Seisan Kaihatsu Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seisan Kaihatsu Kagaku Kenkyusho, Zaidan Hojin Seisan Kaihatsu Kenkyusho filed Critical Seisan Kaihatsu Kagaku Kenkyusho
Priority to JP11614881A priority Critical patent/JPS5819265A/en
Publication of JPS5819265A publication Critical patent/JPS5819265A/en
Publication of JPS6121424B2 publication Critical patent/JPS6121424B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は血液透析方式展型人工肺に関するものである。[Detailed description of the invention] The present invention relates to a hemodialysis type artificial lung.

より詳しくは、BCMO(Extracorporea
lMembrane Oxygenatlon)用の膜
型人工肺、特に呼吸不全患者に対するCO,除去能の優
れた小型補助肺に関するものである。
For more details, please refer to BCMO (Extracorporea
The present invention relates to a membrane oxygenator for use in membrane oxygenators (Membrane Oxygenatlon), and in particular to small auxiliary lungs with excellent CO removal ability for patients with respiratory failure.

一般に、人工肺とは血液に酸素(02)を添加すると同
時に血液中から二酸化炭素(Co2)を除去することを
目的とした装置である。これまで、人工肺は「関心術」
即ち心臓を開諭て手術を行う際、停止l、た心臓と肺の
機能を゛代行させる人工肺装置のうち肺の機能を代行さ
せる装置として臨床使用されてきた。とれに加えて最近
では呼吸不全患者の肺機能を補助する目的で人工肺を使
用する臨床例が報告されている。後者の目的に使用され
る人工肺は、比較的長時間、時には数日間連続して使用
されるので、血液への損傷の少ない換型人工肺でなけれ
ばならない、この様な目的で換型人工肺を伴用すること
をICMOとすんでいる。
Generally, an artificial lung is a device whose purpose is to add oxygen (02) to blood and simultaneously remove carbon dioxide (Co2) from the blood. Until now, artificial lungs have been a ``technique of interest''.
That is, it has been clinically used as an artificial lung device that takes over the functions of the heart and lungs when the heart is opened and the heart is stopped for surgery. In addition to this, clinical cases have recently been reported in which artificial lungs are used to support lung function in patients with respiratory failure. Since oxygenators used for the latter purpose are used for relatively long periods of time, sometimes for several days in a row, they must be modified oxygenators that cause less damage to the blood. It is said that ICMO involves the use of the lungs.

呼吸不全患者では、血液中酸素分圧(PO,)が低下し
てい矛と同時に血液中度酸ガス分圧(PCO,)が高い
値を示しており、PO2の低下よりもむしろPCO2の
上昇の方が臨床上困難な問題であると云われている。血
液中のPO,を上昇させるととは、例えば酸素□吸入や
陽圧人工呼吸器などを使うことにより比較的容易に行う
ことができる。しかし、血液中のPCO2を低下させる
ことは酸素吸入では不可能であるし、人工呼吸器によ□
っても不十分な場合が多い。また、場合によってはpc
o、を下げず高濃度02を患者に吸わせると血液中のP
CO2が急上昇し死に到ることすらある。この様な呼吸
不全患者の治療法として血液を小流量で体外循環してC
O□を除去する方法があれば臨床上非常に有効な手段と
なる筈である。
In patients with respiratory failure, the partial pressure of oxygen in the blood (PO,) decreases, and at the same time, the partial pressure of oxygen gas (PCO,) in the blood shows a high value, and this is due to an increase in PCO2 rather than a decrease in PO2. This is said to be a clinically difficult problem. Increasing PO in the blood can be done relatively easily by, for example, using oxygen □ inhalation or a positive pressure ventilator. However, it is impossible to lower PCO2 in the blood with oxygen inhalation, and with artificial respiration, it is impossible to lower PCO2 in the blood.
However, it is often insufficient. Also, in some cases, PC
If a patient inhales a high concentration of 02 without lowering the 0, the P in the blood will decrease.
CO2 levels can rise rapidly and even lead to death. As a treatment for such patients with respiratory failure, blood is extracorporeally circulated at a small flow rate and C
If there were a method to remove O□, it would be a very effective means clinically.

人工肺が用いられたが、この方式では毎分数す豐過剰d
どの害が伴う、そこで、現在広く用いられている人工腎
臓用の血液透析器を用いてJ膜の一方に血液、他方に透
析液を流し、血液中の溶存CO。
An artificial lung was used, but with this method, the number of excess d
Therefore, using a hemodialyzer for artificial kidneys, which is currently widely used, blood is passed through one side of the J membrane and dialysate is passed through the other side, and dissolved CO in the blood is removed.

ならびK HCO,−イオンを透析液へ移動させれば、
血液とガスを膜を介して接触させる従来の換型人工肺に
比べてCO,の除去をはるかに容易に行うことができる
。本発明はこのような血中CO,除夫老目的とする血液
透析器、すなわち血液透析方式換型人工肺を用いる装置
(システム)に関するものである。
And if K HCO,- ions are transferred to the dialysate,
CO2 can be removed much more easily than in conventional modified oxygenators, which bring blood and gas into contact through a membrane. The present invention relates to a hemodialyzer for the purpose of removing CO from the blood, that is, an apparatus (system) using a hemodialysis converting oxygenator.

このような装置として、新しい透析液を血液透析方式換
型人工肺に供給し、人工肺からのCOやHCO,”−イ
オンを含んだ透析液を捨ててしまうシングルパス方式で
使用することももちろん可能である。しかし、一般に治
療には前記し走通シ長時間を要するので、この方式によ
るときには数百リットルもの透析液が必要であり、また
この透析液を調製する丸め人工腎臓の場合の様に水精製
装置や透析液供給装置などの大きな装置を要する。この
丸め治療場所が固定され、また、多量の排水処理につい
ても問題がある。さらに、この場合には血鹸小の有効な
イオン類が透析液中に移行してしまうの+、透析液とし
てO−?−食塩水や等張緩胃液のような単純な組成やも
のを使用することができない、そこで、一般の人工腎臓
用透析液を使用すること本考えられるが、これ和は酢酸
ソーダや乳酸ソーダが含まれており、とれらの有機酸塩
は患者体内に移行した後分解されてHCO、’−イオン
を生ずるので、本発明装置によりCO2やHCO;イオ
ンを除いても、代りにこれら有機酸が体内に移行し、P
CO,を上昇させることになるので実用的でない。
Of course, such a device can be used in a single-pass method, in which new dialysate is supplied to a hemodialysis converting oxygenator, and dialysate containing CO, HCO, and ions from the oxygenator is discarded. However, since the treatment generally requires a long period of time to run, this method requires hundreds of liters of dialysate, and the preparation of this dialysate requires a large amount of time, such as in the case of a rolled artificial kidney. This requires large equipment such as water purification equipment and dialysate supply equipment.The treatment location is fixed, and there is also a problem with the treatment of large amounts of wastewater.Furthermore, in this case, effective ion However, it is not possible to use simple compositions such as O-?- saline or isotonic loose gastric fluid as the dialysate. However, this solution contains sodium acetate and sodium lactate, and these organic acid salts are decomposed after entering the patient's body to produce HCO and '-ions. Even if CO2 and HCO; ions are removed by a device, these organic acids are transferred into the body instead, and P
This is not practical as it will increase CO.

本発明者は上記の諸点に鑑み種々研究を重ねた結果、C
O,やHCO,”−イオンを含んだ透析液を再生し循環
使用する小型の簡便な換型人工肺を得ることに成功した
のである。即ち、本発明はd井血液を悴外循環し、膜を
介l−で血液と透析液とを接触させて血液中の二酸化炭
素並びに重炭酸イオンを透析液中に移動させる透析方式
腔型人工肺を用い。
As a result of various studies in view of the above points, the inventor has found that C.
They succeeded in obtaining a small and simple convertible oxygenator that regenerates and circulates dialysate containing O, HCO, ``-ions.In other words, the present invention regenerates and circulates dialysate containing O, HCO, ``-ions. A dialysis-type cavity-type oxygenator is used, in which blood and dialysate are brought into contact with each other through a membrane, and carbon dioxide and bicarbonate ions in the blood are transferred into the dialysate.

前記透析液を前記透析方式換型人工肺系外において円の
上昇を抑制しながら空気、窒素、酸素あるいはこれらの
混合究体等の不活性ガスと接触させ、前記血液中から透
析液中に移動した二酸化炭素並びに血液中から透析液中
に移動1.た重炭酸イオンの脱水反応によって生じた二
酸化炭素を前記不活性ガス中に放散させることKよ〉前
記透析波を再生し、皺透析液を前記透析方式腔型人工肺
に戻し、透析液を循**用するようKし九こと′を特徴
とする皇筐透析方式膜蓋人工肺装置である。
The dialysate is brought into contact with an inert gas such as air, nitrogen, oxygen, or a mixture thereof outside the dialysis type oxygenator system while suppressing the rise of the circle, and the dialysate is transferred from the blood into the dialysate. Carbon dioxide transferred from the blood to the dialysate 1. The carbon dioxide produced by the dehydration reaction of bicarbonate ions is diffused into the inert gas. The dialysis waves are regenerated, the dialysate is returned to the dialysis cavity oxygenator, and the dialysate is circulated. **This is a dialysis-type membrane cap artificial lung device featuring the following features:

次に、図面に基づき本実qo−実施例について詳細Kl
!明する。第1図において、1は透析方式属型人工肺で
あ)、市販の人工腎臓用血液透析器で代用してもよい。
Next, we will explain the details of the actual Qo-Example based on the drawings.
! I will clarify. In FIG. 1, reference numeral 1 indicates a dialysis type artificial lung), which may be replaced with a commercially available hemodialyzer for artificial kidneys.

!紘気液接触装置であ〕、このものとしては気泡塔、充
填塔、段塔などを用いることが (以下余白) できる、3は除泡部であ〕、透析液中の微小気泡換器、
7は流量針である。熱交換器6は第11図では送液ライ
ン中に挿入されているが、完液接触装R24,L <は
除泡部3に内蔵させることもできる。
! A bubble column, a packed column, a tray column, etc. can be used (see the blanks below). 3 is a bubble removal section], a micro bubble exchanger in the dialysate,
7 is a flow needle. Although the heat exchanger 6 is inserted into the liquid feeding line in FIG. 11, the complete liquid contacting device R24,L< can also be built into the bubble removal section 3.

4は声電極であり、C02の放散により変動する透析液
の′声を測定する。41は声調節装置であり、必要に応
じて酸又はアルカリ水溶液を注入し、pHを調節する。
Reference numeral 4 denotes a voice electrode, which measures the voice of the dialysate which changes due to the dissipation of C02. Reference numeral 41 denotes a voice regulating device, which injects acid or alkaline aqueous solution as necessary to adjust the pH.

8は血液入口、9は血液出口、IOは透析液入口、11
は透析液出口、セは声調節液タンクを示す。
8 is blood inlet, 9 is blood outlet, IO is dialysate inlet, 11
indicates the dialysate outlet, and C indicates the voice conditioning fluid tank.

PCO,の高い患者の血液は、体外循環され、血液入口
8から血液透析方式模型人工肺1に送入される。この血
液Fico、及び!’fCO,−イオン透過性を有する
膜を介して透析液入口10から注入されたCO□及びl
ICOs″イオンの濃度の低い透析液と接触する。
Blood of a patient with a high PCO is circulated extracorporeally and is sent to a hemodialysis model artificial lung 1 through a blood inlet 8. This blood Fico, and! 'fCO, - CO□ and l injected from the dialysate inlet 10 through an ion-permeable membrane
The ICOs'' are contacted with a dialysate having a low concentration of ions.

濃度勾配に従い、C02及びmco5″イオンは血液か
ら透析液へと移動する。Co、及びHCO,−イオン濃
度の低下した血液は血液出口9よシ患者の血管へ戻され
る。一方、CO2及び11ICo、  イオンの濃度が
増大した透析液は透析出口Uより出て、気液接触装置3
4に送り込まれb0該完液接触装置3の下方からは空気
、窒素、酸素あるいはこれらの混合気体等の不活性ガス
が送り込まれており、前記透析液は前記不活性ガスと接
触し、透析液中に溶存しているCO,や重炭酸の脱水反
応により生じたCO,は気体中に放散される。その結果
、透析液中のCO,及びnco、”−イオンの濃度は低
下し、透析液は再生される。この再生された透析液は除
泡部3に導かb、混在している微小か気泡が除かれ、ポ
ンプ5によって再度血液透析方式換型人工肺1に送り込
まれる。前記気液接触装置3で002を放散させると透
析液の頂は上昇するので、声電極4で測定し、声調節装
置4fによシ1を生理的範囲を越えないように調節する
ことが必要である。尚、前記気液接触装置3でCO,を
放散させる際、炭酸の脱水反応を促進するため、炭酸脱
水酵素又は反応促進剤を透析液中に溶解させておくか、
または高分子化合物を用いてこの炭酸脱水酵素又は反戸
促進痢を固定化して用いるとCO,放散速度を一層速め
ることができる。尚、反応促進剤としてはリン酸、塩素
酸、ホウ酸等を用いることができる。
Following the concentration gradient, CO2 and mco5'' ions move from the blood to the dialysate. The blood with reduced concentration of Co and HCO,- ions is returned to the patient's blood vessel through the blood outlet 9. On the other hand, CO2 and 11ICo, The dialysate with increased ion concentration comes out from the dialysis outlet U and passes through the gas-liquid contact device 3.
An inert gas such as air, nitrogen, oxygen, or a mixture thereof is sent from below the complete liquid contact device 3, and the dialysate comes into contact with the inert gas, and the dialysate The CO dissolved therein and the CO generated by the dehydration reaction of bicarbonate are diffused into the gas. As a result, the concentration of CO, nco, and ``-ions in the dialysate decreases, and the dialysate is regenerated. is removed and sent to the hemodialysis oxygenator 1 again by the pump 5.When the gas-liquid contact device 3 dissipates 002, the top of the dialysate rises, so it is measured by the voice electrode 4 and the voice control is performed. It is necessary to adjust the gas 1 in the device 4f so that it does not exceed the physiological range.In addition, when dissipating CO in the gas-liquid contact device 3, in order to promote the dehydration reaction of carbonic acid, carbonic acid dehydration is necessary. Either the enzyme or reaction accelerator is dissolved in the dialysate, or
Alternatively, by immobilizing carbonic anhydrase or anticoagulant using a polymer compound, the rate of CO dissipation can be further increased. In addition, phosphoric acid, chloric acid, boric acid, etc. can be used as a reaction accelerator.

本発明は前記構成よりなるから次のような効果が奏され
る。
Since the present invention has the above configuration, the following effects are achieved.

先ず、透析液は循環して使用されるから2〜3j以下の
少量で済み1本発明に係る血液透析方式模型人工肺装置
は小型で簡便なものとなる。また、透析液としては一般
の人工腎臓用透析液(例えばHa+152m11g/j
 、K”2・OmKf/j%C&++2・5m1CF/
れバス方式では使用し得ない0・9食塩水や等張緩胃液
のような単純な組成のものでも使用す゛ることかできる
First, since the dialysate is used in circulation, only a small amount of 2 to 3J is required, and the hemodialysis model oxygenator according to the present invention is small and simple. In addition, as a dialysate, a general dialysate for artificial kidneys (for example, Ha+152ml11g/j
, K”2・OmKf/j%C&++2・5m1CF/
Simple compositions such as 0.9 saline and isotonic weak gastric fluid, which cannot be used in the bath method, can also be used.

次に本発明の実験例を示す。Next, an experimental example of the present invention will be shown.

実験例 1・ 実験は第1図に示す装置によって行った。9!c5&接
触装置は直径5・5−1高さ70aa、容積1・66j
の気泡塔型式で行った。血液としてはヘパリン化新鮮牛
血21を使用し、C02とN2との混合ガスを吹き込み
、PGO□を上げて静脈血とした。血液流量は172M
VWiIIで、透析液流量は500崎−で行った。
Experimental Example 1 The experiment was conducted using the apparatus shown in Figure 1. 9! C5 & contact device has a diameter of 5.5-1, a height of 70aa, and a volume of 1.66J.
It was carried out in a bubble column format. Heparinized fresh bovine blood 21 was used as the blood, and a mixed gas of CO2 and N2 was blown into it to raise the PGO□ to obtain venous blood. Blood flow rate is 172M
The dialysate flow rate was 500 degrees Fahrenheit using VWiII.

透析液としては0・9%MaC4を2・54使用した。As the dialysate, 2.54% of 0.9% MaC4 was used.

気液接触装置には水蒸気飽和の空気を20崎−の流量で
吹き込んだ。CO,放散による透析液声の上昇を抑える
ため1M塩酸を自動的に注入し得るようにし、声7・0
〜7・4に調節した。透析方式裏型人工肺としては再生
セルロース中空糸型(膜面線1・2ゴ)を用いた。第1
表に示すように、透析液Fi(1)。
Steam-saturated air was blown into the gas-liquid contact device at a flow rate of 20 degrees. In order to suppress the rise in dialysate voice due to CO, dissipation, 1M hydrochloric acid can be automatically injected, and the voice is 7.0.
Adjusted to ~7.4. A regenerated cellulose hollow fiber type (membrane surface lines 1 and 2) was used as a dialysis type back type oxygenator. 1st
Dialysate Fi(1) as shown in the table.

放散速度52帷−の速度で再生された。It was played back at a dissipation rate of 52 meters.

第   1   表 実験例 2 実験は第1図に示す装置で行?た。気液接触装置は直径
4aa、高さ501、容積的0・61の気泡塔型式のも
ので空気流量はlOj/IInで行った。透析方式膜澗
人工肺としては再生セルロース中空糸型(膜面積1・2
ゴ)を用いた。透析液としではNaCjQ・61/1 
、 KCIj O・5f/1. CtsCl、−2H2
00・35F/j、ブドウ糖2・61/lの組成のもの
に炭酸脱水酵素(カーボネイト ハイドロl承ゼ4.2
.1.1)301111/l溶解した本のを2・51使
用した。血液としてはヘパリン化新鮮牛血21を使用1
1、C02とN。
Table 1 Experimental Example 2 Is the experiment conducted using the equipment shown in Figure 1? Ta. The gas-liquid contacting device was of a bubble column type with a diameter of 4 aa, a height of 501 mm, and a volume of 0.61 mm, and the air flow rate was 1Oj/IIn. The regenerated cellulose hollow fiber type (membrane area 1.2
Go) was used. As a dialysate, NaCjQ・61/1
, KCIj O・5f/1. CtsCl, -2H2
00.35F/j, with a composition of glucose 2.61/l, carbonic anhydrase (carbonate hydrol 4.2
.. 1.1) 2.51 books dissolved in 301111/l were used. As the blood, heparinized fresh bovine blood 21 is used 1
1.C02 and N.

ガスを吹き込みPCO,を上げて静脈血とした。血液流
量17211t/−1透析液流量5ood/iで行った
Gas was injected to raise the PCO, which was used as venous blood. The blood flow rate was 17211t/-1 and the dialysate flow rate was 5ood/i.

結果は第2表に示すようにCO,放散速度55e6峠僑
で透析液を再生することができた。
As shown in Table 2, the results showed that dialysate could be regenerated at a CO emission rate of 55e6.

第  2  表 実験例1.と比較すると気液i装置の容積が%、(カー
ボネイトハイドロlカーゼ4.2.1.1 ’)を添加
しない透析液を使用した場合のCO,放散速度は14・
9−/iであった。
Table 2 Experimental example 1. Compared to the volume of the gas-liquid i device, the CO emission rate is 14.
It was 9-/i.

南41番4−一 本9図真の簡単1*@ 第illは本実IL()系lIl説明図を示す。South 41-4-1 Book 9 Diagram True Easy 1*@ Ill shows an explanatory diagram of the actual IL() system Ill.

図中1・・・・透析方式裏型人工肺 !・・・・気液接触装置、8・・・・血液入口9・・・
・血液出口−10・・・・透析液人口11・、・透析液
出口 特許出願人 (it) *慮闘蜀科学研究所 ヤ 1 因 Co2 手続補正書(自発) 昭和57年10月22日 特許庁長實  殿 1、事件OII示 11$66年特許原11116148号り発明04称 血箪透析方式属臘人工肺装置 4補正をすみ看 事件と0IIs  %許出願人 京都市左京区下鴨森本町15 WAJllo rll@01[を説111011翫補正
の内容 (1)明細書第6頁籐9行目に「属臘人工肺」とある(
2)明細書第12夏第1行目〜j1g6行目に記載0籐
1表を次ajlp訂正歇し壕す。
Figure 1: Dialysis-type back-type artificial lung! ... Gas-liquid contact device, 8... Blood inlet 9...
・Blood outlet-10... Dialysate population 11... Dialysate outlet Patent applicant (IT) *Gutoshu Scientific Research Institute Ya 1 Cause Co2 Procedural amendment (voluntary) Patent dated October 22, 1982 Director General Minoru 1, Case OII 11, 1966 Patent Original No. 11116148, Invention 04, Blood Cell Dialysis System, Artificial Lung Apparatus, 4th Amendment. WAJllo rll @ 01 [Review 111011 Contents of the amendment (1) On page 6 of the specification, line 9 of the rattan, there is “genus artificial lung” (
2) The following ajlp corrections will be made to the 0 rattan 1 table written in the 12th summer line 1 to j1g line 6 of the specification.

(S)明細書jlIB][第5行目〜第10行目に記載
の第2表を次oab訂正歇します。
(S) Specification jlIB] [The following oab corrections have been made to Table 2 stated in lines 5 to 10.

以上that's all

Claims (1)

【特許請求の範囲】 川 血液を体外循環し、膜を介して血液と透析液とを接
触させて血液中の二酸化炭素並びに重炭酸イオンを透析
液中に移動させる透析方式換型人工肺を用い、前記透析
液を前記透析方式換型人工肺系外においてPHの上昇を
抑制しながら空気、窒素、酸素あるいはこれらの混合気
体等の不活性ガスと一接触させ、前記血液中から透析液
中に移動した二酸化炭素並びに血液中から透析液中に移
動した重炭酸イオンの脱水反応にtり中生じた二酸化炭
素を前記不活性ガス中に放散させることに上り前記透析
液を再生し、該透析液を前記透析方式線型人工肺に戻し
、透析液を循環使用するようにしたことを特徴とする血
液透析方式膜型人工肺哀l。 (2)透析液が炭酸脱水酵素を含有することを特徴とす
る特許請求の範囲第1項に記載の血液透析方式換型人工
肺装置。 13)炭酸脱水酵素が高分子化合物に固定されているこ
とを特徴とする特許請求の範囲第2項に記載の血液透析
方式換型人工肺装置。 (4)  透析液が反応促進剤を含有することを特徴と
する特許請求の範囲第1項に記載の血液透析方式換型人
工肺装置。 (5)反応促進剤が高分子化合物に固定されていること
を特徴とする特許請求の範囲第4項に記載の血液透析方
丈膿型人工肺装置。
[Claims] Kawa: A dialysis-type converting oxygenator that circulates blood extracorporeally and brings the blood and dialysate into contact through a membrane to transfer carbon dioxide and bicarbonate ions from the blood into the dialysate. , the dialysate is brought into contact with an inert gas such as air, nitrogen, oxygen, or a mixture thereof outside the dialysis converting oxygenator system while suppressing a rise in pH, and the dialysate is removed from the blood into the dialysate. Regenerating the dialysate by dissipating the carbon dioxide generated during the dehydration reaction of the carbon dioxide and bicarbonate ions transferred from the blood into the dialysate into the inert gas, and regenerating the dialysate. A hemodialysis membrane type oxygenator, characterized in that the membrane oxygenator is returned to the dialysis type linear oxygenator, and the dialysate is circulated. (2) The hemodialysis converting artificial lung device according to claim 1, wherein the dialysate contains carbonic anhydrase. 13) The hemodialysis convertible artificial lung device according to claim 2, wherein carbonic anhydrase is immobilized on a polymer compound. (4) The hemodialysis converting artificial lung device according to claim 1, wherein the dialysate contains a reaction accelerator. (5) The hemodialysis artificial lung device according to claim 4, wherein the reaction accelerator is fixed to a polymer compound.
JP11614881A 1981-07-23 1981-07-23 Membrane type artificial lang apparatus by blood dialyzing system Granted JPS5819265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11614881A JPS5819265A (en) 1981-07-23 1981-07-23 Membrane type artificial lang apparatus by blood dialyzing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11614881A JPS5819265A (en) 1981-07-23 1981-07-23 Membrane type artificial lang apparatus by blood dialyzing system

Publications (2)

Publication Number Publication Date
JPS5819265A true JPS5819265A (en) 1983-02-04
JPS6121424B2 JPS6121424B2 (en) 1986-05-27

Family

ID=14679934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11614881A Granted JPS5819265A (en) 1981-07-23 1981-07-23 Membrane type artificial lang apparatus by blood dialyzing system

Country Status (1)

Country Link
JP (1) JPS5819265A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249969A (en) * 1984-05-25 1985-12-10 テルモ株式会社 Hollow fiber membrane type artificial lung
JP2019536570A (en) * 2016-12-05 2019-12-19 テマセク ポリテクニックTemasek Polytechnic Adsorbents for dialysis devices and systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249969A (en) * 1984-05-25 1985-12-10 テルモ株式会社 Hollow fiber membrane type artificial lung
JP2019536570A (en) * 2016-12-05 2019-12-19 テマセク ポリテクニックTemasek Polytechnic Adsorbents for dialysis devices and systems
US11458235B2 (en) 2016-12-05 2022-10-04 Temasek Polytechnic Sorbent for a dialysis device and dialysis system

Also Published As

Publication number Publication date
JPS6121424B2 (en) 1986-05-27

Similar Documents

Publication Publication Date Title
Ortiz et al. Extracorporeal membrane oxygenation in pediatric respiratory failure
ES2371532T3 (en) DEVICE FOR ELIMINATING URÉMIC TOXINS IN A DIALYSIS PROCEDURE.
Kolobow et al. Control of breathing using an extracorporeal membrane lung
KR101119334B1 (en) Bicarbonate-Based Solutions for Dialysis Therapies
Gottschalk et al. History of the science of dialysis
May et al. Extracorporeal CO 2 removal by hemodialysis: in vitro model and feasibility
US5683356A (en) Method and composition for removal of excess hydrogen ions from humans
Kuwabara et al. Development of extrauterine fetal incubation system using extracorporeal membrane oxygenator
JP2018534117A (en) Methods for removing carbon dioxide outside the body
Bartlett et al. Prolonged partial venoarterial bypass: physiologic, biochemical, and hematologic responses
Wester et al. Removal of urea by electro-oxidation in a miniature dialysis device: a study in awake goats
Wing et al. Dialysate regeneration
JPS5819265A (en) Membrane type artificial lang apparatus by blood dialyzing system
Keown et al. Open heart surgery: anesthesia and surgical experiences
Baffes et al. Total cardiopulmonary bypass with the Lande-Edwards membrane oxygenator
Gramaticopolo et al. Extracorporeal CO2 removal–a way to achieve ultraprotective mechanical ventilation and lung support: The missing piece of multiple organ support therapy
White et al. The isolated monkey brain: operative preparation and design of support systems
Zwischenberger et al. Tension pneumothorax during extracorporeal membrane oxygenation
Wong Carbon dioxide transfer in membrane oxygenators and associated membranes
Poggiali et al. A case of hematuria and vomiting in the emergency room: Never forget the emphysematous pyelonephritis
Awad et al. Extracorporeal oxygenation with hydrogen peroxide: a preliminary report
Camboni et al. History of Extracorporeal Life Support: From Cardiopulmonary Bypass Towards ECMO
Evans et al. Extracorporeal membrane oxygenation: a breath of fresh air or yesterday's treatment?
Bartlett Extracorporeal circulation in 2050: a speculation
Qian et al. Evaluation of CO2 removal rate of ECCO2R for a renal replacement therapy platform in an experimental setting