JPS58192249A - Liquid metal ion source of high-frequency induction heating type - Google Patents

Liquid metal ion source of high-frequency induction heating type

Info

Publication number
JPS58192249A
JPS58192249A JP7527982A JP7527982A JPS58192249A JP S58192249 A JPS58192249 A JP S58192249A JP 7527982 A JP7527982 A JP 7527982A JP 7527982 A JP7527982 A JP 7527982A JP S58192249 A JPS58192249 A JP S58192249A
Authority
JP
Japan
Prior art keywords
reservoir
ion source
induction heating
nib
frequency induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7527982A
Other languages
Japanese (ja)
Other versions
JPH027499B2 (en
Inventor
Akira Shimase
朗 嶋瀬
Toru Ishitani
亨 石谷
Hifumi Tamura
田村 一二三
Hiroshi Yamaguchi
博司 山口
Takeoki Miyauchi
宮内 建興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7527982A priority Critical patent/JPS58192249A/en
Publication of JPS58192249A publication Critical patent/JPS58192249A/en
Publication of JPH027499B2 publication Critical patent/JPH027499B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/26Ion sources; Ion guns using surface ionisation, e.g. field effect ion sources, thermionic ion sources

Abstract

PURPOSE:To increase the life of an ion source, and enable an ionized matter to be efficiently heated and molten by heating an ionized matter reservoir by means of a high-frequency induction heating means. CONSTITUTION:NiB, an ionized matter 1, is contained in a reservoir 4. NiB is molten and supplied to the pointed end of a tip 2 which protrudes from the end of the reservoir 4, and a voltage of over 5kV is applied across the tip 2 and a lead-out electrode 8 so as to draw an NiB ion beam 7 from the pointed end of the tip 2. Here, heat used for melting NiB is supplied from Joule heat produced by a surface current generated on the surface of the reservoir 4 by applying a high frequency to a work coil 9. Since the reservoir 4 is directly heated in high- frequency induction heating, thermal efficiency is improved and the ionized matter 1 having a high melting point (melting point, 110 deg.C) such as NiB can be relatively easily molten compared to current conduction heating.

Description

【発明の詳細な説明】 本発明は、成体金属イオン源のイオン化物質溶融手段に
係り、イオン化物質溶融手段に高周波誘導加熱手段を用
いたイオン源に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ionized substance melting means for a solid metal ion source, and more particularly, to an ion source using high frequency induction heating means as the ionized substance melting means.

従来、液体金属イオン源において、イオン化物質の溶融
には通電加熱手段が用いられてきた。
Conventionally, in liquid metal ion sources, electrical heating means have been used to melt the ionized substance.

第1図(a)、 (b)は従来の通電加熱手段によるイ
オン化物’IJ浴融の様子を示したものである。第1図
(a)は岐も単純な液体金属イオン源のチップ部構成を
示したものである。このイオン源ではイオン放出用チッ
プ2の支持部3を通電加熱してイオン化物質lを浴融さ
せる。このイオン源の欠点はイオン化物質1を装置に溜
められないことである。また、高融点のイオン化物質を
溶解しようとじた時、支持部3に大′fL流を流す必要
があり、支持部3が破断することがある。破断しないよ
うに支持部3の径を太くするが、支持部3をンート状に
すnば良いが、その時には、さらに大電流が必要になる
FIGS. 1(a) and 1(b) show how ionized substances are melted in an IJ bath by a conventional electrical heating means. FIG. 1(a) shows the structure of a chip portion of a liquid metal ion source which is very simple. In this ion source, the support part 3 of the ion-emitting chip 2 is heated with electricity to melt the ionized substance 1 in a bath. A disadvantage of this ion source is that the ionized material 1 cannot be stored in the device. Further, when attempting to dissolve an ionized substance with a high melting point, it is necessary to flow a large flow of large 'fL through the support part 3, which may cause the support part 3 to break. The diameter of the support part 3 should be increased to prevent breakage, but it would be better to make the support part 3 into a trunk shape, but in that case, a larger current would be required.

第1図(b)はイギリスのデュビリエ社から発売さtし
ている液体金属イオン源のチップ部断面構成を示したも
のである。こちらのイオン源ではイオン化物質1の溜め
部4を設けてイオン源を長寿命化している。このイオン
源では、溜め部4の外側を絶縁物からなる筒6で覆い、
そこにヒーター5を巻さ、W線の通電加熱によって、イ
オン化物質lを溶融している。こちらのイオン源でイオ
ン化物質lを浴融しようとする時に、高融点のイオン化
物′這lに対して、大電流が必要となる。また、このイ
オン源では、熱がヒーター5から絶縁物製部6、さらに
溜め部4へ伝導してイオン化物質lを加熱しており、加
熱の効率が良くない。
FIG. 1(b) shows the cross-sectional configuration of the tip of a liquid metal ion source sold by Dubiliers of England. This ion source is provided with a reservoir 4 for the ionized substance 1 to extend the life of the ion source. In this ion source, the outside of the reservoir 4 is covered with a cylinder 6 made of an insulating material.
A heater 5 is wound around it, and the ionized substance 1 is melted by heating with a W wire. When attempting to melt the ionized substance in a bath using this ion source, a large current is required for the ionized substance having a high melting point. Further, in this ion source, heat is conducted from the heater 5 to the insulating material part 6 and further to the reservoir part 4 to heat the ionized substance 1, and the heating efficiency is not good.

通電力U熱方式では上記のどちらの形式のイオン源につ
いても、高融点のイオン化物質lを溶融するためには大
電流を必要とし、イオン源内部の電線やイオン源まで電
流を導入するための電線に大電流用のものが必要となる
。また、溜め部4を設けた形式では710熱の効率が良
くな込。
In both of the above-mentioned types of ion sources, the power-conducting heat method requires a large current to melt the ionized substance with a high melting point, and a Electric wires that can handle large currents are required. In addition, the type with the reservoir 4 has a good 710 heat efficiency.

本発明の目的は、液体金属イオン源において、イオン化
物質を充分な着溜められるイオン化物質の溜め部を有し
、イオン源を長寿命化すると共に、イオン化物質を効率
的に加熱、溶融することかできる融体金属イオン源を提
供することKある。
An object of the present invention is to provide a liquid metal ion source with an ionized material reservoir capable of storing a sufficient amount of ionized material, to prolong the life of the ion source, and to efficiently heat and melt the ionized material. It is an object of the present invention to provide a source of molten metal ions that can be used.

上記目的を達成するために本発明では、イオン化物質溜
め部を^1波誘導加熱手段に1つて加熱するようにした
ものである。かかる本発明のt¥f徴的徴収構成って、
高周波誘導加熱であるためにイオン化1勿質榴め部を直
接加熱でき、加熱の効率が良い。そのため、従来のイオ
ン化物質溜め部よりも大きい溜め部を無理なく力a熱で
きるよう[なり、イオン化物質を多く溜めら几、イオン
源の寿命を長くできる。また、従来、融点が楠いため、
通電加熱手段では必要とする電流が大き過き゛実用上溶
融困難と考えらすしていたイオン化物′貞の浴融も可能
となる。
In order to achieve the above object, in the present invention, the ionized substance reservoir is heated by one ^1 wave induction heating means. The t¥f tax collection structure of the present invention is as follows:
Since it is high-frequency induction heating, the ionized 1-layer constriction part can be directly heated, and the heating efficiency is high. Therefore, it is possible to easily heat the reservoir, which is larger than the conventional ionized material reservoir, and the life of the ion source can be extended by storing a large amount of ionized material. In addition, conventionally, because the melting point is low,
It is now possible to melt ionized substances in a bath, which was considered difficult to melt in practice because the current required by current heating means was too large.

以下、本発明を実施例に従って説明する。Hereinafter, the present invention will be explained according to examples.

第2r随n1本発明の一実施例であるNIBイ    
   jン源を示したものである。イオン化物質lであ
るNiHは溜め部4の中に人っている。このNIBを溶
融して溜め部4の先から実吊させたチップ2の先端へ供
給し、チップ2と引き出し電極8との間に5KV以上の
高電圧をかけ、チップ2の先端からNIBイオンビーム
7を引き出す。こ)時ノNIB溶融用の熱は、ワークコ
イル9に高周波をかけ、溜め部4の表面に発生させた表
面電流によるジュール熱から供給している。^周波誘導
加熱では溜め部4を直接加熱するため熱効率が良く、N
IBのような高融点(融点: lll0C)のイオン化
物質lの溶融も通電加熱に比べて比較的容易に行なえる
。また、この時、カートリッジ形式の溜め部4を固定し
ている高さ決定用セラミック碍子13とチップ軸合わせ
用MOネジ11の溜め部4への接触面積をできるだけ小
さくして、熱伝導によって熱が逃げるのを少なくしてい
る。また、シールド用円筒IOで溜め部4の周りを糧っ
て、熱輻射による熱の逃げを抑えると共にイオン源の周
りの温度上昇を防ぐようにしである。このシールド用円
筒IOの底面はチップ2の先端と同じ高さに設定し、イ
オン電流の細かな制御を行なうコントロール電極として
慟かせるようにした。さらに、溜め部4、および、チッ
プ2は炭素材料で製作した。これは従来のW、MOなど
の高融点金属で溜め部4、チップ2を作った場合、イオ
ン化物質1であるNiBがこれらの全域と反応し、この
部分の寿命が短くなるためである。例えば、Wチップの
寿命Vi1分以内である。よって、NiBとの反応性の
少ない炭素材料をこの部分に用いたが、このイオン源で
は、溜め部4はグラファイトの焼、給体を力8工して製
作し、チップ2はグラファイトの焼結体の光にグラッシ
ーカーボンをっけ、先端の曲率半径が1μm程度に電解
研磨したものを用い念。このイオン源では、高周波誘導
加熱手段によって有効な加熱が可能となったためNiB
の温度を融点以上充分な高さに上げられ、また、温度を
−ヒげてもNiBはカートリッジ形式の溜め部4内に封
じ込めてメ9、外部に露出しているのけ溜め部4の下端
のみのため温度上昇にょるNiBの蒸発も少なくなって
いる。よって、このイオン源は高温での動作が可能とな
り、安定性良くNIBイオンビーム7を引き出すことが
できた。
Part 2 r Sub n 1 NIB I/O which is an embodiment of the present invention
This shows the source of the information. NiH, which is an ionized substance, is present in the reservoir 4. This NIB is melted and supplied from the tip of the reservoir 4 to the tip of the hanging chip 2, and a high voltage of 5KV or more is applied between the tip 2 and the extraction electrode 8, and the NIB ion beam is beamed from the tip of the tip 2. Pull out 7. Heat for melting the NIB is supplied from Joule heat generated by a surface current generated on the surface of the reservoir 4 by applying a high frequency to the work coil 9. ^ Frequency induction heating has good thermal efficiency because it directly heats the reservoir 4, and N
Melting of an ionized substance 1 with a high melting point (melting point: 110C) such as IB can be performed relatively easily compared to electric heating. At this time, the contact area of the height-determining ceramic insulator 13 that fixes the cartridge-type reservoir 4 and the MO screw 11 for chip axis alignment with the reservoir 4 is made as small as possible to prevent heat by thermal conduction. I run away less. In addition, the shielding cylinder IO is used to protect the area around the reservoir 4, thereby suppressing the escape of heat due to thermal radiation and preventing a rise in temperature around the ion source. The bottom surface of this shielding cylinder IO was set at the same height as the tip of the tip 2, and was designed to function as a control electrode for finely controlling the ion current. Furthermore, the reservoir 4 and the chip 2 were made of carbon material. This is because when the reservoir 4 and the chip 2 are made of conventional high-melting point metals such as W and MO, NiB, which is the ionized substance 1, reacts with the entire area of these parts, shortening the life of this part. For example, the lifetime Vi of the W chip is within 1 minute. Therefore, a carbon material with low reactivity with NiB was used for this part, but in this ion source, the reservoir part 4 was made by sintering graphite and the feed body was made by sintering, and the tip 2 was made by sintering graphite. Make sure to use one with glassy carbon attached to the body light and electrolytically polished to a radius of curvature of about 1 μm at the tip. With this ion source, effective heating is possible using high-frequency induction heating means, so NiB
The temperature of NiB can be raised to a sufficiently high level above the melting point, and even if the temperature decreases, the NiB can be sealed in the cartridge-type reservoir 4 and the lower end of the reservoir 4 exposed to the outside can be evaporation of NiB due to temperature rise is also reduced. Therefore, this ion source was able to operate at high temperatures and was able to extract the NIB ion beam 7 with good stability.

伝送ロスを少なくするため、また、必要以上の電力を消
費しないために、加熱周波数fは一般に臨界周波数fc
以上からその5倍程度に選ぶのが望ましい。この臨界周
波数fCは次式で定義される。
In order to reduce transmission loss and to avoid consuming more power than necessary, the heating frequency f is generally set at a critical frequency fc.
From the above, it is desirable to choose about 5 times that amount. This critical frequency fC is defined by the following equation.

f c = 12&5−一(Hz) μat ここで、ρは被加熱物の比抵抗(μΩ−z)、μは被加
熱物の比透磁率、aF′i被加熱物の半径(cm )で
ある。今、加熱対象はグラファイトで、ρ=1000/
JΩ(?Fl!%  p ” 1 % また、a = 
0.25 cmとしている。すると、fc =ZIMH
zになる。よって適当な加熱周波数fは2MHz −1
0MHzの範囲となる。しかし、今回は通信妨害を避け
るた −め、また、その仕様の電源が市販されていたた
め、加熱周波数には工業用割当周波数13.56MHz
を使用した。周波数が高いと、電力は少し多めに必要だ
′が、グラファイト表面を流れる表面電流の浸透深さが
残くなり、加熱効率が良くなるので、13、56 M 
HEを使用しても加熱には支障なかった。
f c = 12&5-1 (Hz) μat Here, ρ is the specific resistance of the heated object (μΩ-z), μ is the relative magnetic permeability of the heated object, and aF′i is the radius of the heated object (cm ) . Now, the object to be heated is graphite, and ρ=1000/
JΩ(?Fl!% p ” 1 % Also, a =
It is set to 0.25 cm. Then, fc =ZIMH
Becomes z. Therefore, the appropriate heating frequency f is 2MHz −1
The range is 0MHz. However, in order to avoid communication interference, and because a power supply with that specification was commercially available, the heating frequency was set to the industrially allocated frequency of 13.56MHz.
It was used. If the frequency is high, a little more power is required, but the penetration depth of the surface current flowing through the graphite surface remains, and heating efficiency improves, so 13.56 M
Even when HE was used, there was no problem in heating.

本発明によれば、イオン化物質lの加熱が効率良く行な
えるため、tooot:’以上の融点のイオン化物質l
についてもイオンビーム7が安定して引き出せる温度ま
で容易に加熱可能で、液体金属イオン源の安定性向上に
効果がある。ま友、イオン化物質lの溜め部4をカート
リッジ形式にしたことによって、イオン化物質1がなく
なった時、別のイオン化物質lに変える時にはカートリ
ッジ式溜め部4を交換するだけで済み、作業が簡単にな
る。さらに、溜め部4、およびチップ2に炭素材料を用
いることによって、従来のW、MOなどではそれらの金
属との反応性が高く、イオンビーム7′5r引き出すこ
とが不可能であったイオン化物質lからもイオンビーム
7が引き出せるようになり、イオン種の拡大に効果がめ
る。
According to the present invention, since the ionized substance l can be efficiently heated, the ionized substance l having a melting point of more than tooot:'
It can also be easily heated to a temperature at which the ion beam 7 can be stably extracted, which is effective in improving the stability of the liquid metal ion source. Friend, by making the reservoir 4 of the ionized substance 1 into a cartridge type, when the ionized substance 1 runs out and you want to change to another ionized substance 1, you only need to replace the cartridge type reservoir 4, which makes the work easier. Become. Furthermore, by using a carbon material for the reservoir 4 and the tip 2, ionized substances such as conventional W, MO, etc. have high reactivity with those metals, and it is impossible to extract the ion beam 7'5r. The ion beam 7 can now be extracted from the ion beam, which is effective in expanding the ion species.

【図面の簡単な説明】[Brief explanation of drawings]

@1図は従来性なわれてきた通電加熱手段によ    
    「つてイオン化物質を溶融するタイプの液体金
属イオン源を示したものであって、同図(a)は最も単
純なイオン源の構成図、同図(b)は市販されているイ
オン源の断面構成図、第2図は本発明による高周波誘導
加熱手段を用いた液体金属イオン源の構成図である。 1・・・イオン化物質、2・・・チップ、3・・・支持
部、4・・・溜め部、5・・・ヒーター、6・・・絶縁
物製筒、7・・・イオンビーム、8・・・引き出し電極
、9・・・ワークコイル、lO・・・シールド円筒、1
1・・・MOネジ、!2・・・セラミック碍子、13・
・・セラミック碍子、14・・・セラミック碍子、15
・・・支持棒。 代理人 弁理士 薄田利幸 y 1 因 (α) (b) 第 2  口 第1頁の続き 0発 明 者 宮内建興 横浜市戸塚区吉田町292番地株 式会社日立製作所生産技術研究 所内
@Figure 1 shows a heating method using a conventional electrical heating method.
This figure shows a type of liquid metal ion source that melts an ionized substance using a liquid metal ion source. Fig. 2 is a block diagram of a liquid metal ion source using high frequency induction heating means according to the present invention. 1... Ionized substance, 2... Chip, 3... Support part, 4... - Reservoir, 5... Heater, 6... Insulator tube, 7... Ion beam, 8... Extraction electrode, 9... Work coil, lO... Shield cylinder, 1
1...MO screw! 2... Ceramic insulator, 13.
...Ceramic insulator, 14...Ceramic insulator, 15
...Support rod. Agent Patent Attorney Toshiyuki Usuda 1 Cause (α) (b) 2nd Portion Continued from page 1 0 Inventor Kenko Miyauchi, Hitachi, Ltd., Institute of Industrial Science, 292 Yoshida-cho, Totsuka-ku, Yokohama

Claims (1)

【特許請求の範囲】 1、イオン化物質溜め部、イオン化物質溶融用熱源、イ
オン放出用チップ、イオン引き出し用電極より成る液体
金属イオン源において、上記イオン化物質溶融用熱源が
高周波誘導加熱手段からなることを特徴とする高周波誘
導加熱型液体金属イオン源。 2、上記チップ、および、上記溜め部がこれらをほぼ完
全に覆うシールド内に設けられていることを特徴とする
特許請求の範囲第1項記載の高周波誘導加熱型液体金属
イオン源。 3、上記イオン化物質溜め部がカー) IJツジ形式に
構成されていることを特徴とする特許請求の範囲第1項
記載の高周波誘導加熱型液体金属イオン源。 4、上記イオン化物質溜め部、および、上記イオン放出
用チップの材質が炭素からなることを特徴とする特許請
求の範囲第1項記載の高周波誘導加熱型液体金属イオン
源。
[Scope of Claims] 1. A liquid metal ion source comprising an ionized substance reservoir, a heat source for melting the ionized substance, an ion emission chip, and an ion extraction electrode, wherein the heat source for melting the ionized substance comprises high-frequency induction heating means. A high-frequency induction heating liquid metal ion source featuring: 2. The high-frequency induction heating type liquid metal ion source according to claim 1, wherein the chip and the reservoir are provided in a shield that almost completely covers them. 3. The high-frequency induction heating type liquid metal ion source according to claim 1, wherein the ionized substance reservoir is configured in an IJ type. 4. The high frequency induction heating liquid metal ion source according to claim 1, wherein the ionized substance reservoir and the ion emitting tip are made of carbon.
JP7527982A 1982-05-07 1982-05-07 Liquid metal ion source of high-frequency induction heating type Granted JPS58192249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7527982A JPS58192249A (en) 1982-05-07 1982-05-07 Liquid metal ion source of high-frequency induction heating type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7527982A JPS58192249A (en) 1982-05-07 1982-05-07 Liquid metal ion source of high-frequency induction heating type

Publications (2)

Publication Number Publication Date
JPS58192249A true JPS58192249A (en) 1983-11-09
JPH027499B2 JPH027499B2 (en) 1990-02-19

Family

ID=13571626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7527982A Granted JPS58192249A (en) 1982-05-07 1982-05-07 Liquid metal ion source of high-frequency induction heating type

Country Status (1)

Country Link
JP (1) JPS58192249A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654814U (en) * 1993-12-20 1994-07-26 佐二 萩原 Gassho framework
KR20170117364A (en) * 2014-10-13 2017-10-23 아리조나 보드 오브 리전트스, 아리조나주의 아리조나 주립대 대행법인 Cesium primary source for secondary ion mass spectrometer
US10672602B2 (en) 2014-10-13 2020-06-02 Arizona Board Of Regents On Behalf Of Arizona State University Cesium primary ion source for secondary ion mass spectrometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654814U (en) * 1993-12-20 1994-07-26 佐二 萩原 Gassho framework
KR20170117364A (en) * 2014-10-13 2017-10-23 아리조나 보드 오브 리전트스, 아리조나주의 아리조나 주립대 대행법인 Cesium primary source for secondary ion mass spectrometer
US10672602B2 (en) 2014-10-13 2020-06-02 Arizona Board Of Regents On Behalf Of Arizona State University Cesium primary ion source for secondary ion mass spectrometer

Also Published As

Publication number Publication date
JPH027499B2 (en) 1990-02-19

Similar Documents

Publication Publication Date Title
US5399865A (en) Liquid metal ion source with high temperature cleaning apparatus for cleaning the emitter and reservoir
KR20210049174A (en) Indirectly heated cathode ion source and method of ionizing different dopants
US4631448A (en) Ion source
ES485398A1 (en) Liquid-cooled support for the head of an electrode.
US4488045A (en) Metal ion source
JPS58192249A (en) Liquid metal ion source of high-frequency induction heating type
EP0080170B1 (en) Field-emission-type ion source
US1954474A (en) Glow cathode
US3391238A (en) Preparation for smelting of metals and compounds with high melting points
JPH0136664B2 (en)
US3586749A (en) Method for the electroslag welding and building up of metals and alloys
JPS58198822A (en) Liquid metal ion source
US2687471A (en) Concentrated arc discharge device
RU2756845C1 (en) Cathode-heating unit for an electron beam gun
JPS61206136A (en) Liquid metal ion source
JPS63170833A (en) Liquid metal ion source
US2214607A (en) Make-alive electrode
JPS59203344A (en) Ion source
US1949545A (en) Mercury arc
US1480301A (en) Furnace
CA1192621A (en) Micro-arc welding/brazing of metal to metal and metal to ceramic joints
SU897865A1 (en) Electrode furnace-bath
JPH02815B2 (en)
JPS63210592A (en) Crucible for electron-beam melting
JPS6364027B2 (en)