JPS58191991A - Reactor container structure - Google Patents

Reactor container structure

Info

Publication number
JPS58191991A
JPS58191991A JP57073366A JP7336682A JPS58191991A JP S58191991 A JPS58191991 A JP S58191991A JP 57073366 A JP57073366 A JP 57073366A JP 7336682 A JP7336682 A JP 7336682A JP S58191991 A JPS58191991 A JP S58191991A
Authority
JP
Japan
Prior art keywords
reactor
vessel
roof slab
support
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57073366A
Other languages
Japanese (ja)
Inventor
誠 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57073366A priority Critical patent/JPS58191991A/en
Publication of JPS58191991A publication Critical patent/JPS58191991A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は防振機構を備えた原子炉の改良に係り、特に大
きな地震力に対する、φ下げ型原子炉主容器の安全性を
向上させた原子炉容器構造に関する。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to the improvement of a nuclear reactor equipped with a vibration isolation mechanism, and particularly relates to a nuclear reactor that improves the safety of a φ-down type reactor main vessel against large seismic forces. Regarding the structure of the furnace vessel.

吊下げ型の原子炉容器は、一般に、炉心および炉心構造
物を格納してそれらの周囲に冷却材バウンダリを形成す
るタンク型主容器と、この主容器の外側を覆う安全容器
で構成されており、主容器は蓋となるルーフスラブに品
下げられている。タンク型主容器は、熱応力の緩和と製
作費低減の目的で大口径趨肉構造とされているので、地
震時のスロッシングやバルジング等、内蔵流体と主容器
壁との達成振動を考慮する必要があり、特に吊)け構造
の場合には、各容器の地震*動対策として主容器外壁へ
のサポート411造が必要である。
Suspended reactor vessels generally consist of a tank-type main vessel that houses the reactor core and core structures and forms a coolant boundary around them, and a safety vessel that covers the outside of this main vessel. , the main container has been reduced to a roof slab that serves as a lid. The tank-type main vessel has a large-diameter tapered structure for the purpose of alleviating thermal stress and reducing manufacturing costs, so it is necessary to take into account possible vibrations between the built-in fluid and the main vessel wall, such as sloshing and bulging during earthquakes. Especially in the case of a suspended structure, it is necessary to provide support to the outer wall of the main container as a countermeasure against earthquakes* for each container.

しかしながら、従来のサポート構造には種々の間匙点が
あった。坤ち、例えば主容器を弾性はねまたはオイル利
用のダッシュポットにより安全容器に支持する方法では
、ダンパーの取付けのため、主容器と安全容器の双方に
ダンパー取付部とそれらの補強部を必要とするが、これ
らの取付部や補強部を形成すると主容器は不拘−板犀構
造となるため、熱応力の間軸が生じやすく、シかも供用
期間中検査(III)等の障害となる。均一板厚とする
ために主容器全体の板厚を場加させると製作コストが着
しく上昇する上、熱応力の間軸が生する。
However, conventional support structures have various interstices. For example, in a method in which the main container is supported on the safety container by elastic springs or a dashpot using oil, damper mounting parts and their reinforcement parts are required on both the main container and the safety container in order to attach the damper. However, when these attachment parts and reinforcement parts are formed, the main container becomes an unrestricted plate structure, which tends to cause thermal stress, which becomes a hindrance to in-service inspections (III) and the like. If the thickness of the entire main container is increased in order to achieve a uniform plate thickness, the production cost will increase considerably, and an axis of thermal stress will occur.

(発明の目的) 本発明は、従来itにおける上述の如き欠点を除去すべ
くなされたもので、構成が容易で、しかもすぐれた対表
性を自する防振機構を備えた原子炉を提供しようとする
ものである。
(Object of the Invention) The present invention has been made to eliminate the above-mentioned drawbacks in conventional IT, and provides a nuclear reactor equipped with a vibration isolation mechanism that is easy to configure and has excellent surface resistance. That is.

(発明の構成) 以下、図ホの実施例をもとじ、本発明の構成について駐
細に説明する。第1図〜第3図において、原子炉容器菟
lには、上端を炉容器蚕1に固定した水槽構造の安全容
器3が据付けらnている。この安全容器3内にはそれよ
りも直径および深さがやや小さい主容器4が配置され、
その上端はルーフスラブ2に固定されて吊下げ構造とさ
れている。
(Configuration of the Invention) Hereinafter, the configuration of the present invention will be explained in detail based on the embodiment shown in Figure E. 1 to 3, a safety vessel 3 having a water tank structure with its upper end fixed to the reactor vessel 1 is installed in the reactor vessel 1. Inside this safety container 3, a main container 4 having a slightly smaller diameter and depth is arranged,
Its upper end is fixed to the roof slab 2 to form a hanging structure.

ルーフスラブ2には、その周縁部近傍と支持部5との間
に敷きつめられたスライドパット7及び支持部5とルー
フスラブ2の水平方向の支持を受は搗つ為に円周上に配
置した複数個のバネ(たとえはサラバネで形成された)
構造支持機構8とが設けられている。尚、オイルダンパ
方式の減衰機構9がバネ構J!!支持機構8と原子炉容
器室支持部5間に据付けられている。第2図、第3図は
、支持機構8と減衰機構9の個々の実施例を示したもの
である。
The roof slab 2 has slide pads 7 laid between the vicinity of its periphery and the support part 5, and supports arranged on the circumference to support the support part 5 and the roof slab 2 in the horizontal direction. Multiple springs (for example, formed by Saraba springs)
A structural support mechanism 8 is provided. In addition, the oil damper type damping mechanism 9 is a spring structure J! ! It is installed between the support mechanism 8 and the reactor vessel chamber support section 5. 2 and 3 show individual embodiments of the support mechanism 8 and the damping mechanism 9. FIG.

′JJ″−門構造物全構造物それらの周囲には冷却材で
ある液体力トリウム11が充填さハている。
'JJ''-Gate structure The entire structure is surrounded by liquid thorium 11, which is a coolant.

(発明の作用) 次6二以上説明の原子炉容器構造の朗宸機構について説
明−fる。本発明の1農機構は、水平力向の地賑力に対
して、柔構造のバネ支持5により原子炉系全体の水平方
向の固有振動数を原子炉室文長都5の床応答スペクトラ
のピークのでている周波数帯域より十分に低くして加速
度を低減させ、柔バネを便ハj1−ることによつ又発生
する大きなルーツスラブの水半変位を減衰機構8によつ
−〔低減させる方法によるものである。以−を図を用い
て説明すると、地真は図1の原子炉容器ビット室の支持
部5を水平に揺らす加速度で与えられる。この地表波の
加速度は図4にボす床応答スペクトラで表不され横軸は
周波数(Hz)、縦軸は加速度を示す。   □この床
応答スペクトラはある周波数帯域でピークを示し、(図
では3〜15Hzの間で)このピークの周波数帯域では
大きな加速度を持っている。
(Function of the Invention) Next, the explanation mechanism of the reactor vessel structure described above will be explained. In one agricultural mechanism of the present invention, the horizontal natural frequency of the entire reactor system is adjusted to the floor response spectrum of the reactor room Bunchoto 5 by means of the spring support 5 having a flexible structure in response to the ground force in the horizontal force direction. The acceleration is reduced sufficiently below the frequency band where the peak appears, and the damping mechanism 8 reduces the water displacement of the large roots slab that occurs due to the use of flexible springs. It depends on the method. To explain the following using a diagram, the ground truth is given by the acceleration that horizontally shakes the support part 5 of the reactor vessel bit chamber in FIG. 1. The acceleration of this ground wave is shown in the floor response spectrum shown in FIG. 4, where the horizontal axis shows frequency (Hz) and the vertical axis shows acceleration. □This floor response spectrum shows a peak in a certain frequency band (in the figure, between 3 and 15 Hz), and has a large acceleration in the frequency band of this peak.

つまり腔子炉支持都5にのびる原子炉糸の固有振vJ数
が加速度のピークを示す周波数域内になると必要以上に
大きな加速度での設計が必要となり、本発明の対象とす
るタンク型原子炉は最大ピーク−1傍の加速度では成立
しないうえさらに主容器自身の固有JkRm数が4〜1
03−1m  と填度ビーク領域にあるので、なんとか
して固有値の大きい帯域での設計、これを通常開設計と
呼んでいる方法で設atが成立するよう努力しているの
が塊状である。
In other words, if the natural oscillation vJ number of the reactor string extending in the support cap 5 of the Laozi reactor falls within the frequency range where the acceleration peaks, it will be necessary to design an acceleration that is larger than necessary, and the tank-type reactor that is the object of the present invention will have a maximum This does not hold true with acceleration near peak -1, and furthermore, the characteristic JkRm number of the main container itself is 4 to 1.
03-1m, which is in the filler peak region, the block is trying to establish the setting at by somehow designing in a band with a large eigenvalue, which is usually called an open design.

−力建築関係では、この方法と逆の、低い力の周波数帯
域での設計、これを通常柔構造設計と呼んでいる設計手
法がある。
- In the field of force architecture, there is a design method that is the opposite of this method and involves designing in a low force frequency band, which is usually called flexible structure design.

本発明はMi」述したように柔構造方式を採用するもの
であって、例えば第2図に示すようなサラバネによる柔
構造バネ支持8を第1図のルーフスラブ2端部に複数個
配置し、原子炉全体の161有振動数を例えば4図の3
Hz  以下にさせる。このときルーフスラブの水平方
向振動を容易にさせる為、スライドパット7を支持部5
の上に敷き、滑りやすくしである。障子炉全体を柔構造
にするとIll速は小さくてもバネ定数が低いと大きな
振幅が発生し原子炉を運転していく上で駕ましくないの
で、柔4III造バネ支持8と同じレベル他の場所に例
えは図3に示すようなオイルダンパのtIIc衰機構9
を多数個配置してさらに加21!皺を低減させてルーフ
スラブの振幅を低減させる方式である。
The present invention adopts a flexible structure method as described in "Mi", and for example, a plurality of flexible structure spring supports 8 using flat springs as shown in FIG. 2 are arranged at the end of the roof slab 2 shown in FIG. , the 161 oscillating frequency of the entire reactor is, for example, 3 in Figure 4.
Hz or less. At this time, in order to facilitate horizontal vibration of the roof slab, the slide pad 7 is moved to the support portion 5.
Place it on top of the cloth to make it slippery. If the entire shoji reactor is made into a flexible structure, even if the Ill speed is small, if the spring constant is low, a large amplitude will occur and it will not be easy to operate the reactor. An example of a location is the tIIc damping mechanism 9 of an oil damper as shown in Figure 3.
Arrange a large number of and add 21 more! This method reduces the amplitude of the roof slab by reducing wrinkles.

(発明の効果) 上述のように構成した本発明に8いて地表が発生して1
9子炉至の床面が振動しても、柔構造のバネによって原
子炉の応答は床応答の小さい低周波域になり、かつダン
パ減衰機構によりさらに加速度が低減されて、主容器の
振動及加速度は小さなものになる。従って地層に対する
主容器の破損は防止さnかつ、原子炉構造全体の健全性
も確保されることになる。
(Effect of the invention) In the present invention configured as described above, the earth surface is generated and 1
Even if the floor surface of the nine sub-reactors vibrates, the flexible structure of the spring will cause the reactor response to be in the low frequency range where the floor response is small, and the damper damping mechanism will further reduce the acceleration, suppressing the vibration of the main vessel. Acceleration will be small. Therefore, damage to the main vessel against the geological formations is prevented, and the integrity of the entire reactor structure is ensured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原子炉容器構造に於ける柔構造支持方
式の概略を示す縦断面図、第2図は第1図の柔構造バネ
支持機構の断面図、第3図は$2図のダンパ減衰機構の
断面図の1例をボす。また第4図は原子炉据付面の床応
答スペクトラ図であ心0 1:j早→炉容器蚕 2:ルーフスラブ 4::1−容器 5:支I’f flii 7:スライドバット 8:へ不支持磯構 9:ダンパ減衰機柄 f 7317 )代理人 4r理士 則 近 惠 佑(
はか1名) 第1図 第2図 第3図
Fig. 1 is a vertical cross-sectional view schematically showing the flexible structure support system in the reactor vessel structure of the present invention, Fig. 2 is a cross-sectional view of the flexible structure spring support mechanism of Fig. 1, and Fig. 3 is the $2 figure. An example of a cross-sectional view of the damper damping mechanism shown in FIG. In addition, Figure 4 is a floor response spectrum diagram of the reactor installation surface. Unsupported rock structure 9: Damper damping mechanism f 7317
(1 person) Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 原子炉主容器をルーフスラブに吊下げると共に、1記ル
ーフスラブの周辺部と原子5炉容器室支持部との間に水
平方向に複数個のダンパ機構を設置し、ルーフスラブ下
部据付部にはスライドバットを配置していることを特徴
とする原子炉容器構造。
In addition to suspending the reactor main vessel from the roof slab, a plurality of damper mechanisms are installed horizontally between the peripheral part of the roof slab (1) and the reactor vessel chamber support part (5), and a plurality of damper mechanisms are installed in the lower part of the roof slab. A nuclear reactor vessel structure characterized by having a slide butt arranged therein.
JP57073366A 1982-05-04 1982-05-04 Reactor container structure Pending JPS58191991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57073366A JPS58191991A (en) 1982-05-04 1982-05-04 Reactor container structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57073366A JPS58191991A (en) 1982-05-04 1982-05-04 Reactor container structure

Publications (1)

Publication Number Publication Date
JPS58191991A true JPS58191991A (en) 1983-11-09

Family

ID=13516102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57073366A Pending JPS58191991A (en) 1982-05-04 1982-05-04 Reactor container structure

Country Status (1)

Country Link
JP (1) JPS58191991A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151092A (en) * 1983-02-17 1984-08-29 財団法人 電力中央研究所 Reactor
JPS60104799U (en) * 1983-12-21 1985-07-17 三菱重工業株式会社 Reactor vessel support structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151092A (en) * 1983-02-17 1984-08-29 財団法人 電力中央研究所 Reactor
JPS60104799U (en) * 1983-12-21 1985-07-17 三菱重工業株式会社 Reactor vessel support structure

Similar Documents

Publication Publication Date Title
JPS58191991A (en) Reactor container structure
JPH01501806A (en) Fluid shock absorbers to protect buildings from earthquakes
JPH04201697A (en) Sloshing damping device in liquid fuel rocket propellant tank
JPS5918487A (en) Fast breeder reactor container
JPS5934191A (en) Tank type reactor with vibration-damping mechanism
CN210375602U (en) Civil engineering structure anti-seismic test device
JPS60242267A (en) Tower like structure
JPS6264773A (en) Sloshing preventive device
JPS593293A (en) Fast breeder container
JPH04160397A (en) Nuclear reactor vessel
JPS6340065A (en) Vibration damper for building having stopper function
JPS6034382A (en) Vibration-proof supporter for suspension support type high-temperature vessel
JPS61290389A (en) Supporter for pressure vessel for nuclear reactor
JPS59211894A (en) Reactor building
JPS6086487A (en) Upper section supporter for pressure vessel of nuclear reactor
JPS6340064A (en) Vibration damper for building
JPS5811688A (en) Earthquake-proof supporting structure of vessel
JPS62284292A (en) Roof slab
JPS6131997A (en) Vessel for high-temperature liquid
JPS6089795A (en) Fast breeder reactor
JPS599592A (en) Structure for mantling portion of rotary plug in reactor roof slab
JPS5826469B2 (en) Earthquake protection device for spherical tank
JP2532408Y2 (en) Sloshing prevention device for fast breeder reactor
JPS607387A (en) Support structure of core of nuclear reactor
JPS6282181A (en) Vibration damping apparatus of structure