JPS58190787A - Corrector for spatial distortion of scintillation camera - Google Patents

Corrector for spatial distortion of scintillation camera

Info

Publication number
JPS58190787A
JPS58190787A JP7386382A JP7386382A JPS58190787A JP S58190787 A JPS58190787 A JP S58190787A JP 7386382 A JP7386382 A JP 7386382A JP 7386382 A JP7386382 A JP 7386382A JP S58190787 A JPS58190787 A JP S58190787A
Authority
JP
Japan
Prior art keywords
signals
correction
gamma
position signals
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7386382A
Other languages
Japanese (ja)
Other versions
JPH0451795B2 (en
Inventor
Seiichi Yamamoto
誠一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP7386382A priority Critical patent/JPS58190787A/en
Publication of JPS58190787A publication Critical patent/JPS58190787A/en
Publication of JPH0451795B2 publication Critical patent/JPH0451795B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1642Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using a scintillation crystal and position sensing photodetector arrays, e.g. ANGER cameras

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To remove spatial distortion of an image by correcting spatial distortion for position signals in three directions shifted by 120 deg. on real time to be converted to right position signals. CONSTITUTION:In a scintillator 1 which enter gamma ray and other radiations, a number of photo multipliers (PMT) 3 are arranged on the back thereof in such a manner as to be positioned at respective apexes of a regular triangle so that scintillation lights enter each of them through a light guide 2. Outputs of the PMTs 3 corresponding to the scintillation are introduced to a position calculating circuit 4 to calculate position signals alpha, beta and gamma in three directions shifted by 120 deg.. The directions of the signals alpha, beta and gamma are each determined by the array of the PMTs 3. These signals alpha, beta and gamma are pass through a correction circuit 5 to be converted to signals alpha', beta' and gamma' by correction of spatial distortions thereof. The signals alpha', beta' and gamma' thus corrected are converted to X and Y signals with a coordinate conversion circuit 6. Display using these X and Y signals provides an image corrected in the spatial distortion.

Description

【発明の詳細な説明】 この発明は、シンチレーションカメラにおける空間歪み
補正装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a spatial distortion correction device for a scintillation camera.

従来より、シンチレーションカメラにお社る直交座標系
の位置信号X、Yを補正する装置は提案されているが、
12o0ごとの3方向の位置信号α、β、γを位置演算
にょシ求めたのぢX。
Conventionally, devices have been proposed to correct the position signals X and Y of the orthogonal coordinate system in scintillation cameras.
The position signals α, β, and γ in three directions for each 12o0 were calculated using position calculation.

Y信号に変換するタイプのシンチレーションカメラでは
上記の補正装置は適用できない。
The above correction device cannot be applied to a type of scintillation camera that converts into a Y signal.

この発明は、12o0ごとの3方向の位置信号α、β、
γに対してリアルタイプで空間歪み補正を行ないその後
X、Y信号に変換することによって、より有効且つ適切
に画像の空間φみを除去するようにしたシンチレーショ
ンカメラにお叶る空間歪み補正装置を提供することを0
晶とする。
This invention provides position signals α, β, and position signals in three directions every 12o0.
We have developed a spatial distortion correction device suitable for scintillation cameras that more effectively and appropriately removes the spatial φ distortion of images by performing real-type spatial distortion correction on γ and then converting it into X and Y signals. 0 to provide
Crystal.

以下、本発明の一実施例について図面を参照しながら説
明する。第1図において、シン、チレータlにrHや他
の放射線が入射するよりになっており、その背面にライ
トガイド2を介して多数のPM’r(フォトマルチプラ
イア)3が、第2図に示すように各々が正三角形の各m
点に位置するように61列されていて、その各々にシン
チレーション光がライトガイド2を介して入射するよう
になっている。シンチレーシロンに対応するPMT3の
各出力は位置演算回路4に導かれて1200ごとの3方
向の位11信号α、β。
An embodiment of the present invention will be described below with reference to the drawings. In Fig. 1, rH and other radiations are incident on the thin tilator l, and a large number of PM'r (photomultipliers) 3 are connected to the back side of it via a light guide 2, as shown in Fig. 2. Each m is an equilateral triangle as shown.
There are 61 lines arranged at points, and scintillation light is incident on each of them via the light guide 2. Each output of the PMT 3 corresponding to the scintillation rayon is led to a position calculation circuit 4, where it produces 11 signals α and β in three directions every 1200.

γが算出される。ここでα、β、γの各方向は、PMT
3の配列に関連して第2図のように定める。このα、β
、r信号は補正量j135を通って空間歪み補正されて
cr/、β′、r′倍信号なり、座標変換回路6で補正
後のα′、β′、γ′信号よシX。
γ is calculated. Here, each direction of α, β, and γ is PMT
3 is determined as shown in FIG. 2. This α, β
, r signals are subjected to spatial distortion correction through a correction amount j135 to become cr/, β', r' multiplied signals.

Y信号に変換きれる。したがってこのX、Y信号を用い
て自書表示すれば空間歪みの補正された画像が徊られる
Can be converted to Y signal. Therefore, if the X and Y signals are used to display a handwritten image, an image whose spatial distortion has been corrected will be displayed.

補正回路5は第6図のように構成される(後述する)が
、補正のために必要な補正係数はあらかしめ次のように
して求める。1ず第3図に示すように、平行スリブ)7
1を廟するノターン7を平行スリット71の方向がα方
向に直角になるようにシンチレータ1の前面に配置して
このノ譬ターン7の位置信号σ、β、γを取り出し、デ
ータ配憶装置8に記憶させ、十分な数の位置信号が配憶
された後補正係数計舅回路9で補正係数を求める(第1
図参照)。具体的には、記憶した位置信号のうちβが一
定の場合のα方向のγ線計数の分布を調べる。たとえば
第3図においてβ=β0とした場合のα方向の分布をと
ると第4図の点線のようになる。本来は実線で示すよう
に/4ターン7のスリット71の中心にビークの位置が
あるべきであるが、空間歪みにより点線のようにずれて
いるのである。そこでこのずれ量Δを求め、sF倍する
と、この1圧Δがβ0とスリット71との交点における
補正量のβ方向変位ベクトルとなる。同様にしてたとえ
ばr=r6の場合のα方向の分布から補正量のγ方向変
位ベクトルを求める。さらK、スリット71の角度を変
えたとえばβ方向に直角として同様にして補正量のα方
向変位ベクトルを求める。このようにして求めた各変位
ベクトルのマイナスの値に若干の処理を施l−九値を補
正係数とL、この補正係数を全祈野にわたシスリ、ドア
1の間隔だけα、β、r方向に離れた谷点、すなわち第
5図に示すよりなα、β。
The correction circuit 5 is constructed as shown in FIG. 6 (described later), and the correction coefficients necessary for correction are roughly determined as follows. 1. As shown in Figure 3, parallel ribs) 7
1 is arranged in front of the scintillator 1 so that the direction of the parallel slit 71 is perpendicular to the α direction, and the position signals σ, β, and γ of the parallel slit 7 are extracted, and the data storage device 8 After a sufficient number of position signals have been stored, the correction coefficient is calculated in the correction coefficient metering circuit 9 (the first
(see figure). Specifically, the distribution of γ-ray counts in the α direction when β is constant among the stored position signals is investigated. For example, if β=β0 in FIG. 3, the distribution in the α direction is as shown by the dotted line in FIG. Originally, the position of the beak should be at the center of the slit 71 of the /4 turn 7 as shown by the solid line, but due to spatial distortion it is shifted as shown by the dotted line. Therefore, this deviation amount Δ is obtained and multiplied by sF, and this 1 pressure Δ becomes the β direction displacement vector of the correction amount at the intersection of β0 and the slit 71. Similarly, for example, the γ-direction displacement vector of the correction amount is determined from the α-direction distribution when r=r6. Further, the angle of the slit 71 is changed, for example, perpendicular to the β direction, and the α direction displacement vector of the correction amount is obtained in the same manner. The negative values of each displacement vector obtained in this way are subjected to some processing, and the l-9 value is used as a correction coefficient L. This correction coefficient is applied to the entire prayer area, α, β, and r for the distance between door 1. Valley points separated in the direction, that is, α and β as shown in FIG.

rにそれぞれ直角で且つ間隔がスリット71の間隔に対
応し7’c3方向の平行線の各交点の全てにつき求め、
これを補止回路5に送って補正係数メモリ58(第6図
参v7@)に記憶させる。この補正係数はα、β、γの
3方向の変位ベクトルからなり、k番目の交点(すなわ
ち番号にで表わされた位#)についてのものを■k(α
、β、γ)で表わすこととし、各変位ベクトルを■にα
Find all the intersections of parallel lines in the 7' and 3 directions, each perpendicular to r and whose spacing corresponds to the spacing of the slits 71,
This is sent to the correction circuit 5 and stored in the correction coefficient memory 58 (v7@ in FIG. 6). This correction coefficient consists of displacement vectors in three directions α, β, and γ.
, β, γ), and each displacement vector is expressed as α
.

”kβ、 Vkrと表わすことにする。``kβ, will be expressed as Vkr.

補正回路5では、第5図の交漬に囲まれた三角形の領域
内の位置信号を三角形の各頂点の補正係数を用いて補間
計算によシ補正する。具体的には第6図のように構成し
、まずシンチレーシ冒ンごとに得られるα、β、γ信号
をADI換器51.52.53でAD変換し、その上位
ビ、トαl、β1.門で各三角形の頂点までの位置を指
定し、下位ビットα2.β2.γ2で三角形内の位置R
を指定するようにする(第7図及び第8図参Ift)。
The correction circuit 5 corrects the position signal within the triangular area surrounded by the intersections in FIG. 5 by interpolation calculation using the correction coefficients of each vertex of the triangle. Specifically, the configuration is as shown in FIG. 6. First, the α, β, and γ signals obtained for each scintillation scan are AD-converted by ADI converters 51, 52, and 53, and the upper bits, αl, β1, and γ signals are converted into digital signals by ADI converters 51, 52, and 53. Specify the position to the vertex of each triangle using the gate, and input the lower bits α2. β2. Position R within the triangle with γ2
(Ift in Figures 7 and 8).

ここで上位ビットα1.β1.γ1の和が偶数か奇数か
で補間計算が異なるので、C1,β1.rlのそれぞれ
の最下位ビットを偶数・奇数判定回路54に送ってその
判定を行なう。その判定結果にもとづき補数計算回路5
5゜56.57が働き、偶数のとき下位ビットα2゜β
2.r2がそのまま、奇数のときそれらの補数’lx 
+ /2°・万が、それぞれ補間計算回路59に送られ
る。この補間計算回路59には、上位ビットα1.β1
.及″びrlの最下位ビット(ま九はrl)によって補
正係数メモリ58から読出した点Pを囲む三角形の各頂
点の補正係数■1(α、βer)l■2(”?βor)
”5Vs(α+β、γ)から得た次のclx C12が
送られてきており、C1=■lα* C5= v1βI
C9:■lrC2”V2Q−Vlα1C6=■S’/−
V17+’ e Cl0=■2γ−■17C3””V2
C、C,:V3β 費 C11=V3γC4”v2Q−
V3(1−C8=■2/ ’3β+ Cl2=V2r−
V3γ偶数の場合には第7図に示すようになるので、に
より、奇数の場合は第8図のようになるのでRγの補数
(1−R,α、1−Rβ、1−Rγ)である。
Here, upper bit α1. β1. Since the interpolation calculation differs depending on whether the sum of γ1 is an even number or an odd number, C1, β1 . The least significant bit of each rl is sent to the even/odd determining circuit 54 for determination. Based on the determination result, the complement calculation circuit 5
5゜56.57 works, and when the number is even, the lower bit α2゜β
2. If r2 is an odd number, its complement 'lx
+/2°·10,000 are respectively sent to the interpolation calculation circuit 59. This interpolation calculation circuit 59 includes upper bits α1. β1
.. and the correction coefficient of each vertex of the triangle surrounding the point P read from the correction coefficient memory 58 using the least significant bit of rl (maximum is rl).
“The next clx C12 obtained from 5Vs (α+β, γ) is being sent, and C1=■lα* C5= v1βI
C9:■lrC2"V2Q-Vlα1C6=■S'/-
V17+' e Cl0=■2γ-■17C3""V2
C, C,: V3β cost C11=V3γC4”v2Q-
V3 (1-C8=■2/ '3β+ Cl2=V2r-
If V3γ is an even number, it will be as shown in Figure 7, and if it is an odd number, it will be as shown in Figure 8, so it is the complement of Rγ (1-R, α, 1-Rβ, 1-Rγ). .

により点Rの補正係数VR(a 、β、γ)が計算され
る。こうして求めたα、β、γの各方向の補正量Δα、
Δβ、Δγは加算器60.61.62においてもとのα
、β、r信号に加えられ、補正された位置信号αI、β
′、r′が得られる。
The correction coefficient VR(a, β, γ) at point R is calculated by: The correction amount Δα in each direction of α, β, and γ obtained in this way,
Δβ and Δγ are the original α in adders 60, 61, and 62.
, β, the corrected position signals αI, β added to the r signals
', r' are obtained.

なお、上記の実施例では平行スリットを持つ・そターン
を使用して各廃の補正係数を計算するための撮影を行な
ったが、多数の細かい穴が規則正しく配列されたパター
ンを用いてもよい。
In addition, in the above embodiment, a pattern with parallel slits was used to take pictures for calculating the correction coefficient of each waste, but a pattern in which many fine holes are regularly arranged may also be used.

以上、実施例について説明したように、本発明によれば
、120°ごとの3方向の位置信号α。
As described above in the embodiments, according to the present invention, position signals α in three directions every 120° are generated.

β、rの段階で空間歪み補正を行ない、その仮直交座標
系のX、Y信号に変換するようにし九ので、より直接的
に補正が行なえ、画像の空間企みを有効に除去できる。
Since the spatial distortion is corrected at the β and r stages and converted into X and Y signals of the virtual orthogonal coordinate system, the correction can be performed more directly and the spatial distortion of the image can be effectively removed.

【図面の簡単な説明】[Brief explanation of drawings]

第1!i!lは本発明の一実施例の全体の構成を示すブ
ロック図、第2図はPNTF列を示す模式図、第3図は
平行スリットのパターンを示す模式図、第4図は7m計
数の分布を示すグラフ、第5図は補正係数が求められた
各点を説明するための模式図、第6図は第1図の補正回
路5の具体例を示すプロ、り図、第7図及び第8図は補
間計算を説明するための線図である。 l−・・シンチレータ  2・・・ライトガイド3・−
PMT      4・・・位貴演算回路5・・・補正
回路    6・・・座標亥換回路7・・・パターン 
   8・・・データ配憶装置9・・・補止係数計算回
路 51〜53・・・AD変換器54・−・偶砂・奇数
判定回路 55〜57・・・補数計算回路 58・−・補正係数メモリ59・・・補間計算回路60
〜6り・・・加3I器
1st! i! 1 is a block diagram showing the overall configuration of an embodiment of the present invention, FIG. 2 is a schematic diagram showing a PNTF array, FIG. 3 is a schematic diagram showing a pattern of parallel slits, and FIG. 4 is a diagram showing the distribution of 7m counts. 5 is a schematic diagram for explaining each point at which a correction coefficient is determined, and FIG. 6 is a diagram showing a specific example of the correction circuit 5 in FIG. 1. The figure is a diagram for explaining interpolation calculation. l-...Scintillator 2...Light guide 3--
PMT 4...Position calculation circuit 5...Correction circuit 6...Coordinate exchange circuit 7...Pattern
8...Data storage device 9...Complement coefficient calculation circuit 51-53...AD converter 54--Even sand/odd number judgment circuit 55-57...Complement calculation circuit 58--Correction Coefficient memory 59...interpolation calculation circuit 60
~6ri...additional 3I device

Claims (1)

【特許請求の範囲】[Claims] (1)シンチレータの背面にライトカイトを介して多数
の光電変換器を各々が正三角形の各項漬に位置するよう
に配列し、各光電変換器出力を位5ffiix回路に導
いて120°ごとの3方向の位置信号α、β、rを演算
し、この位置信号α。 β、γを座標変換回路で座標変換して直交座標系の位置
信号X、Yt−得るようにしたシンチレーションカメラ
において、あらかじめ求められた位置信号α、β、γで
表わされる各点の補正係数を記憶する補正係数メモリと
、シンチレーシヨンごとに得られる位置信号a、β、γ
を囲む正三角形の各m点の補正係数を前記補正メモリか
ら読出して補間計算により当骸位置信号α。 β、γに関する補正量を計算する補間計算回路とを備え
て、この補間計算回路から祷られる補正量で原位置信号
α、β、rを補正するようにしたシンチレーションカメ
ラにおける空間歪み補正装置。
(1) A large number of photoelectric converters are arranged on the back side of the scintillator via light kites so that each photoelectric converter is located at each term of an equilateral triangle, and the output of each photoelectric converter is guided to a 5ffiix circuit to generate signals every 120°. Position signals α, β, and r in three directions are calculated, and this position signal α is calculated. In a scintillation camera that converts β and γ using a coordinate conversion circuit to obtain position signals X and Yt in an orthogonal coordinate system, the correction coefficients for each point represented by the position signals α, β, and γ determined in advance are Correction coefficient memory to store and position signals a, β, γ obtained for each scintillation
The correction coefficients for each m point of an equilateral triangle surrounding the area are read out from the correction memory, and an interpolation calculation is performed to obtain the body position signal α. A spatial distortion correction device for a scintillation camera, comprising an interpolation calculation circuit that calculates correction amounts regarding β and γ, and corrects original position signals α, β, and r using the correction amounts expected from the interpolation calculation circuit.
JP7386382A 1982-04-30 1982-04-30 Corrector for spatial distortion of scintillation camera Granted JPS58190787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7386382A JPS58190787A (en) 1982-04-30 1982-04-30 Corrector for spatial distortion of scintillation camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7386382A JPS58190787A (en) 1982-04-30 1982-04-30 Corrector for spatial distortion of scintillation camera

Publications (2)

Publication Number Publication Date
JPS58190787A true JPS58190787A (en) 1983-11-07
JPH0451795B2 JPH0451795B2 (en) 1992-08-20

Family

ID=13530430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7386382A Granted JPS58190787A (en) 1982-04-30 1982-04-30 Corrector for spatial distortion of scintillation camera

Country Status (1)

Country Link
JP (1) JPS58190787A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122478A (en) * 1973-09-07 1976-10-26 Elscint Ltd Scintilation camera
JPS5618912A (en) * 1979-07-25 1981-02-23 Lion Corp Oral band

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122478A (en) * 1973-09-07 1976-10-26 Elscint Ltd Scintilation camera
JPS5618912A (en) * 1979-07-25 1981-02-23 Lion Corp Oral band

Also Published As

Publication number Publication date
JPH0451795B2 (en) 1992-08-20

Similar Documents

Publication Publication Date Title
US3745345A (en) Radiation imaging device
US4095108A (en) Signal processing equipment for radiation imaging apparatus
EP0240689B1 (en) Multiple pixel area-weighted acquisition system for scintillation cameras
GB1568158A (en) Method and an apparatus for electro-optically constructing a tomogram
JPS5920880A (en) Method of improving image of gamma camera and its improved gamma camera
JPS58190787A (en) Corrector for spatial distortion of scintillation camera
EP0294089A2 (en) Data acquisition circuit
Yeh Distortion of bar-phantom image by collimator
Muehllehner et al. A method for reconstructing images from data obtained with a hexagonal bar positron camera
JPS60122382A (en) Radiation image forming device
JP3813213B2 (en) Nuclear medicine diagnostic apparatus and radioisotope separation method
JPS6484140A (en) Tomographic image pickup device
JPH10201745A (en) X-ray photographing device
JPH0546512B2 (en)
JP3309614B2 (en) Radiation camera
JPH08136655A (en) Data collecting circuit for emission ct device
JP2582609B2 (en) Image processing display
JPH03585B2 (en)
JP2000056024A (en) Real-time radiation position calculating device
JP2509506B2 (en) Nuclear medicine imaging device
JPS59229666A (en) Digital picture processor
Jahangir et al. Count-rate variations with orientation of camera detector
Perry Analysis and correction of spatial distortions produced by the gamma camera
JPH0543426Y2 (en)
JPH0520709B2 (en)