JPS58190753A - Ion electrode apparatus - Google Patents

Ion electrode apparatus

Info

Publication number
JPS58190753A
JPS58190753A JP57073925A JP7392582A JPS58190753A JP S58190753 A JPS58190753 A JP S58190753A JP 57073925 A JP57073925 A JP 57073925A JP 7392582 A JP7392582 A JP 7392582A JP S58190753 A JPS58190753 A JP S58190753A
Authority
JP
Japan
Prior art keywords
ion
potential difference
conductivity
value
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57073925A
Other languages
Japanese (ja)
Inventor
Yaichiro Shibazaki
柴崎 弥一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP57073925A priority Critical patent/JPS58190753A/en
Publication of JPS58190753A publication Critical patent/JPS58190753A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To make it possible to carry out highly precise measurement, by constituting the titled apparatus from such a mechanism that the measurement error of objective ion concn. based on the difference in the ion strength of a sample to be measured can be compensated by the output signal from a conductivity measuring part. CONSTITUTION:The range adjustment of a display part is carried out by a standard liquid while operating factors are stored in an operation part. The factors are the ion concn. Cs, the K value and potential difference es of the standard liquid and the conductivity of a sample is measured while total ion strength I is operated based on he factors set in the operation part and coefficient of activity is operated by this value while operation potential ei from the concn. Cs is operated from a Nernst formula. By using preliminarily stored es, a value eo of difference with ei is asked. This value comes to approximate potential difference for compensating measurement error due to the difference in ion strength. By adding this potential difference to actually measured potential difference being the output from a potential difference detector, compensated potential difference (ex+eo) is determined.

Description

【発明の詳細な説明】 この発明は、イオン電極装置に関する。さらyc詳しく
は、イオン電極測定系におけるイオン強度の差異に起因
する測定誤差を補償し、高精変高確度の測定を行い得る
ようにし定イオン電極装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ion electrode device. More specifically, the present invention relates to a constant ion electrode device that compensates for measurement errors caused by differences in ion intensity in an ion electrode measurement system and enables highly precise and highly accurate measurements.

イオン電極法によ1)電極電位として測定されるものは
イオン濃度と活量係数の積で表わされるいわゆるイオン
活量である。ここで活量係数は、溶液中に含まれるイオ
ンの荷電と全イオン強IItK。
1) What is measured as the electrode potential by the ion electrode method is the so-called ion activity, which is expressed as the product of the ion concentration and the activity coefficient. Here, the activity coefficient is the charge of the ions contained in the solution and the total ion strength IItK.

より定まる係数である( Debye−HLLckel
 (D式)。
It is a coefficient determined by (Debye-HLLckel
(D formula).

m(f’)= −A−Z” (77/ (l−1−ff
) ) −−・・・−・(1)ただし、f−活量係数 A=温闇、溶媒により定まる定数 (2FC%水溶液の場合0.5091となる)2=荷電
数 ■=全イオン強変 すなわち、溶液中のあるイオンの活量係数は、その溶液
中の全イオン強fに依存している友め、共存している他
種イオンの濃度が変わると、被測定イオンの活量係数が
変化することになる。
m(f')=-A-Z" (77/ (l-1-ff
) ) −−・・・−・(1) However, f-activity coefficient A = constant determined by temperature, darkness, and solvent (0.5091 in case of 2FC% aqueous solution) 2 = number of charges ■ = total ion strong change In other words, the activity coefficient of a certain ion in a solution depends on the strength of all ions in the solution, and as the concentration of other coexisting ions changes, the activity coefficient of the ion to be measured changes. It's going to change.

従って、イオン電極法により、イオン濃度を精度良く測
定するためには、電極電位の測定器の目盛校正に用いる
標準液のイオン強度と測定しようとする試料溶液のイオ
ン強度を等しくしておく必要がある。
Therefore, in order to accurately measure ion concentration using the ion electrode method, it is necessary to equalize the ionic strength of the standard solution used to calibrate the scale of the electrode potential measuring device and the ionic strength of the sample solution to be measured. be.

一般にイオン強度の調整には、イオン強1度調整剤(ト
リエチルアミンなど)を測定1こ支障のない程度加えた
り、試料を希釈液などによって希釈し、希釈液のイオン
強度によってイオン強度が編制されるという方法をとる
Generally, to adjust the ionic strength, an ionic strength adjusting agent (such as triethylamine) is added to an extent that does not interfere with the measurement, or the sample is diluted with a diluent, and the ionic strength is adjusted according to the ionic strength of the diluent. Take this method.

しかしなから、イオン強度調整剤を添ノ」1することに
よって試料に変化をきたすまうな場合(試料量がamの
とき。)や希釈液によって試料を希釈できない場合(全
rmsi+定など。)には、イオン強度の調整が不可能
なため、標準液と試料溶液のイオン強度の差異による測
定誤差を生しる。
However, in cases where the addition of an ionic strength adjuster causes changes in the sample (when the sample amount is am) or when the sample cannot be diluted with a diluent (such as total rmsi + constant). Since the ionic strength cannot be adjusted, measurement errors occur due to the difference in ionic strength between the standard solution and the sample solution.

この発明は、かような問題点を解削すべく・ツζされた
ものであり、試料のfB液導111.帯から6試L1の
イオン強度の差異に起因する測定誤差を補償し高精度測
定を行い優るイオン電極装置を提供するものである。
This invention has been developed to solve these problems, and is designed to improve the fB liquid conduction 111. The present invention provides an ion electrode device that compensates for measurement errors caused by differences in ion strength between 6 samples L1 and performs highly accurate measurements.

かくしてこの発明によれば、イオン電極、比較電極及び
これらを接続する電位差検出器からなる電率測定器から
なる導電率測定部と、上記電位差検出器と導wlL亭測
定谷を接続する演算部と、演算部1こ付^する表示部と
を備えてなり、各測定試料のイオン強度の差異に基づく
目的イオン$liの測定誤差を尋wL率測定部からの出
方信号によって補誠しつるように構成され!こことを特
徴とするイオノwIt極装置か提供される。
Thus, according to the present invention, there is provided a conductivity measuring section comprising a conductivity measuring device including an ion electrode, a reference electrode, and a potential difference detector connecting these, and a calculating section connecting the potential difference detector and the conductivity measurement valley. , a calculation section and a display section, so that the measurement error of the target ion $li based on the difference in ion intensity of each measurement sample can be corrected by the output signal from the wL rate measurement section. Composed of! An iono wIt polar device is provided.

この発明のイオン電極装置dの補償方法について以ド詳
述する。
The compensation method for the ion electrode device d of the present invention will now be described in detail.

一般に浴数の全イオン強度は、次式のように表わされる
。4 I=−Σz12・cl・・・・・・・曲・・・・・・・
・・・(II)zl:1褌イオンの電荷数 C1:1種イオンの#度 一方、溶液導電率は次式のまうに表わされる。
Generally, the total ionic strength of the bath number is expressed as follows. 4 I=-Σz12・cl・・・・・・Song・・・・・・
...(II) zl: number of charges of one loincloth ion C1: degree # of one kind of ion On the other hand, the solution conductivity is expressed by the following formula.

?Y−−Σ・Zi−Oi・/?i・・・・川・・・・・
・・Iei : i柚イオンの移動度 ここで溶液中のイオン細か主として同程度の移動用]を
付する複数の単価イオン、例えばNH4+、Tj”、ム
f+、Br−1■−1N08−1aco、−等からなり
、多価イオンの存在を実質的に無視できる場合には式(
1)及びIから ■−1Σハ・6・・・・・・・・・・・・・・・・・−
・・・・・・qy12  di。
? Y--Σ・Zi-Oi・/? i...river...
・・Iei: Mobility of i Yuzu ion Here, ions in the solution are mainly for the same degree of movement]. For example, NH4+, Tj", Muf+, Br-1■-1N08-1aco, - etc., and when the presence of multiply charged ions can be virtually ignored, the formula (
1) and I from ■-1Σc・6・・・・・・・・・・・・・・・・−
...qy12 di.

となり、溶液、−4電率と全イオン強度の関係が近似的
に直線比例関係となる。
Therefore, the relationship between the -4 electric rate of the solution and the total ionic strength is approximately linearly proportional.

■−−Σに6・・・・・・・・・・・・・・・・・・・
・・・・・・・(V)(式中、Kは2専iを示す) 従って、生体試料のごとき被測定イオンと共存している
他挿単価イオンのa度は変動するが申価イオン柚は変わ
らないという場合にlJ、箔14電率を測定することに
よって、式(ηよりその〆紗の全イオン強度を求め、イ
オン四反より(1)式に小すような演算を行うことによ
って、イオン強度の差異に起因する活猷係数の変化を求
め、これを補正することによって、イオン電極法にまる
高fI4度測定を行うことができる。
■−−Σ 6・・・・・・・・・・・・・・・・・・
・・・・・・・・・(V) (In the formula, K indicates 2 exclusive i) Therefore, although the a degree of the extrapolated ion coexisting with the ion to be measured such as a biological sample fluctuates, the monovalent ion In the case that the yuzu does not change, by measuring lJ and the electrical conductivity of the foil 14, find the total ion intensity of the final gauze from the formula (η), and perform calculations to reduce it to formula (1) from the ion quaternary. By determining the change in the activation coefficient due to the difference in ion strength and correcting this, it is possible to perform high fI 4 degree measurement using the ion electrode method.

以下、添付図面によりこの発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は、この発明のイオン電極装mlの具体例である
ナトリウムイオン測定装置を示す構成説明図である。第
1図においてこの発明のイオン電極装置は、ナトリウム
イオンW1極(1)、比較電4m (2)及びこれらを
接続する電位差検出器(3)からなるイオン電極測定部
と、導電率測定センサー(4)及び導電率測定器(5)
からなる導電率測定部と、検出器(3)と測定器(5)
を接続する演算部(6)と、演算部(6)に付属する表
示部(7)とから構成されている。演算部(6)は例え
ばキー人力やメモリーを備えたマイクロコンピュータ−
から構成されており、他のモジュールは公知のものを種
々適用できる。
FIG. 1 is a configuration explanatory diagram showing a sodium ion measuring device which is a specific example of the ion electrode device ml of the present invention. In FIG. 1, the ion electrode device of the present invention includes an ion electrode measurement section consisting of a sodium ion W1 pole (1), a comparative voltage 4m (2), and a potential difference detector (3) connecting these, and a conductivity measurement sensor ( 4) and conductivity measuring device (5)
A conductivity measuring section consisting of a detector (3) and a measuring device (5)
It consists of a calculation section (6) to which the calculation section (6) is connected, and a display section (7) attached to the calculation section (6). The calculation unit (6) is, for example, a microcomputer equipped with key power and memory.
The other modules can be variously known.

上記測定装置を操作するに当ってまず、特定イオンの標
準液が較正に用いられる。この標準液は、試料中の測定
対象イオンを含有しかつイオン強度既知のものを用いる
。標準液のイオン濃度は測定される試料中の測定対象イ
オンの濃度に近い濃度のものを用いる。例えば血清試料
中のナトリウムイオン濃度測定用としては血清fil革
値に対応する1 40 mmol/A!の塩化ナトリウ
ム純水溶液を用いるのが好ましい。
In operating the above measuring device, first, a standard solution of a specific ion is used for calibration. This standard solution contains the ion to be measured in the sample and has a known ionic strength. The ion concentration of the standard solution used is close to the concentration of the ion to be measured in the sample to be measured. For example, for measuring sodium ion concentration in a serum sample, 140 mmol/A, which corresponds to the serum filtration value! It is preferable to use a pure aqueous solution of sodium chloride.

かような標準液によって、表示部(7)のレンジ調整が
行われ、かつ演算部(6)において演算用ファクターが
記憶される。ここで記憶されるファクターは標準液イオ
ン濃度Os、に値及び電位差es であり、08は例え
ばキーインやレンジll4mによって設定され、K値は
導電率測定器(5)からの出力r5s及びOtsの値に
基づいて式(′V)によ#)演算される。
Using such a standard solution, the range of the display section (7) is adjusted, and the calculation factor is stored in the calculation section (6). The factors stored here are the standard solution ion concentration Os, the value and the potential difference es, 08 is set, for example, by key-in or range 114m, and the K value is the value of the output r5s and Ots from the conductivity measuring device (5). It is calculated by formula ('V) based on #.

またeBとして電位差検出器(3)からの出力が直接記
憶される。
Further, the output from the potential difference detector (3) is directly stored as eB.

演算用ファクターの設定(較正)Ir後、例えば複数の
イオン繍を含む試料の測定が行われる。
After setting (calibration) Ir of calculation factors, for example, a sample including a plurality of ion stitches is measured.

まず、試料の導電率″15xが典1定され演算部(6)
において設定されたファクターに基づき全イオン強度■
が演算され、この値により活量係数fが式中により演算
される。ここで活量係数fに対応する一度Osからの演
算電位eiがネルンストの式;%式%() (式中、Nはネルンスト定数である) から演算される。予め記憶したe8を用いてeiとの差
の値eOを求める。このeOが溶液導電率により得られ
た、イオン強度の差異による測定誤差を補償するための
近似の電位差となる。
First, the electrical conductivity of the sample ``15x'' is determined and the calculation unit (6)
Total ion strength based on the factor set in ■
is calculated, and based on this value, the activity coefficient f is calculated according to the formula. Here, the calculated potential ei from Os corresponding to the activity coefficient f is calculated from the Nernst formula; % formula %() (in the formula, N is the Nernst constant). Using e8 stored in advance, the difference value eO from ei is determined. This eO becomes an approximate potential difference obtained from the solution conductivity to compensate for measurement errors due to differences in ionic strength.

このようにして演算された補償用の電位差eOを、電位
差検出器(3)からの出力である実測電位差exに加算
すること薯こより補償された電位差ex + eoが求
まり、これに対応するナトリウムイオン濃度が表示部(
7)に表示される。
By adding the compensation potential difference eO calculated in this way to the measured potential difference ex, which is the output from the potential difference detector (3), a compensated potential difference ex + eo is obtained, and the corresponding sodium ion The concentration is displayed on the display (
7) will be displayed.

以上の演算部(6)におけるイオン強度補償回路のブロ
ックダイヤグラムを第2図に示した。
FIG. 2 shows a block diagram of the ion intensity compensation circuit in the above calculation section (6).

かようなイオン電極装置によれば、各試料のイオン強度
の差異による影響を除くことができるため、高#i1度
、高確度の測定を行なうことができ種々のイオン1wI
!i系に有用である。ことに血清試料等の被測定イオン
と共存する他種イオンの濃度は変わるがイオン櫨は変わ
らない場合に有用であり、前述した欄々のイオンを共存
状態を問わず測定できる。さらに共存成分を含有しない
単一溶液についてもS度の差異によるイオン強度の違い
を補償することができる。
According to such an ion electrode device, it is possible to eliminate the influence of differences in ion strength of each sample, so it is possible to perform high #i1 degree and highly accurate measurements, and it is possible to
! Useful for i-series. In particular, the ion filter is useful when the concentration of ions of other species coexisting with the ion to be measured, such as in a serum sample, changes but does not change, and the above-mentioned ions can be measured regardless of their coexistence state. Furthermore, even for a single solution containing no coexisting components, differences in ionic strength due to differences in S degree can be compensated for.

なお、この発明によれば、複数の単価イオンを含有し実
質的に多価イオンを含まない、@液中における全イオン
強度及び活量のみを測定し表示することもできる。かよ
うなイオン強度や活量の測定は溶液化学、電気化学反応
等の研究に重要であり、この発明の目的以外にも有用で
ある。従って、かような観点から、この発明によれば、
溶液導電率を測定する手段及び溶液導電率からイオン強
度を演算する手段を具備したことからなるイオン強度測
定装置も提供するものである。
According to the present invention, it is also possible to measure and display only the total ion strength and activity in an @ solution that contains a plurality of singly charged ions but does not substantially contain multivalent ions. Measurement of such ionic strength and activity is important for research on solution chemistry, electrochemical reactions, etc., and is also useful for purposes other than the purpose of this invention. Therefore, from this point of view, according to the present invention,
The present invention also provides an ionic strength measuring device comprising means for measuring solution conductivity and means for calculating ionic strength from the solution conductivity.

以下、この発明を実施例により更に詳しく説明する。Hereinafter, this invention will be explained in more detail with reference to Examples.

実施例1 表1に示すような試薬Mail を用いて作製したNa
 イオン濃度140 岬4一定の溶液に、共存する他種
イオンとして濃度の異なるKおよびClイオンを含む溶
液を調合し、Na イオン電極と比較電極からなる従来
のイオン電極装置によりそれぞれの溶液の電位差を測定
し濃度測定への共存イオンの影響を調べた。
Example 1 Na was prepared using the reagent Mail as shown in Table 1.
Ion concentration 140 Misaki 4 A solution containing K and Cl ions with different concentrations as coexisting other species ions is prepared into a constant solution, and the potential difference between each solution is measured using a conventional ion electrode device consisting of a Na ion electrode and a reference electrode. The influence of coexisting ions on the concentration measurements was investigated.

電位差の測定結果は、表1に示されるように、Naイオ
ン濃度が140 ”/lと一定であっても、共存するK
OIの濃度により値が変化している。
As shown in Table 1, the potential difference measurement results show that even if the Na ion concentration is constant at 140"/l, the coexisting K
The value changes depending on the concentration of OI.

いま、仮りにNaイオン140 WJM/lのみを含む
溶液、すなわち溶液1を標準液として、イオンメータの
目盛を140 ”/lに較正したとすると、KOIを含
む他の溶液については、表1に示すような測定値となり
、大きな測定誤差を生じる。
Now, let us assume that the solution containing only Na ion 140 WJM/l, that is, solution 1, is used as the standard solution and the scale of the ion meter is calibrated to 140"/l. For other solutions containing KOI, see Table 1. The measured value will be as shown, resulting in a large measurement error.

−表1− 汗1)なお、浴液1は、Nactt  140 mM/
lの純水水溶液からなりKCjlを全く含まない標準液
をポす。
-Table 1- Sweat 1) The bath solution 1 contains Nactt 140 mM/
A standard solution consisting of 1 ml of pure water and containing no KCjl is added.

これに対し、同一の各水溶液についてR1i液導電率を
測定し、これに基づいて前述したように、イオン強度■
、活臘係数f1電位差e1、補償用の電位差eO及び補
償後の電位差6x+eoを演鼻し、ex+eoに対応す
るNaイオン濃度を換算した。
On the other hand, the R1i liquid conductivity was measured for each of the same aqueous solutions, and based on this, as mentioned above, the ionic strength
, the activation coefficient f1 potential difference e1, the potential difference eO for compensation, and the potential difference 6x+eo after compensation were calculated, and the Na ion concentration corresponding to ex+eo was converted.

その結果を表2に示す。なお、導電率測定センサーのセ
ル定数は0.1のものを使用した。また、式■における
に値は溶液1のイオン強度が0.14M/lになること
がらに=0.2074を得、これを用いた。
The results are shown in Table 2. In addition, the cell constant of the conductivity measurement sensor used was 0.1. Furthermore, since the ionic strength of solution 1 was 0.14 M/l, the value for formula (2) was obtained as 0.2074, which was used.

このように、この発明のイオンwlL極装置によれば高
精度、高確度の測定が可能であることが明らかである。
As described above, it is clear that the ion wlL pole device of the present invention enables highly accurate and accurate measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明のイオン電極装置の具体例を示す構
成説明図であり、第2図はこの発明の装置の演算部にお
けるイオン強度補償回路のブロックダイヤグラムを示す
図である。 (1)・・・ナトリウムイオン電極、 (2)・・・比較tIIL極、     (3)・・・
電位差検出器、(4)・・・導電率測定センサー、 (5)・・・導電率測定器、   (6)・・・演S部
、(7)・・・表示部。 手続補正書(方式) 昭和67年8月19日 1 事件の表示 昭和67年 特 許 願第7893!6号2 発明の名
称 イオン電極装置 3 補正をする者 事件との関係 %mt[1人 住 所′g都市中夏区河原町通二条下ルーツ船入町87
8瞥地氏 名銘称)(199)株式会社 島津製作所代
表考横地節男 4 代  理  人 名称」を「83発明の詳細な説明」と[正する。 302−
FIG. 1 is a configuration explanatory diagram showing a specific example of the ion electrode device of the present invention, and FIG. 2 is a block diagram of an ion intensity compensation circuit in the calculation section of the device of the present invention. (1)...Sodium ion electrode, (2)...Comparison tIIL electrode, (3)...
Potential difference detector, (4)... conductivity measuring sensor, (5)... conductivity measuring device, (6)... performance section, (7)... display section. Written amendment (method) August 19, 1985 1 Indication of the case 1988 Patent Application No. 7893!6 2 Name of the invention Ion electrode device 3 Person making the amendment Relationship to the case % mt [1 person living 87 Roots Funiri-cho, Kawaramachi-dori Nijo-shita, Chuka-ku, City
(199) Setsuo Yokochi, Representative Director, Shimadzu Corporation (4th Representative Name) [Corrected] to ``83 Detailed Description of the Invention.'' 302-

Claims (1)

【特許請求の範囲】[Claims] 1、イオン電極、比較電極及びこれらを接続する電位差
検出器からなるイオン電極測定部と、導電率測定センサ
ー及び導電率測定器からなる導電率測定部と、上記電位
差検出器と導電率測定器を接続する演算部と、演算部に
付属する表示部とを備えてなり、各測定試料のイオン強
度の差異に基づく目的イオン濃度の測定誤差を導電率測
定部からの出力信号によって補償しうるように構成され
たことを特徴とするイオン電極装蓋。
1. An ion electrode measuring section consisting of an ion electrode, a reference electrode, and a potential difference detector connecting these; a conductivity measuring section consisting of a conductivity measuring sensor and a conductivity measuring device; and the above potential difference detector and conductivity measuring device. It is equipped with a connected calculation section and a display section attached to the calculation section, and is capable of compensating for the measurement error of the target ion concentration due to the difference in ion strength of each measurement sample using the output signal from the conductivity measurement section. An ion electrode cover characterized in that:
JP57073925A 1982-04-30 1982-04-30 Ion electrode apparatus Pending JPS58190753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57073925A JPS58190753A (en) 1982-04-30 1982-04-30 Ion electrode apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57073925A JPS58190753A (en) 1982-04-30 1982-04-30 Ion electrode apparatus

Publications (1)

Publication Number Publication Date
JPS58190753A true JPS58190753A (en) 1983-11-07

Family

ID=13532201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57073925A Pending JPS58190753A (en) 1982-04-30 1982-04-30 Ion electrode apparatus

Country Status (1)

Country Link
JP (1) JPS58190753A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128284A (en) * 1993-11-09 1995-05-19 Japan Tobacco Inc Solution composition measuring system
JPH07128283A (en) * 1993-11-09 1995-05-19 Japan Tobacco Inc Solution composition measuring system
KR20030053256A (en) * 2001-12-22 2003-06-28 재단법인 포항산업과학연구원 Process of managing Cl ion concentration in an open circular cooling water system by using an electric conductivity meter
JP2015010835A (en) * 2013-06-26 2015-01-19 栗田工業株式会社 Device and method for measuring calcium hardness

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128284A (en) * 1993-11-09 1995-05-19 Japan Tobacco Inc Solution composition measuring system
JPH07128283A (en) * 1993-11-09 1995-05-19 Japan Tobacco Inc Solution composition measuring system
KR20030053256A (en) * 2001-12-22 2003-06-28 재단법인 포항산업과학연구원 Process of managing Cl ion concentration in an open circular cooling water system by using an electric conductivity meter
JP2015010835A (en) * 2013-06-26 2015-01-19 栗田工業株式会社 Device and method for measuring calcium hardness

Similar Documents

Publication Publication Date Title
Maas et al. Ion-selective electrodes for sodium and potassium: a new problem of what is measured and what should be reported.
JPS5824851A (en) Method and device for measuring ion concentration
Kahlert Reference electrodes
Potterton et al. An Evaluat Ion of the Performance of the Nitrate-Selective Electrode
Light et al. Determination of fluoride in toothpaste using an ion-selective electrode
Sankar et al. Buffers for the Physiological pH Range: Thermodynamic Constants of 3-(N-Morpholino) propanesulfonic Acid from 5 to 50. degree. C
Mills The self-diffusion of chloride ion in aqueous alkali chloride solutions at 25
Friedman et al. Glass electrode measurements of blood sodium and potassium in man
JPS58190753A (en) Ion electrode apparatus
Goodrich et al. Applications of the eastman thermocell equation. 1 i. Certain absolute ionic entropies and entropies of transfer of alkali metal and tetraalkylammonium bromides and hydroxides
Wise et al. Direct potentiometric measurement of potassium in blood serum with liquid ion-exchange electrode
Kolthoff et al. The amperometric titration of traces of ammonia with hypobromite at the rotated platinum wire electrode. Application to the determination of nitrogen in organic compounds
US4410631A (en) Compensated reference liquid
JPS63277962A (en) Lithium and sodium ion concentration ratio determination method
Pardue An Automatic Method for Measuring Slopes of Rate Curves Applied to Quantitative Determination of Cystine.
Ebel et al. Fully Automatic Potentiometric Titrations [New analytical methods (9)]
Einsel et al. Self-equilibrating electrolytic method for determination of acid production rates
Bell et al. Dissociation constants of formic acid and formic acid-d
Popovych Acid-Base Equilibria between Brom Phenol Blue and Selected N-Heterocyclics in Non-Aqueous Solvents
Popov et al. Potentiometric determination of basicity constants in anhydrous formic acid
US4026774A (en) Coulometric measuring method
Midgley Temperature compensation in potentiometry: isopotentials of pH glass electrodes and reference electrodes. Part I. Theory
SU630576A1 (en) Ion-selective electrode
Stanić et al. Arsenopyrite mineral based electrochemical sensor for acid–base titrations in γ-butyrolactone and propylene carbonate
Kumar et al. Determination of some cations by high frequency titration technique using potassium chromate as precipitant