JPS58190532A - Air-fuel ratio return control method for internal- combustion engine - Google Patents

Air-fuel ratio return control method for internal- combustion engine

Info

Publication number
JPS58190532A
JPS58190532A JP7156382A JP7156382A JPS58190532A JP S58190532 A JPS58190532 A JP S58190532A JP 7156382 A JP7156382 A JP 7156382A JP 7156382 A JP7156382 A JP 7156382A JP S58190532 A JPS58190532 A JP S58190532A
Authority
JP
Japan
Prior art keywords
air
value
fuel ratio
correction coefficient
ratio feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7156382A
Other languages
Japanese (ja)
Inventor
Yasuhiro Fukuma
福間 康浩
Susumu Shimazaki
進 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP7156382A priority Critical patent/JPS58190532A/en
Publication of JPS58190532A publication Critical patent/JPS58190532A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1482Integrator, i.e. variable slope

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enhance the responsiveness by varying an integration time constant due to the width variation from the mean value of an air-fuel ratio return correction coefficient in the method in which an injection volume is corrected by said coefficient found from the proportion value and the integration value corresponding to the variation of an O2 concentration. CONSTITUTION:In the above method, after a basic injection quantity (Tp) calculated from an engine speed (N) and an intake air volume is corrected (3) in response to the water temperature and acceleration/deceleration, it is further corrected (31) by an air- fuel ratio return correction coefficient (alpha) calculated (21) from the proportion value and the integral value in response to the output change of an O2 sensor and a fuel injection value is controlled by the corrected injection quantity (Ti). In this case, the peak values (alphaL), (alpham) respectively at the time of reverse from an increase to a decrease of the above correction coefficient and at the time of contrary reverse are stored (22) to calculate (23) a mean value (alphac) and the reference deviation width (DELTAalpha) is set (25) depending on each value (alphac), (alphaL), (alpham). When (alpha) is varied by more than DELTAalpha from (alphac), a change over signal is outputted from a selection circuit 28 so as to change the integration time constant for calculating (alpha) from the greater value to the lesser.

Description

【発明の詳細な説明】 この発明に、内燃機関の排気ガス中の酸素濃度によって
混合気の空燃比をフィードバック制御するようにした空
燃比帰還制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio feedback control method in which the air-fuel ratio of an air-fuel mixture is feedback-controlled based on the oxygen concentration in exhaust gas of an internal combustion engine.

先ず、従来の空燃比帰還制御方法について簡単に説明す
る。
First, a conventional air-fuel ratio feedback control method will be briefly explained.

第1図は、空燃比帰還制御方法を実施した内燃機関(エ
ンジンンのシステム構成図であり、燃焼室La−有する
エンジンの吸気管2に設けた吸気量センサ3からの吸気
量Qを示す信号と、絞り弁4の開度センサ5からの加減
速を示す信号と、回転センサ6からのエンジン回転数N
を示す信号と、ウォータジャケットに取付けた水温セン
サ7からのエンジン冷却水温を示す信号と、さらに排気
管8の排気浄化装置(三元触媒)9よシ手前に取付けた
酸素濃度検出器である02センサ10からの検出信号と
を、夫々演算装置11に入力し、燃料噴射量を算出して
燃料噴射弁12を制御するようになっている。
FIG. 1 is a system configuration diagram of an internal combustion engine (engine) in which the air-fuel ratio feedback control method is implemented. , a signal indicating acceleration/deceleration from the opening sensor 5 of the throttle valve 4, and the engine rotation speed N from the rotation sensor 6.
a signal indicating the engine cooling water temperature from the water temperature sensor 7 attached to the water jacket, and an oxygen concentration detector 02 attached in front of the exhaust purification device (three-way catalyst) 9 of the exhaust pipe 8. The detection signals from the sensors 10 are respectively input to the arithmetic unit 11 to calculate the fuel injection amount and control the fuel injection valves 12.

そして、演算装置゛11においては、第2図のフロチャ
ートに示すようにして燃料噴射量を算出する。
Then, the calculation device 11 calculates the fuel injection amount as shown in the flowchart of FIG.

先ず、吸入空気量Qと回転数Nとを読み込んで、ベース
空燃比を決める基本量(パルス幅)TpをQ ’rp =K・   の演算により算出する。
First, the intake air amount Q and the rotational speed N are read, and the basic amount (pulse width) Tp that determines the base air-fuel ratio is calculated by calculating Q'rp = K.

次に、冷却水温及び加減速に対する補正係数Cを算出し
、さらに、02センサー0の出力に基づく空燃比帰還補
正係数αを算出する。
Next, a correction coefficient C for the cooling water temperature and acceleration/deceleration is calculated, and further, an air-fuel ratio feedback correction coefficient α based on the output of the 02 sensor 0 is calculated.

そして、燃料噴射量(パルス幅)T4’1Ti=TpX
CXαの演算によって算出する。
Then, fuel injection amount (pulse width) T4'1Ti=TpX
Calculated by calculating CXα.

ところで、02センサー0の特性は、第3図に示すよう
に理論空燃比(λ−1)を境に出力電圧が大幅に変化す
る。 この特性を利用して、混合気の濃い薄い全判別し
てαを算出し、これにより空燃比を帰還制御するが、出
力電圧VoがスライスレベルV8(λ=1に対応)より
高くなった場合あるいは低くなった場合に、空燃比を急
激に変化させないように、比例定数と積分定数に基づく
PI(比例積分)制御によってαを変化させて、理論空
燃比に戻すようにしている。
By the way, the characteristic of the 02 sensor 0 is that, as shown in FIG. 3, the output voltage changes significantly after reaching the stoichiometric air-fuel ratio (λ-1). Utilizing this characteristic, α is calculated by determining whether the air-fuel mixture is rich or lean, and the air-fuel ratio is feedback-controlled based on this, but if the output voltage Vo becomes higher than the slice level V8 (corresponding to λ = 1) Alternatively, when the air-fuel ratio becomes low, α is changed by PI (proportional-integral) control based on a proportionality constant and an integral constant to prevent the air-fuel ratio from changing suddenly and return it to the stoichiometric air-fuel ratio.

例えば、第4図(a)(b)(c)に混合気の濃度と0
2センサ電圧Voと空燃比帰還補正係数αとの関係を示
すように、02センサ電圧V、がスライスレベルV8よ
り低い状態から高い状態になると、空燃比帰還補正係数
αを先ず比例値PR分だけ下げ、それから積分値IRに
より徐々に下げて混合気を薄くする。
For example, in Figure 4 (a), (b), and (c), the concentration of the mixture and 0
As shown in the relationship between the 02 sensor voltage Vo and the air-fuel ratio feedback correction coefficient α, when the 02 sensor voltage V changes from a state lower than the slice level V8 to a state higher than the slice level V8, the air-fuel ratio feedback correction coefficient α is first changed by the proportional value PR. lower it, then gradually lower it using the integral value IR to thin the air-fuel mixture.

また、02センサ電圧Voがスライスレベルv8より高
い状態から低い状態になると、空燃比帰還補正係数αを
先ず比例値PL分だけ上げ、それから積分値ILにより
徐々に上げて混合気を濃くする。
Further, when the 02 sensor voltage Vo changes from a state higher than the slice level v8 to a state lower, the air-fuel ratio feedback correction coefficient α is first increased by the proportional value PL, and then gradually increased by the integral value IL to enrich the air-fuel mixture.

このようにして、常に混合気が理論空燃比に近くなるよ
うに制御するが、この場合、比例値PR。
In this way, the air-fuel mixture is always controlled to be close to the stoichiometric air-fuel ratio, but in this case, the proportional value PR.

Pt、は比例定数によって定まり、積分値IR+ IL
の傾きは積分時定数によって定まる。
Pt is determined by the proportionality constant, and the integral value IR+IL
The slope of is determined by the integral time constant.

この積分時定数を、エンジンの定常運転時の安定性と過
渡時のり容性を満足するように選ぶ必要があるが、この
2つの相反する要求を充分に満たすことは不可能であっ
た。
It is necessary to select this integral time constant so as to satisfy the stability during steady operation of the engine and the capacity during transient operation, but it has been impossible to satisfactorily satisfy these two contradictory requirements.

そこで、この問題を解決するために、従来例えば特公昭
55−4942号公報に記載されているように、02セ
ンサの出力信号が予め設定した一定時間一定値を持続し
た時に過渡状態と判定しt1゛積分時定数を大から小に
切換えることがなされている。
Therefore, in order to solve this problem, conventionally, for example, as described in Japanese Patent Publication No. 55-4942, when the output signal of the 02 sensor maintains a constant value for a preset period of time, it is determined to be a transient state. ``The integration time constant is switched from large to small.

しかしながら、このような空燃比帰還制御方法では、積
分時定数切換のための過渡状態の判別が時間に依存して
いるため、応答性を向上させるために積分時定数を切換
えるようにしているのにもかかわらず、その切換が行わ
れるまでに時間遅れがある。
However, in such an air-fuel ratio feedback control method, the determination of the transient state for switching the integral time constant is time-dependent, so even though the integral time constant is switched in order to improve responsiveness, However, there is a time delay before the switching takes place.

また、燃料が機関に供給されてから、それが燃焼して排
出され、その酸素濃度が測定されるまでの時間は、機関
の低速回転時と高速回転時では異なるが、前述の過渡状
゛態判別のための時間は一定なので、運転状態によって
積分時定数切換点の排気濃度にバラツキが生じる。すな
わち、応答性Vこバラツキを生じる。
Additionally, the time from when fuel is supplied to the engine until it is combusted and exhausted and its oxygen concentration is measured differs depending on whether the engine is running at low speed or high speed, but it Since the time for determination is constant, the exhaust gas concentration at the integral time constant switching point varies depending on the operating state. In other words, variations in response V occur.

そのため、各機関毎に、また機関運転状態に応じて前述
した過渡状態判別のための設定時間を変えなければなら
ないという問題があった。
Therefore, there is a problem in that the set time for determining the transient state described above must be changed for each engine and depending on the engine operating state.

この発明は、このような従来の空燃比帰還制御方法にお
ける問題点に着目してなされたもので、得るようにする
ことを目的とする。
The present invention has been made by focusing on the problems in the conventional air-fuel ratio feedback control method, and aims to solve the problems.

そのため、この発明による空燃比制御方法は、空燃比帰
還補正係数αの増減の反転時のピーク値を記憶して平均
値を算出し、この平均値とピーク値に応じて基準の振れ
幅を設定し、αの値が前記平均値から基準の振れ幅を越
えて変化した時にαを算出するための積分時定数を犬か
ら小に変化させて応答性を向上させるようにして、上記
の目的全達成するものである。
Therefore, in the air-fuel ratio control method according to the present invention, the peak value at the time of reversal of increase/decrease in the air-fuel ratio feedback correction coefficient α is memorized, the average value is calculated, and the reference swing width is set according to this average value and the peak value. However, when the value of α changes from the average value by more than the reference swing range, the integration time constant for calculating α is changed from dog to small to improve responsiveness, thereby achieving all of the above objectives. It is something to be achieved.

以下、この発明の一実施例を図面の第5図以降を参照し
て説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIG. 5 and subsequent drawings.

第5図はこの発明を実施した演算装置20の構成を示す
ブロック図で、第1図の演算装置11に相当する。
FIG. 5 is a block diagram showing the configuration of an arithmetic device 20 implementing the present invention, which corresponds to the arithmetic device 11 in FIG.

α算出回路21U、O,、センサからの検出信号を入力
してその変化に応じた比例値と積分値からなる空燃比帰
還補正係数α(以下単に「α」と云う)を9出する。
The α calculating circuit 21U, O, inputs the detection signals from the sensors and outputs an air-fuel ratio feedback correction coefficient α (hereinafter simply referred to as "α") consisting of a proportional value and an integral value according to the change thereof.

ピーク値記憶回路22は、α算出回路21によって算出
されたαの増大から減少への反転時及び減少から増大へ
の反転時のピーク値(第6図(c)にαL・α□で示す
)を記憶する。
The peak value storage circuit 22 stores the peak values (indicated by αL and α□ in FIG. 6(c)) when α calculated by the α calculation circuit 21 is reversed from increase to decrease and when reversed from decrease to increase. Remember.

このピーク値記憶回路22によって記憶された各ピーク
値αL、α□から、平均値算出回路23がα。−(αL
+αm)/2 の演算を行なって平均値α。
From the respective peak values αL and α□ stored by the peak value storage circuit 22, the average value calculation circuit 23 calculates α. −(αL
+αm)/2 is calculated to obtain the average value α.

を算出し、平均値記憶回路24に記憶させる。is calculated and stored in the average value storage circuit 24.

この平均値記憶回路24に記憶された平均値α。The average value α stored in this average value storage circuit 24.

とピーク値記憶回路22に記憶されたピーク値αL又は
α□に応じて基準台振れ幅設定回路25によって基準の
振れ幅Δαを設定する。 この基準の振れ幅Δαはピー
ク値αL又はα□の平均値α。
According to the peak value αL or α□ stored in the peak value storage circuit 22, the reference swing width setting circuit 25 sets the reference swing width Δα. This reference swing width Δα is the peak value αL or the average value α of α□.

からの振れ幅よりも少し大きい値で、例えば1αL(ハ
)−α。IXI、06  程度とする。
For example, 1αL(c)-α. IXI, approximately 06.

そして、上限・下限値設定回路26によって、平均値α
。と基準の振れ幅Δαから、 αr1−αC+Δα 、 αr2=αC−Δαの演算を
行なって、上限値αr1及び下限値αr2を設定して比
較器27へ出力する。
Then, the upper limit/lower limit value setting circuit 26 sets the average value α
. From the reference amplitude Δα, calculations αr1−αC+Δα, αr2=αC−Δα are performed, and an upper limit value αr1 and a lower limit value αr2 are set and output to the comparator 27.

比較器27は、例えばウィンドコンパレータであり、α
算出回路によって算出されたαの値が、上限値αr1よ
り大きくなった時及び下限値αr2より小さくなった時
に出力レベルを反転する。
The comparator 27 is, for example, a window comparator, and α
The output level is inverted when the value of α calculated by the calculation circuit becomes larger than the upper limit value αr1 and smaller than the lower limit value αr2.

それによって、積分時定数選定回路28がα算出回路2
1のα値算出のための積分時定数を大から小に切換える
信号を出力する。
As a result, the integral time constant selection circuit 28
A signal for switching the integration time constant for calculating the α value of 1 from large to small is output.

したがって、第6図(a)に示すように絞弁開度が変化
し、同図(b)に示すようにペース混合比が変化した場
合、同図(c)に示すように、安定時T1の間はαがα
r1とαr2の間で反転を繰返しているが、過渡時T2
になると、αが基準の振れ幅Δαを越えて変化し、例え
ば下限値αr2より小さくなる。
Therefore, when the throttle valve opening changes as shown in FIG. 6(a) and the pace mixture ratio changes as shown in FIG. 6(b), the stable T1 α is α between
Although the reversal is repeated between r1 and αr2, during the transition T2
Then, α changes beyond the reference swing width Δα, and becomes smaller than the lower limit value αr2, for example.

それによって積分時定数が小さくなり、積分時定数が大
きいままの実線で示す場合より早く、破線で示すように
αが応答性よく変化する。
As a result, the integral time constant becomes smaller, and α changes with good responsiveness, as shown by the broken line, earlier than when the integral time constant remains large, as shown by the solid line.

第5図に戻って、Tp算出回路29は、エンジン回転数
29と吸入空気量Qから T、−に−Qを演算して基本
量Tpヲ得る。
Returning to FIG. 5, the Tp calculation circuit 29 calculates T and -Q from the engine speed 29 and the intake air amount Q to obtain the basic amount Tp.

この基本量Tp(i=、水温及び加減速補正回路30に
よって水温及び加減速による補正係数Cによって補正し
、TpxCとする。
This basic amount Tp (i=) is corrected by the water temperature and acceleration/deceleration correction circuit 30 using a correction coefficient C based on the water temperature and acceleration/deceleration, and is set as TpxC.

そして、燃料噴射量算出回路61によって、さらにαに
よる補正を行なって、燃料噴射量Ti=TpXCXα 
を出力し、出力回路32を介して第1図の燃料噴射弁1
2を制御する。
Then, the fuel injection amount calculation circuit 61 further corrects by α, and the fuel injection amount Ti=TpXCXα
is outputted to the fuel injection valve 1 of FIG. 1 via the output circuit 32.
Control 2.

この演算装置20の比較器27等による積分時定数切換
動作をフロー図にすると第7図に示すようになる。
A flow diagram of the integration time constant switching operation by the comparator 27 and the like of the arithmetic unit 20 is shown in FIG.

なお、この安定時と非安定時の判別を α、2〈α〈αr1 かどうかの判定によって行なう代
りに、α−α。の絶対値をとり、それが基準の振れ幅Δ
αを越えるか否かによって判別するようにしてもよい。
Note that instead of determining whether the stable state or the unstable state is α, 2<α<αr1, α−α. Take the absolute value of the reference amplitude Δ
The determination may be made based on whether or not it exceeds α.

以上、実施例について説明したように、この発明による
内燃機関の空燃比帰還制御方法によれば、空燃比帰還補
正係数αの平均値からの変動幅によって安定状態か過渡
状態かを判別して積分時定数を変化させるようにしたの
で、02センサや制御回路等のバラツキや機関回転数等
の運転条件の変化があっても設定時間に関係なく早期に
積分時定数を変化し、負荷変動に対して応答性良く空燃
比を制御して、NOx、COl及びHCの排出を三元触
媒により効率よく低減できる。
As described above with respect to the embodiments, according to the air-fuel ratio feedback control method for an internal combustion engine according to the present invention, it is determined whether the air-fuel ratio feedback correction coefficient α is in a stable state or a transient state based on the variation range from the average value, and the integral Since the time constant is changed, even if there are variations in the 02 sensor or control circuit, or changes in operating conditions such as engine speed, the integral time constant will be changed quickly regardless of the set time, and will respond to load fluctuations. The air-fuel ratio can be controlled with good response, and the emissions of NOx, COl, and HC can be efficiently reduced using the three-way catalyst.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の空燃比帰還制御方法を実施した内燃機
関のシステム構成図、 第2図は、その動作フロー図である。 第3図は、02センサの特性を示す曲線図、第4図は、
従来のPI副制御説明に供する波形図である。 第5図は、この発明の実施例を示す演算装置のブロック
構成図、 第6図は、その動作説明に供する波形図、第7図は、積
分時定数切換動作を示すフロー図である。 1・・燃焼室  2・・・吸気管 3・・・吸気量セン
サ5・・・絞り弁開度センサ  6・・・回転センサ7
・・水温センサ     8・・・排気管9・・・排気
浄化装置  10・・・02センサ11,20・・演算
装置  12・・・燃料噴射弁第1図 1 一−−−−混合気□薄 第4図
FIG. 1 is a system configuration diagram of an internal combustion engine implementing a conventional air-fuel ratio feedback control method, and FIG. 2 is an operational flow diagram thereof. Figure 3 is a curve diagram showing the characteristics of the 02 sensor, Figure 4 is a curve diagram showing the characteristics of the 02 sensor.
FIG. 3 is a waveform diagram for explaining conventional PI sub-control. FIG. 5 is a block configuration diagram of an arithmetic device showing an embodiment of the present invention, FIG. 6 is a waveform diagram for explaining its operation, and FIG. 7 is a flow diagram showing an integral time constant switching operation. 1... Combustion chamber 2... Intake pipe 3... Intake air amount sensor 5... Throttle valve opening sensor 6... Rotation sensor 7
... Water temperature sensor 8 ... Exhaust pipe 9 ... Exhaust purification device 10 ... 02 Sensors 11, 20 ... Arithmetic device 12 ... Fuel injection valve Fig. 1 1 ----Mixture □ Lean Figure 4

Claims (1)

【特許請求の範囲】 1 内燃機関の排気中の酸素濃度を検出し、その検出信
号の変化に応じた比例値と積分値からなる空燃比帰還補
正係数を算出し、この空燃比帰還補正係数によって燃料
噴射量を補正する空燃比帰還制御方法において、 空燃比帰還補正係数の増大から減少への反転時及び減少
から増大への反転時のピーク値を記憶して平均値を算出
し、この平均値と前記ピーク値に応じて基準振れ幅を設
定し、空燃比帰還補正係数の値が前記平均値から前記基
準振れ幅を越えて変化した時に空燃比帰還補正係数を算
出するための積分時定数を小さくして応答性を向上させ
ることを特徴とする空燃比帰還制御方法。
[Claims] 1. Detecting the oxygen concentration in the exhaust gas of an internal combustion engine, calculating an air-fuel ratio feedback correction coefficient consisting of a proportional value and an integral value according to changes in the detection signal, and using this air-fuel ratio feedback correction coefficient. In the air-fuel ratio feedback control method for correcting the fuel injection amount, the peak values at the time of reversal from increase to decrease and from decrease to increase of the air-fuel ratio feedback correction coefficient are memorized, the average value is calculated, and this average value is calculated. and a reference swing width according to the peak value, and an integral time constant for calculating the air-fuel ratio feedback correction coefficient when the value of the air-fuel ratio feedback correction coefficient changes from the average value beyond the reference swing width. An air-fuel ratio feedback control method characterized by reducing the air-fuel ratio to improve responsiveness.
JP7156382A 1982-04-30 1982-04-30 Air-fuel ratio return control method for internal- combustion engine Pending JPS58190532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7156382A JPS58190532A (en) 1982-04-30 1982-04-30 Air-fuel ratio return control method for internal- combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7156382A JPS58190532A (en) 1982-04-30 1982-04-30 Air-fuel ratio return control method for internal- combustion engine

Publications (1)

Publication Number Publication Date
JPS58190532A true JPS58190532A (en) 1983-11-07

Family

ID=13464301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7156382A Pending JPS58190532A (en) 1982-04-30 1982-04-30 Air-fuel ratio return control method for internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS58190532A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249638A (en) * 1984-05-25 1985-12-10 Nippon Carbureter Co Ltd Air-fuel ratio control for engine
FR2634823A1 (en) * 1988-07-27 1990-02-02 Bendix Electronics Sa METHOD AND DEVICE FOR REGULATING THE WEALTH OF AN AIR-FUEL SUPPLY MIXTURE OF AN INTERNAL COMBUSTION ENGINE
JPH0491339A (en) * 1990-08-03 1992-03-24 Mitsubishi Electric Corp Air-fuel ratio control device of engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420231A (en) * 1977-07-12 1979-02-15 Gen Motors Corp System of controlling fuel of internal combustion engine
JPS5442536A (en) * 1977-09-12 1979-04-04 Toyota Motor Corp Method and device for controlling injection of fuel
JPS5537589A (en) * 1978-06-22 1980-03-15 Bendix Corp Closed loop device for controlling air fuel ratio of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420231A (en) * 1977-07-12 1979-02-15 Gen Motors Corp System of controlling fuel of internal combustion engine
JPS5442536A (en) * 1977-09-12 1979-04-04 Toyota Motor Corp Method and device for controlling injection of fuel
JPS5537589A (en) * 1978-06-22 1980-03-15 Bendix Corp Closed loop device for controlling air fuel ratio of internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249638A (en) * 1984-05-25 1985-12-10 Nippon Carbureter Co Ltd Air-fuel ratio control for engine
FR2634823A1 (en) * 1988-07-27 1990-02-02 Bendix Electronics Sa METHOD AND DEVICE FOR REGULATING THE WEALTH OF AN AIR-FUEL SUPPLY MIXTURE OF AN INTERNAL COMBUSTION ENGINE
JPH0491339A (en) * 1990-08-03 1992-03-24 Mitsubishi Electric Corp Air-fuel ratio control device of engine

Similar Documents

Publication Publication Date Title
JP3444675B2 (en) Air-fuel ratio learning control device for internal combustion engine
JP2518247B2 (en) Air-fuel ratio control device for internal combustion engine
JPS63120835A (en) Air-fuel ratio control device for internal combustion engine
JP2666530B2 (en) Air-fuel ratio control device for internal combustion engine
JPS58190532A (en) Air-fuel ratio return control method for internal- combustion engine
JPS62147034A (en) Air-fuel ratio control device for internal combustion engine
JPH08158915A (en) Air fuel ratio control device for internal combustion engine
JP2521037B2 (en) Engine air-fuel ratio control device
JP2518254B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0318019B2 (en)
JP2518243B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6229737A (en) Air-fuel ratio controller for internal-combustion engine
JP2503956B2 (en) Air-fuel ratio control device for internal combustion engine
JP2560309B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0631158Y2 (en) Air-fuel ratio controller for engine
JPS6313016B2 (en)
JP2692422B2 (en) Idle speed control device for internal combustion engine
JPS6260957A (en) Air-fuel ratio controller for internal combustion engine
JPH03229942A (en) Air-fuel ratio learning control device for electronically controlled fuel injection type internal combustion engine
JPS63239335A (en) Air-fuel ratio controller for internal combustion engine
JPS6270641A (en) Learning control device for internal combustion engine
JP2005083200A (en) Air-fuel ratio control device for internal combustion engine
JPH01277639A (en) Air-fuel ratio control device for engine
JPH066921B2 (en) Air-fuel ratio controller for internal combustion engine
JPH0639934B2 (en) Air-fuel ratio controller for internal combustion engine