JPS58190076A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS58190076A
JPS58190076A JP57073655A JP7365582A JPS58190076A JP S58190076 A JPS58190076 A JP S58190076A JP 57073655 A JP57073655 A JP 57073655A JP 7365582 A JP7365582 A JP 7365582A JP S58190076 A JPS58190076 A JP S58190076A
Authority
JP
Japan
Prior art keywords
light emitting
parallel
optical axis
glass plate
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57073655A
Other languages
Japanese (ja)
Inventor
Osamu Hasegawa
治 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57073655A priority Critical patent/JPS58190076A/en
Publication of JPS58190076A publication Critical patent/JPS58190076A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

PURPOSE:To enable to make the optical axis of the radiation light of ar LED approximately parallel with a mechanical axis and further coincident approximately with the center axis of a cap, by equipping a semiconductor light emitting element, a spherical lens, and a transparent body wherein the main surfaces opposed to each other have non-parallel surfaces. CONSTITUTION:This device is constituted of the light emitting diode element 1, the spherical lens 2, a transparent resin 3, a stem 5, the cap 8, the glass plate 9 wherein the upper and lower surfaces are non-parallel, metallic fine wires W, glasses G, and terminal leads L. Besides, the glass plate 9 is formed in non- parallel flats. By inclining the lower surface 11 of the glass plate 9 according to the inclination of the optical axis 6 of the radiation light from the spherical lens, and crossing it obliquely with the mechanical axis 7, the radiation light is refracted on this glass plate 9 and radiated as a fine parallel beam having an optical axis 6' parallel approximately with the mechanical axis 7.

Description

【発明の詳細な説明】 ta)  発明の技術分野 本発明は半導体発光素子に係り、特に計測・制御装置等
の光源として使用される平面発光型の発光ダイオードの
指向特性の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION ta) Technical Field of the Invention The present invention relates to a semiconductor light emitting device, and more particularly to improving the directivity characteristics of a planar light emitting diode used as a light source for measurement and control devices.

(bl  従来技術と問題点 平面発光型の発光ダイオードにおいては、放射強度分布
I (θ)が l(θ)=1゜ cosθ/(1(sinθ/ n )
” )・・・・・・(1) で表される。ここで16はθ−0(光軸方向)の放射強
度である。通常発光ダイオードに用いられる半導体結晶
では n>3と大きいため、■(θ)−1acosθ 
     ・・・・・・(2)と近似される。
(bl Conventional technology and problems) In a planar light emitting diode, the radiation intensity distribution I (θ) is l(θ) = 1° cos θ/(1(sin θ/ n )
)...(1) Here, 16 is the radiation intensity in θ-0 (optical axis direction).In semiconductor crystals normally used in light emitting diodes, n>3, which is large. ■(θ)−1acosθ
...It is approximated as (2).

この余弦法則に従う光源はランバート光m<拡散面光源
、もしくは等輝度光源とも言われる)である。例えば■
(60°)−【。/2 であり、指向特性は悪い。従っ
て平行ビームにする。焦点を結ばせる(スポット状にす
る)場合、或いは光ファイバとの結合効率を高める場合
や、計測・制御の用途もしくはインジケータとして見掛
けの光源サイズを大きくする場合等には、発光ダイオー
ドの前面に光学レンズの挿入が不可欠である。
A light source that follows this cosine law is Lambertian light m<diffuse surface light source, or also called a homobrightness light source). For example ■
(60°) - [. /2, and the directional characteristics are poor. Therefore, make it a parallel beam. When focusing (spot-shaped), increasing the coupling efficiency with optical fibers, or increasing the apparent size of the light source for measurement/control purposes or as an indicator, optical fibers are placed in front of the light emitting diode. Insertion of lenses is essential.

第1図は従来より用いられてきた球レンズを装荷した発
光ダイオードを示す要部断面図である。
FIG. 1 is a sectional view of a main part of a light emitting diode loaded with a conventionally used ball lens.

同図に見られる如く、発光ダイオード素子1上に球レン
ズ2が透明樹脂3によって接着されている。
As seen in the figure, a ball lens 2 is bonded onto a light emitting diode element 1 with a transparent resin 3.

発光部1”が球レンズの曲率に較べて十分に小さく、そ
の発光口11が球レンズの焦点面上にある時、球レンズ
から出た光は平行光線となる。
When the light emitting portion 1'' is sufficiently small compared to the curvature of the ball lens and its light emitting port 11 is on the focal plane of the ball lens, the light emitted from the ball lens becomes a parallel ray.

この球レンズには多くはサファイア球が用いられており
、赤色から近赤外域の波長では焦点がサファイア球の底
から僅か下に位置している。従って同図に示すように発
光ダイオードチップ上にサファイア球を設置することに
より、発光部がほぼ焦点面上に位置することになり、細
い平行ビーム4を放射する発光ダイオードを作成し得る
。例えば発光径を約35〔μm〕とし、直径約500〔
μm〕のサファイア球2を用いれば、凡そ5°のビーム
角が得られる。
A sapphire sphere is often used in this ball lens, and the focal point is located slightly below the bottom of the sapphire sphere at wavelengths from red to near-infrared. Therefore, by placing a sapphire sphere on a light emitting diode chip as shown in the figure, the light emitting part will be located approximately on the focal plane, and a light emitting diode that emits a narrow parallel beam 4 can be created. For example, if the emission diameter is about 35 [μm], the diameter is about 500 [μm].
[mu]m], a beam angle of approximately 5° can be obtained.

しかしながら上記構造では、発光部と球レンズの中心と
の軸合せを正確に行うことを要する。即ち発光部と球レ
ンズの各々の中心を通る方向が光軸であるので、第2図
に示すようにこの先軸6がステム5の中心を通る法線(
以下これを機械軸と称する)7とずれた場合、この発光
ダイオードを使用するためには光軸合せが必要となる。
However, in the above structure, it is necessary to accurately align the axes of the light emitting section and the center of the ball lens. In other words, since the direction passing through the centers of the light emitting part and the ball lens is the optical axis, the normal line (
(hereinafter referred to as the mechanical axis) 7, it is necessary to align the optical axis in order to use this light emitting diode.

仮に直径約500〔μm〕のサファイア球2の中心の位
置が約50〔μm)機械軸7からずれると、光軸と機械
軸との偏角θは凡そ11.3°となる。
If the center of the sapphire sphere 2 with a diameter of about 500 [μm] is shifted from the mechanical axis 7 by about 50 [μm], the deflection angle θ between the optical axis and the mechanical axis will be approximately 11.3°.

tel  発明の目的 本発明の目的は、上記光軸と機械軸との偏角を略0とし
得る発光ダイオードを提供することにある。
tel OBJECTS OF THE INVENTION An object of the present invention is to provide a light emitting diode in which the polarization angle between the optical axis and the mechanical axis can be approximately zero.

fdl  発明の構成 本発明の特徴は、半導体発光素子と、前記半導体発光素
子子に配設された球状レンズと、前記球状レンズの光J
Ik出面に対応して配置され相対する主面が非平行面を
有する透明体とを備えてなることにある。
fdl Structure of the Invention The features of the present invention include a semiconductor light emitting device, a spherical lens disposed on the semiconductor light emitting device, and a light source J of the spherical lens.
The transparent body is disposed corresponding to the Ik output surface and has a non-parallel main surface facing the transparent body.

(al  発明の実施例 以下本発明の一実施例を図面により説明する。(al Embodiments of the invention An embodiment of the present invention will be described below with reference to the drawings.

第3図は本発明の一実施例を示す要部断面図であって、
1し51発光ダイオード素子、2は球面レンズ、3は透
明4h1脂、5番11ステム、8はキャップ、9は−に
面と下面が非平行なガラス板、Wは金属細線、Gはガラ
ス、L II端子リードを示す。本実施例はガラス4M
9を非平行平面とした点が従来の発光ダイオードと異な
る。
FIG. 3 is a sectional view of a main part showing an embodiment of the present invention,
1 and 51 light emitting diode elements, 2 is a spherical lens, 3 is transparent 4H1 resin, 5 and 11 stems, 8 is a cap, 9 is a glass plate whose surface and bottom surface are non-parallel to -, W is a thin metal wire, G is glass, L II terminal lead is shown. This example is glass 4M
It differs from conventional light emitting diodes in that 9 is a non-parallel plane.

次にこのように構成した本実施例の原理を第4図により
説明する。
Next, the principle of this embodiment configured as described above will be explained with reference to FIG.

同図において、6は上記球面レンズ2から放射された発
光ビームの光軸、7は機械軸、10及び11は上記ガラ
ス板9の下面及び上面、θは機械軸7と光軸6との交角
、θ、はガラス板9に対する入射角、φはガラス板9の
下面IOと上面11との交角を示ず。なおガラス板9の
上面11は機械軸に対して垂直(発光面と平行)にして
おく。
In the figure, 6 is the optical axis of the emitted light beam emitted from the spherical lens 2, 7 is the mechanical axis, 10 and 11 are the lower and upper surfaces of the glass plate 9, and θ is the intersection angle between the mechanical axis 7 and the optical axis 6. , θ, does not indicate the incident angle with respect to the glass plate 9, and φ does not indicate the intersection angle between the lower surface IO and the upper surface 11 of the glass plate 9. Note that the upper surface 11 of the glass plate 9 is perpendicular to the mechanical axis (parallel to the light emitting surface).

入射角θ1は同図より明らかな如く、 θ1 =θ+φ        (3)で表される。一
方屈折の法則(スネルの法則)により屈折角θ、は、ガ
ラスの屈折率をnとしてn  sinθ、 = sin
θ。
As is clear from the figure, the incident angle θ1 is expressed as θ1 =θ+φ (3). On the other hand, according to the law of refraction (Snell's law), the refraction angle θ, where n is the refractive index of glass, is n sin θ, = sin
θ.

=sin(θ+φ) ・・・・・・(4)で表される。=sin(θ+φ)...It is expressed as (4).

この屈折角θ、が、 θ、−φ        ・・・・・・(5)なる条件
のとき、屈折した光線の光軸6゛は機械軸7と平行にな
る。従ってガラス板9の上面11がステム5の上面に平
行、即ち機械軸7に垂直ならば、放射される光線の光軸
6°はガラス板9の上面11に垂直となる。
When the refraction angle .theta. is .theta., -.phi. (5), the optical axis 6' of the refracted light beam becomes parallel to the mechanical axis 7. Therefore, if the upper surface 11 of the glass plate 9 is parallel to the upper surface of the stem 5, ie perpendicular to the mechanical axis 7, then the optical axis 6° of the emitted light beam will be perpendicular to the upper surface 11 of the glass plate 9.

(51fdl式よりその理想的条件は、n  sinφ
−5in (θ+φ)  ・・・・・・(6)であるが
、φ、θが極めて小なるとき、sinφ−φ、5in(
θ+φ)#θ+φと近似出来るため(6)式は、 nφ=θ+φ 従って、(n−1)φ−θ      ・・・・・・(
7)となる。
(From the 51fdl formula, the ideal condition is n sinφ
-5in (θ+φ) ・・・・・・(6) However, when φ and θ are extremely small, sinφ−φ, 5in(
Since it can be approximated as
7).

今ガラス板9の材質としてコバールガラスを選択すると
、n # 1.5であるから、光源の光軸の傾きθに対
して、ガラス板9の下面10と上面11の交角φを2θ
とすることにより、光軸6゛は機械軸7に平行となる。
If Kovar glass is selected as the material of the glass plate 9, n # 1.5, so the intersection angle φ between the lower surface 10 and the upper surface 11 of the glass plate 9 is 2θ with respect to the inclination θ of the optical axis of the light source.
By doing so, the optical axis 6' becomes parallel to the mechanical axis 7.

このように本実hIIi例においては、球レンズからの
放射光の光軸6の1嘆きに応じてガラス板9の下面11
を(’31 &+ 、機械軸7と斜交させることにより
、上記放射光はこのガラス板9で屈折され、機械軸7に
略平行な光軸6゛を有する細い平行ビームとして放射さ
れる。
In this way, in the present hIIi example, the lower surface 11 of the glass plate 9 is adjusted in accordance with the angle of the optical axis 6 of the emitted light from the ball lens.
By making ('31 &+) obliquely intersect with the mechanical axis 7, the emitted light is refracted by the glass plate 9 and is emitted as a narrow parallel beam having an optical axis 6' substantially parallel to the mechanical axis 7.

次に第5図、第6図により本発明を実施するための発光
ダイオードの製作工程を説明する。
Next, the manufacturing process of a light emitting diode for implementing the present invention will be explained with reference to FIGS. 5 and 6.

まず第5図にめられる如く発光ダイオード21の放射光
22を撮像管23に照射し、その像Qをブラウン管の表
示画面24に表示せしめる。なおこのとき発光ダイオー
ド2(の機械軸を撮像管23の中心軸に一致させておく
。放射光22の光軸が機械軸に一致していれば、放射光
22の@Qは表示画面24の中心1)に一致するが、通
算像Qば図示せる如く表示画面24の中心Pから離隔し
ている。その変位量りは前述の放射光の機械軸に対する
偏角θに比例する。
First, as shown in FIG. 5, the emitted light 22 of the light emitting diode 21 is irradiated onto the image pickup tube 23, and the image Q thereof is displayed on the display screen 24 of the cathode ray tube. At this time, the mechanical axis of the light emitting diode 2 (2) should be aligned with the central axis of the image pickup tube 23. If the optical axis of the synchrotron radiation 22 is aligned with the mechanical axis, @Q of the synchrotron radiation 22 will be aligned with the central axis of the image pickup tube 23. The total image Q coincides with the center 1), but as shown in the figure, the total image Q is separated from the center P of the display screen 24. The displacement measure is proportional to the deflection angle θ of the emitted light with respect to the mechanical axis.

そこでこの変位量りの大きさにより発光ダイオード21
を複数のクラス、例えば5個のクラスに分類する。そし
て各クラスの偏角の中央値をそのクラスの偏角の代表値
θi (上例ではi=l〜5)とする。
Therefore, depending on the magnitude of this displacement measure, the light emitting diode 21
are classified into a plurality of classes, for example, five classes. Then, the median value of the argument angles of each class is set as the representative value θi of the argument angles of that class (i=1 to 5 in the above example).

一方ガラス板9も上記各クラスの偏角θiにそれぞれ対
応する交角φi  (−上例ではi=l〜5)を嘗゛出
し、交角がそれぞれφiなるガラス板9を備えた複数種
類(上例では5種類)のキャップ8を予め準備する。
On the other hand, the glass plates 9 also have intersecting angles φi (-i=l to 5 in the above example) corresponding to the declination angles θi of each of the above classes. In this case, five types of caps 8 are prepared in advance.

第6図は封止工程を示す要部断面図で、31は下部電極
、32は−L部電極、33は検知器である。
FIG. 6 is a sectional view of the main parts showing the sealing process, in which 31 is a lower electrode, 32 is a -L part electrode, and 33 is a detector.

同図に見られるように、まず封止すべき発光ダイオード
21のクラスに対応し、ガラス板9が取り付けられたキ
ャップ8を上部電極32に一定の方向にセットし、次い
で上記発光ダイオード21を下部電極32にセットする
。そしてステム5を回転させ、検知器33の入力が最大
のところ(光軸が補正された位置)で封止を行う。
As shown in the figure, first, the cap 8 to which the glass plate 9 is attached is set in a fixed direction on the upper electrode 32 corresponding to the class of the light emitting diode 21 to be sealed, and then the light emitting diode 21 is placed in the lower part. Set it on the electrode 32. Then, the stem 5 is rotated and sealing is performed at the position where the input of the detector 33 is maximum (the position where the optical axis is corrected).

このようにして得られた本発明に係る発光ダイオードの
完成体は、機械軸と略平行な光軸を有する平行ビームを
放射しi!Iる。
The thus obtained completed light emitting diode according to the present invention emits a parallel beam having an optical axis substantially parallel to the mechanical axis, and emits an i! I.

さらに1−記I=I +L王程において光軸と機械軸と
を平行に調整したのら、キャップ8またはステム5を、
回転させることなく位置を((1正することにより、放
射光の光軸をキャップの中心軸と一致させることも可能
である。
Furthermore, after adjusting the optical axis and mechanical axis in parallel in step 1-I=I+L, the cap 8 or stem 5 is
It is also possible to align the optical axis of the emitted light with the central axis of the cap by correcting the position by ((1) without rotating it.

発光ダイオードを実際に使用するに際しては、通常キャ
ップのfull ’、’+Vを泡えることにより発光ダ
イオードを装着する。従って放射光の光軸とキャップの
中心軸とが一致していれば、発光ダイオードを装着する
のみでシステムの光軸に放射光の光軸が一致することと
なる。
When actually using a light emitting diode, the light emitting diode is usually attached by bubbling the full ', '+V of the cap. Therefore, if the optical axis of the emitted light matches the central axis of the cap, the optical axis of the emitted light will match the optical axis of the system simply by mounting the light emitting diode.

ffl  発明のり」果 以−ト説明した如く本発明によれば、発光ダイオードの
放射光の光軸を機械軸に略平行、史にはキャップの中心
軸と略一致させることが可能となる。
As explained above, according to the present invention, it is possible to make the optical axis of the emitted light from the light emitting diode substantially parallel to the mechanical axis, and generally to coincide with the central axis of the cap.

従って本発明に係る発光ダイオードは、使用するに際し
て光軸合セが不要となる。
Therefore, the light emitting diode according to the present invention does not require optical axis alignment when used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の発光ダイオードの説明に供す
るための要部断面図、第3図は本発明の一実施例を示す
要部断面図、第4図は本発明の詳細な説明するための図
、第5図及び第6図は本発明に係る発光ダイオードの製
作]F程の一例を示す斜視図及び要部断面図である。 図において、■は発光ダイオ−1゛素子、2は球面レン
ズ、4ば球面レンズからの放射光、5はステム、6は放
射光4の光軸、6’!J放射光4が屈折された後の光軸
、7(1!機械軸、8はキャップ、9はキャップのm部
に取り付し」られたガラス板、10及び11はガラス板
9の下面及び−1−面、θは球面レンズ2からの7i&
射光4の光軸と機械軸7との交角、φはガラス板9の−
F面10と土面11との交角を小ず・ 代理人 弁理士  松岡宏四部 0 第3図 第5図 第6図
1 and 2 are sectional views of essential parts for explaining a conventional light emitting diode, FIG. 3 is a sectional view of essential parts showing an embodiment of the present invention, and FIG. 4 is a detailed explanation of the present invention. FIGS. 5 and 6 are a perspective view and a sectional view of a main part showing an example of the manufacturing process of the light emitting diode according to the present invention. In the figure, ■ is the light emitting diode 1' element, 2 is the spherical lens, 4 is the emitted light from the spherical lens, 5 is the stem, 6 is the optical axis of the emitted light 4, and 6'! The optical axis after the J synchrotron radiation 4 is refracted, 7 (1! Mechanical axis, 8 the cap, 9 the glass plate attached to the m part of the cap), 10 and 11 the lower surface of the glass plate 9, −1− plane, θ is 7i & from spherical lens 2
The intersection angle between the optical axis of the emitted light 4 and the mechanical axis 7, φ is − of the glass plate 9.
The intersection angle between the F surface 10 and the earth surface 11 is Kozu・ Agent Patent attorney Hiroshi Matsuoka Dept. 0 Figure 3 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 半導体発光素子と、前記半導体発光素子上に配設された
球状レンズと、前記球状レンズの光放出面に対応して配
置され相対する主面が非平行面を有する透明体とを備え
てなることを特徴とする半導体発光装置。
A semiconductor light emitting element, a spherical lens disposed on the semiconductor light emitting element, and a transparent body arranged corresponding to a light emitting surface of the spherical lens and having opposing main surfaces having non-parallel surfaces. A semiconductor light emitting device characterized by:
JP57073655A 1982-04-30 1982-04-30 Semiconductor light emitting device Pending JPS58190076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57073655A JPS58190076A (en) 1982-04-30 1982-04-30 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57073655A JPS58190076A (en) 1982-04-30 1982-04-30 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS58190076A true JPS58190076A (en) 1983-11-05

Family

ID=13524510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57073655A Pending JPS58190076A (en) 1982-04-30 1982-04-30 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS58190076A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2581768A1 (en) * 1985-05-10 1986-11-14 Thomson Csf BIDIRECTIONAL OPTOELECTRIC COMPONENT FORMING OPTICAL COUPLER
EP0645824A1 (en) * 1993-09-25 1995-03-29 Nec Corporation Semiconductor light receiving apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2581768A1 (en) * 1985-05-10 1986-11-14 Thomson Csf BIDIRECTIONAL OPTOELECTRIC COMPONENT FORMING OPTICAL COUPLER
EP0645824A1 (en) * 1993-09-25 1995-03-29 Nec Corporation Semiconductor light receiving apparatus
US5550675A (en) * 1993-09-25 1996-08-27 Nec Corporation Semiconductor light receiving apparatus

Similar Documents

Publication Publication Date Title
TWI465147B (en) Led source with hollow collection lens
US10048456B2 (en) Packaging device of single optical multiplexed parallel optical receiver coupling system component and the system thereof
US4733094A (en) Bidirectional optoelectronic component operating as an optical coupling device
JP2645862B2 (en) Semiconductor light emitting device and its applied products
JPS6265387A (en) Light emitting diode and manufacturing thereof
GB2054896A (en) Detachable coupling for optical fibres
US20090239318A1 (en) Glass-coated light-emitting element, light-emitting element-attached wiring board, method for producing light-emitting element-attached wiring board, lighting device and projector
US20180045969A1 (en) Light-emitting device
JP2009218870A (en) Solid-state imaging apparatus, method of manufacturing solid-state imaging apparatus, and method of manufacturing camera module
JPS58190076A (en) Semiconductor light emitting device
JPH06151972A (en) Lens-on-chip luminescent device and manufacture thereof
US7223024B2 (en) Optical module including an optoelectronic device
US6340248B1 (en) High precision optical collimator for optical waveguide
US5268922A (en) Laser diode assembly
CN207133551U (en) LCOS lighting devices
JPS61253872A (en) Light-emitting semiconductor device
US6789922B2 (en) Cross-shaped beam laser ray device and lens
JPS5975219A (en) Optical semiconductor element module
JP3121100B2 (en) Solid-state imaging device
US20240128385A1 (en) Light Receiving Device
RU193901U1 (en) SENSOR VECTOR DIRECTIONS IN THE SUN
CN216448092U (en) Optical lens for producing polarization effect and optical device
CN100474546C (en) Method and apparatus for mapping a position of a capillary tool tip using a prism
CN216668747U (en) Double-star simulator
JPS5931077A (en) Semiconductor light emitting device