JPS5818992B2 - galvanizing method - Google Patents

galvanizing method

Info

Publication number
JPS5818992B2
JPS5818992B2 JP54087058A JP8705879A JPS5818992B2 JP S5818992 B2 JPS5818992 B2 JP S5818992B2 JP 54087058 A JP54087058 A JP 54087058A JP 8705879 A JP8705879 A JP 8705879A JP S5818992 B2 JPS5818992 B2 JP S5818992B2
Authority
JP
Japan
Prior art keywords
powder
plating
zinc
plated
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54087058A
Other languages
Japanese (ja)
Other versions
JPS5613473A (en
Inventor
京野巖
川澄良雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP54087058A priority Critical patent/JPS5818992B2/en
Publication of JPS5613473A publication Critical patent/JPS5613473A/en
Publication of JPS5818992B2 publication Critical patent/JPS5818992B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1617Purification and regeneration of coating baths

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】 本発明は全く新規な亜鉛メッキ方法に関する。[Detailed description of the invention] The present invention relates to a completely new galvanizing method.

近年、メッキ粉体の需要増加に伴い種々のメッキ方法が
提案されているが、これらのうち置換法によるメッキ法
はその操作の簡易性の故に広く利用されている。
In recent years, various plating methods have been proposed as the demand for plating powder has increased, and among these, the plating method based on the substitution method is widely used because of its ease of operation.

粉体のメッキ方法として従来公知の置換メッキ法は、被
メツキ粉体と還元用金属粉体との混合粉に対し又はこれ
らの混合過程に対し、該混合粉を攪拌しながらメッキ金
属含有容液を添加するか、もしくはメッキ金属含有溶液
中に攪拌丁で被メツキ粉本と還元用金属粉体とを一緒に
又は釜別に添加することにより行われている。
The displacement plating method, which is conventionally known as a powder plating method, involves adding a plating metal-containing liquid to a mixed powder of a powder to be plated and a metal powder for reduction, or in the process of mixing these powders, while stirring the mixed powder. Alternatively, the powder to be plated and the reducing metal powder are added together with a stirring knife or separately in a pot into a solution containing plating metal.

しかしながら、上述した置換法によるメッキ法ではメン
キしようとする金属をそれより卑な金属粉で還元するこ
とを反応上の基本とするものであるから、Au、Pt、
Pd、Agのごとき標準電極電位が非常に責な金属を対
象とする粉体のメッキにおいては還元効率および仕上り
ともに良好であるが、Z ns S n + N t
* Co sのごとき標準電位電極電位が卑な金属粉を
メンキする場合においては還元効率、メッキ仕上りがと
もに悪く実用的でない。
However, in the plating method using the above-mentioned substitution method, the basic reaction is to reduce the metal to be plated with metal powder that is less noble.
In powder plating for metals such as Pd and Ag, whose standard electrode potential is extremely sensitive, both reduction efficiency and finish are good, but Z ns S n + N t
*When plating metal powder with a base electrode potential such as Cos, both the reduction efficiency and the plating finish are poor, making it impractical.

しかして、最近この対策としてNi、Coのごとき金属
粉をそれより卑なるMg、A、!のどとき還元用金属粉
と混合する過程もしくは両者の混合物にメッキ金属の塩
化物結晶粉末を添加し、反応開始後若干の水および/又
は塩酸を添加するメッキ方法が提案されている。
Recently, however, as a countermeasure to this problem, metal powders such as Ni and Co have been added to base metals such as Mg, A,! A plating method has been proposed in which chloride crystal powder of the plating metal is added during the process of mixing with the throat-reducing metal powder or to a mixture of the two, and after the reaction has started, a small amount of water and/or hydrochloric acid is added.

しかし、上述したいずれのメッキ方法においても還元用
金属粉はメッキ金属より卑なものでなければならないの
で両者の金属は必然的に異種のものであり、したがって
メッキ終了後の液の処理が問題となる。
However, in any of the above-mentioned plating methods, the reducing metal powder must be more base than the plating metal, so the two metals are necessarily different types, and therefore the treatment of the liquid after plating is a problem. Become.

例えば、銅粉を亜鉛メンキする際、銅粉と還元用金属粉
としてのアルミニウム粉の混合物に塩化亜鉛溶液を添加
してメッキを行うと、下記反応式により、塩化アルミニ
ウムと塩化亜鉛を含む溶液がメッキ処理後液として得ら
れることになる。
For example, when plating copper powder with zinc, if a zinc chloride solution is added to a mixture of copper powder and aluminum powder as a reducing metal powder, a solution containing aluminum chloride and zinc chloride will form according to the reaction equation below. It will be obtained as a liquid after plating treatment.

Cu +A!+Zn(J’2−)Cu−Zn+A、IC
,ff 3+ZnCl2すなわち、上記メッキ処理後液
はそのままでは銅粉の亜鉛メッキ用鼎液として再利用で
きないので、その処理が問題となりまた亜鉛の還元率が
低い等の欠点がある。
Cu+A! +Zn(J'2-)Cu-Zn+A, IC
, ff 3 + ZnCl2 That is, the above-mentioned plating solution cannot be reused as it is as a zinc plating solution for copper powder, so its treatment becomes a problem and there are drawbacks such as a low reduction rate of zinc.

本発明者は、粉体の亜鉛メッキについて種々検討を重ね
た結果従来の置換法とは異なる全く新規な方法を見いだ
した。
As a result of various studies regarding galvanizing powder, the inventors of the present invention have discovered a completely new method that is different from conventional substitution methods.

すなわち本発明はメッキ媒体用金属粉(金属粉の添加に
よってメッキが進行するのでメッキ液中の金属イオン成
分と同種の金属粉をメッキ媒体用金属粉と称する)とし
てメッキ金属と同種の金属粉を用いる全く新規で有利な
亜鉛メッキ方法を提供することを目的とする。
That is, the present invention uses metal powder of the same type as the plating metal as a metal powder for plating medium (because plating progresses by adding metal powder, metal powder of the same type as the metal ion component in the plating solution is referred to as metal powder for plating medium). The object is to provide an entirely new and advantageous galvanizing method for use.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明でメッキの対象となる被メッキ体は、亜鉛よりも
イオン化傾向が責な金属、例えばA u sAgjPt
s Cu+ Fe、Nip Coのごとき金属のほかに
炭素質物質、金属炭化物、金属酸化物、金属窒化物など
の亜鉛よりも責な金属で予め被覆処理したものも包含す
る。
The object to be plated in the present invention is a metal that has a higher ionization tendency than zinc, such as Au sAgjPt.
In addition to metals such as s Cu+ Fe and Nip Co, it also includes those pre-coated with metals more harmful than zinc, such as carbonaceous substances, metal carbides, metal oxides, and metal nitrides.

なお、この被覆処理には金属薄層の蒸着、パラジウム析
出のごとき公知の手法が適用し得る。
Note that known techniques such as metal thin layer vapor deposition and palladium precipitation can be applied to this coating treatment.

これらの被メッキ体の形状については特に制限はなく、
目的、用途に応じて粉本、繊体、板体等が適宜使用され
る。
There are no particular restrictions on the shape of these objects to be plated;
Powder, fiber, plate, etc. are used as appropriate depending on the purpose and use.

本発明でメッキ媒体用金属粉として用いられる亜鉛粉の
粒度は被メッキ体の種類、大きささらにはこれに対する
メッキ厚さなどを考慮して選択し得る。
The particle size of the zinc powder used as the metal powder for the plating medium in the present invention can be selected in consideration of the type and size of the object to be plated, as well as the plating thickness thereof.

例えば被メッキ体として平均粒径40μの銅粉を用い、
これに28重量%のメッキを施す場合には上記亜鉛の粒
度は数μ程度が適当である。
For example, using copper powder with an average particle size of 40μ as the object to be plated,
When plating 28% by weight on this, the particle size of the zinc is suitably on the order of several microns.

亜鉛粉の使用量はメッキの所要量の1.0〜1.05倍
(重量)でよい。
The amount of zinc powder used may be 1.0 to 1.05 times (by weight) the amount required for plating.

また本発明で用いる亜鉛イオンを含む水容液としては塩
酸、硫酸もしくは硝酸水容液例えば塩化亜鉛水容液であ
ってpHが2〜3のものが好ましく、その使用量は該水
容液の亜鉛量がメッキ所要量より過剰になるごとく調整
するとよい。
The aqueous solution containing zinc ions used in the present invention is preferably a hydrochloric acid, sulfuric acid or nitric acid aqueous solution, such as a zinc chloride aqueous solution, with a pH of 2 to 3. It is best to adjust the amount of zinc so that it is in excess of the required amount of plating.

本発明では上述したごとき被メッキ体を亜鉛粉および亜
鉛イオンを含む水溶液の存在丁で加熱処理することによ
り亜鉛メッキを行うものであるが、例えば被メッキ体と
して粉体を使用する場合πは被メツキ粉本に亜鉛粉を混
合する過程もしくは被メツキ粉体に亜鉛粉を混合したの
ち上記水容液を添加し、メッキ反応を均一に遂行するべ
く攪拌下に加熱するとよい。
In the present invention, the object to be plated as described above is galvanized by heat treatment in the presence of an aqueous solution containing zinc powder and zinc ions. For example, when powder is used as the object to be plated, π is It is preferable to add the above aqueous solution during the process of mixing the zinc powder to the plating powder or after mixing the zinc powder to the powder to be plated, and heat it while stirring to uniformly perform the plating reaction.

本発明でのメッキ反応は亜鉛イオンを含む水容液を上述
のように添加して80°C乃至100℃の温度で数分間
加熱することにより完遂し得る。
The plating reaction in the present invention can be completed by adding an aqueous solution containing zinc ions as described above and heating at a temperature of 80° C. to 100° C. for several minutes.

すなわち、本発明によると、従来技術にみられるように
被メッキ体に塗布した亜鉛粉を溶融させるための高温下
での加熱は必要でない。
That is, according to the present invention, there is no need for heating at high temperatures to melt the zinc powder applied to the object to be plated, which is required in the prior art.

反応が終了したメッキ生成物は濾過して液分を除去した
のち、希薄硫酸で洗浄して亜鉛メッキ粉本を回収する。
After the reaction has been completed, the plating product is filtered to remove liquid, and then washed with dilute sulfuric acid to recover galvanized powder.

なお、この洗浄を塩酸で行うと難溶性亜鉛化合物が生成
して亜鉛メッキ被覆を破壊することがあるので留意すべ
きである。
It should be noted that if this cleaning is performed with hydrochloric acid, a sparingly soluble zinc compound may be generated and the galvanized coating may be destroyed.

上記沖過で得られる液分は亜鉛イオンを含む水溶液であ
るから、そのままメッキ工程へ循環して再利用できる。
Since the liquid obtained by the above-mentioned offshore filtration is an aqueous solution containing zinc ions, it can be recycled as is and reused in the plating process.

本発明により、上述したごとくして得られる亜鉛メッキ
粉体は被メツキ粉体への亜鉛の析着が粒子状とならず、
はぼ均一な厚さを有する被覆が形成する。
According to the present invention, the zinc-plated powder obtained as described above does not deposit zinc on the powder to be plated in the form of particles.
A coating with a fairly uniform thickness forms.

以上被メッキ体としてその形状が粉体の場合を説明した
がその形状が繊体あるいは液体のものについても全く同
様のことがいえる。
Although the case where the object to be plated is powder has been described above, the same applies to objects which are fibrous or liquid.

但し液体の場合は加熱処理前に被メッキ体を亜鉛粉が懸
濁した亜鉛イオンを含む水鼎液実に浸漬する点および反
応終了後の沢過が不要な点が粉本の場合と異なる。
However, in the case of a liquid, the object to be plated is immersed in a liquid solution containing zinc ions in which zinc powder is suspended before the heat treatment, and that rinsing after the reaction is not necessary is different from the case of a powder.

本発明のメッキ方法における反応機構は未だ明らかでは
ないが、反応過程で亜鉛粉が一旦啓解し、水容液中の亜
鉛イオンが被メッキ体の表面に析出するものと推定され
る。
Although the reaction mechanism in the plating method of the present invention is not yet clear, it is presumed that the zinc powder is once dissolved during the reaction process, and the zinc ions in the aqueous solution are deposited on the surface of the object to be plated.

以上述べたごとく、本発明によるとメッキ処理後液をそ
のままメッキ工程へ循還して再利用し得るので従来法に
みられる前述した問題点は解消される。
As described above, according to the present invention, the liquid after plating can be directly recycled to the plating process and reused, so the above-mentioned problems found in the conventional method are solved.

以下に実施例を例示して本発明をさらに具体的に説明す
る。
The present invention will be explained in more detail below by way of examples.

実施例 1 平均粒径40μを有する銅粉10g、平均粒径数μを有
する亜鉛粉4gおよび亜鉛を5oj/l。
Example 1 10 g of copper powder with an average particle size of 40 μm, 4 g of zinc powder with an average particle size of several μm, and 5 oj/l of zinc.

含む塩化亜鉛水心液200 mtを、メッキ槽に仕込み
(仕込液のpH2〜3)、攪拌下に90°Cで5分間加
熱して反応させる。
200 mt of zinc chloride aqueous solution was charged into a plating tank (pH of the solution was 2 to 3), and heated at 90° C. for 5 minutes with stirring to react.

得られる反応生成物をp別し、希薄硫酸(pH2〜3)
で塩素イオンの存在が認められなくなるまで洗浄し水洗
したのち、乾燥する。
The resulting reaction product was separated and diluted with sulfuric acid (pH 2-3).
After cleaning with water until the presence of chlorine ions is no longer recognized, dry.

その結果13.98.9の亜鉛メッキ粉が得られた。As a result, 13.98.9% galvanized powder was obtained.

この亜鉛メッキ粉は亜鉛の白色光沢を有し、顕微鏡Fの
観察ではメンキ前の銅粉の枡形て相似しており、亜鉛粉
そのものと思われる微小粒体は認められなかった。
This galvanized powder has the white luster of zinc, and when observed using a microscope F, it resembled the square shape of the copper powder before coating, and no fine particles that were thought to be the zinc powder itself were observed.

上記濾過により得られるE液は塩化亜鉛水心液であるの
で上記メッキ槽へ循環してメッキ反応に再利用する。
Since the E solution obtained by the above filtration is a zinc chloride water core solution, it is circulated to the above plating tank and reused for the plating reaction.

実施例 2 濃度200g/lの硫酸亜鉛水容液2oornlと平均
粒径数μの亜鉛粉2.0firおよび被メッキ体として
直径2龍長さ4mmのニッケル線20本をメッキ槽に入
れ攪拌下で85°Cに加熱し5分間メツキを行なった。
Example 2 20nl of zinc sulfate aqueous solution with a concentration of 200g/l, 2.0fir of zinc powder with an average particle size of several microns, and 20 nickel wires with a diameter of 2 mm and a length of 4 mm as objects to be plated were placed in a plating tank and stirred. It was heated to 85°C and plated for 5 minutes.

以F実施例1と同様の操作を行なった。From then on, the same operations as in Example 1 were performed.

得られたメッキ体は400倍の顕微鏡1−c+二yケル
素地面の全く見えぬ美麗な亜鉛メッキ面を有していた。
The plated body thus obtained had a beautiful galvanized surface that could not be seen at all under a 400x microscope.

実施例 3 濃度2009/lの硫酸亜鉛水容液250 ml中に平
均粒径、数μの亜鉛粉2.0jirを添加し80°Cに
力■熱[−たのち攪拌し乍ら巾2C1rL長さ5crn
厚さ2m1mの銅板を5分間浸漬し亜鉛メッキを行なっ
た。
Example 3 To 250 ml of zinc sulfate aqueous solution with a concentration of 2009/l, 2.0 jir of zinc powder with an average particle size of several microns was added and heated to 80°C [-then stirred while stirring]. sa5crn
A copper plate with a thickness of 2 ml and 1 m was immersed for 5 minutes and galvanized.

得られた亜鉛メッキ銅板は均一メッキ面を有し顕微鏡丁
でも銅素地面は全く見えなかった。
The resulting galvanized copper plate had a uniformly plated surface, and no copper base surface was visible even under a microscope.

電子膜厚計で測定した平均メッキ厚みは約0.1μであ
った。
The average plating thickness measured with an electronic film thickness meter was about 0.1 μm.

Claims (1)

【特許請求の範囲】[Claims] 1 被メッキ体を亜鉛粉および亜鉛イオンを含む水溶液
の存在丁で、80℃乃至100℃の温度に加熱処理する
ことを特徴とする亜鉛メッキ方法。
1. A galvanizing method characterized by heat-treating an object to be plated at a temperature of 80° C. to 100° C. in the presence of an aqueous solution containing zinc powder and zinc ions.
JP54087058A 1979-07-10 1979-07-10 galvanizing method Expired JPS5818992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54087058A JPS5818992B2 (en) 1979-07-10 1979-07-10 galvanizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54087058A JPS5818992B2 (en) 1979-07-10 1979-07-10 galvanizing method

Publications (2)

Publication Number Publication Date
JPS5613473A JPS5613473A (en) 1981-02-09
JPS5818992B2 true JPS5818992B2 (en) 1983-04-15

Family

ID=13904331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54087058A Expired JPS5818992B2 (en) 1979-07-10 1979-07-10 galvanizing method

Country Status (1)

Country Link
JP (1) JPS5818992B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691773A (en) * 1979-12-25 1981-07-24 Usac Denshi Kogyo Kk Method of backing up fixed number in pinball controller
JPS625375A (en) * 1985-07-01 1987-01-12 株式会社 真城商会 Apparatus for opening operation of safe ball receiver in pinball machine
JP2683896B2 (en) * 1987-03-23 1997-12-03 株式会社平和 Pachinko machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518380A (en) * 1974-07-11 1976-01-23 Toyo Rubber Chemical Ind Co Kutsushonzaino seizohoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518380A (en) * 1974-07-11 1976-01-23 Toyo Rubber Chemical Ind Co Kutsushonzaino seizohoho

Also Published As

Publication number Publication date
JPS5613473A (en) 1981-02-09

Similar Documents

Publication Publication Date Title
US4168214A (en) Gold electroplating bath and method of making the same
Wilkinson Understanding gold plating
CA1063966A (en) Electroplating method
CN104096850B (en) The method that silver ammonia complex prepares superfine spherical silver powder is reduced with para-aminophenol
CN101260549B (en) Non-preplating type non-cyanide silver-plating electroplate liquid
DE3000526C2 (en) Bath for the electroless deposition of palladium and autocatalytic palladium deposition process
JPH03134178A (en) Hydrazine bath for chemical deposition of platinum and/or palladium and method of manufacturing said bath
JPS5818992B2 (en) galvanizing method
JPS591668A (en) Improved non-electrolytic gold plating bath and plating process
JPH0422990B2 (en)
JPH0250991B2 (en)
Selvam Electroless silver deposition on ABS plastic using Co (II) as reducing agent
JP2003530371A (en) Palladium complex salts and their use for adjusting the palladium concentration in electrolytic baths for depositing palladium or one of its alloys
JPS5921948B2 (en) Indium plating method
JPH05214549A (en) Formation of bismuth electroless-plating film and bismuth electroless plating bath
JPS5818993B2 (en) Tin plating method
DE2750932B2 (en) Cyanide-free bath for electroless gold plating and its use
JPS5935433B2 (en) Tin plating method
JP2003514120A (en) Non-electric tinning method of copper or copper alloy
JP2500936B2 (en) Powder plating method
FR2639654A1 (en) AUTOCATALYTIC DORURE BATH AND METHOD OF USE
JPS5947026B2 (en) galvanizing method
JPS6353278B2 (en)
JPS6237301A (en) Production of metal holding particle
US4167240A (en) Method of treating an electroplating solution comprising ions of gold and cyanide prior to electroplating and thermocompression bonding