JPS58189609A - Light beam scanner - Google Patents

Light beam scanner

Info

Publication number
JPS58189609A
JPS58189609A JP57071273A JP7127382A JPS58189609A JP S58189609 A JPS58189609 A JP S58189609A JP 57071273 A JP57071273 A JP 57071273A JP 7127382 A JP7127382 A JP 7127382A JP S58189609 A JPS58189609 A JP S58189609A
Authority
JP
Japan
Prior art keywords
mirror
axis
light beam
polygonal
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57071273A
Other languages
Japanese (ja)
Inventor
Takanori Ninomiya
隆典 二宮
Yasuo Nakagawa
中川 泰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57071273A priority Critical patent/JPS58189609A/en
Publication of JPS58189609A publication Critical patent/JPS58189609A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To increase a deflection angle by allowing the axis of geometric symmetry of a polygon mirror to cross its axis of rotation slantingly. CONSTITUTION:A rotating shaft 2, driving device 4, and regular polygon mirror 5 as individual constituent members are the same as those of a known device, but the axis 5 of three-dimensional geometric symmetry of this regular polygon mirror 5 is made obliquely cross the axial core 2a of the axis 2 of rotation slantingly at an intersectional angle alpha. When the regular polygon mirror 5 is formed in a regular 2n-angled prism and the axis 2 of rotation is rotated, lateral deflection of the deflection angle phi is 2pi/n radian. Thus, the deflection angle phi is increased.

Description

【発明の詳細な説明】 本発明は、2次元的に走査された光ビームを得るための
光ビーム走査装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light beam scanning device for obtaining a two-dimensionally scanned light beam.

従来、光ビームt−2次元的に走査する装置は、光ビー
ムを1次元的に走査する手段2組を相互に直交するよう
に配置して構成されている。
Conventionally, an apparatus for two-dimensionally scanning a light beam (t-t) is constructed by arranging two sets of means for one-dimensionally scanning a light beam so as to be orthogonal to each other.

上記の1次元的な走査手段には、0)平面ミラーを用い
たガルバノミラ一式、(ロ)正多角柱ミラーを用いたポ
リゴンミラ一式、および(/→超音波偏向素子を用いた
AO偏向式等がある。
The above one-dimensional scanning means include 0) a set of galvano mirrors using a plane mirror, (b) a set of polygon mirrors using a regular polygon mirror, and (/→ an AO deflection type using an ultrasonic deflection element), etc. There is.

上記の(イ)ガルバノミラ一式および(ロ)ポリゴンミ
ラ一式の走査手段はミラー駆動装置を備えなぜればなら
ないので、これt−2組配置すると大形大重量の装置に
なる。従って、例えばロボットの手先などのように小形
軽量であることを要求される用途には適しない。またA
O偏光式の走査手段は超音波偏光素子の特性として偏光
角を大きくできず、その上高価であるという欠点がある
Since the scanning means for the above-mentioned (a) galvano mirror set and (b) polygon mirror set must be equipped with a mirror drive device, arranging t-2 sets of these will result in a large and heavy device. Therefore, it is not suitable for applications that require small size and light weight, such as robot hands. Also A
O-polarization type scanning means has the disadvantage that the polarization angle cannot be increased due to the characteristics of the ultrasonic polarization element, and that it is expensive.

さらに、上記の各1次的走査手段t−2組用いて構成し
た2次元的走査装置に共通する欠点として、2組の1次
的走査手段の光学的位置合わせと駆動系統の同期とを必
要とするので駆動系統が複雑高価になり、取扱い調整が
面倒である。
Furthermore, a common drawback of two-dimensional scanning devices configured using each of the above-mentioned primary scanning means t-2 sets is that optical alignment of the two sets of primary scanning means and synchronization of the drive system are required. Therefore, the drive system becomes complicated and expensive, and handling and adjustment is troublesome.

本発明は上述の事情に鑑みて為され、小形、@量、かつ
安価で取扱い容易な、しかも偏光角を大きくできる光ビ
ーム走査装置を提供すること金目的とする。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a light beam scanning device that is small in size, inexpensive, easy to handle, and capable of increasing the polarization angle.

上記の目的を達成する丸め、本発明は、多角柱ミラーと
回転駆動装置とによって構成され、上記多角柱ミラーの
側面に光ビームを投射して反射させる光ビーム走査装置
において、上記の多角柱ミラーの幾何学的対称軸と該多
角柱ミラーの回転軸とを斜交せしめることを特徴とする
To achieve the above object, the present invention provides a light beam scanning device comprising a polygonal columnar mirror and a rotational drive device, which projects and reflects a light beam on the side surface of the polygonal columnar mirror. The polygonal mirror is characterized in that the geometric symmetry axis thereof and the rotation axis of the polygonal prism mirror are obliquely intersected.

第1図は従来形の正多角柱ミラーによる走査方法を説明
するための模式化した原理図である。説明の便宜上、回
転軸2t−垂直方向に描き、水平面内の走査を横方向走
査と言い、垂直面内の走査を縦方向走査と言う(以下、
第6.第5.第6.第7図において同じ)。
FIG. 1 is a schematic diagram illustrating the principle of scanning using a conventional regular polygon mirror. For convenience of explanation, the rotation axis 2t is drawn in the vertical direction, and scanning in the horizontal plane is referred to as horizontal scanning, and scanning in the vertical plane is referred to as vertical scanning (hereinafter,
6th. Fifth. 6th. (Same in Figure 7).

第1図において4は回転軸2の駆動装置、5け回転軸2
に固着された正多角柱ミラーでろる。
In Figure 1, 4 is a drive device for the rotating shaft 2, and 5 is the rotating shaft 2
A regular polygonal prism mirror is fixed to the mirror.

正多角柱ミラー5をその軸心の回りに回転さぜながら光
ビーム1を投射して側面で反射させると元ビーム反射光
の横方向偏光角θは第2図に示すように鋸歯状波形とな
る。
When the light beam 1 is projected onto the regular polygonal prism mirror 5 while rotating around its axis and reflected from the side surface, the lateral polarization angle θ of the original beam reflected light has a sawtooth waveform as shown in FIG. Become.

また、第3図に示すように円柱状のミラー6を形成し、
核内柱の幾何学的対称軸3を回転軸2に対して角αで斜
交ぜしめて取り付け、回転軸2の回りに回転させながら
光ビーム1を投射すると、光ビーム反射光は縦方向に走
査され、その縦方向偏光角ψは第4図に示すよう゛にコ
サインカーブとなる。
Further, as shown in FIG. 3, a cylindrical mirror 6 is formed,
When the intranuclear column is attached with its geometric symmetry axis 3 obliquely intersecting at an angle α with respect to the rotation axis 2, and the light beam 1 is projected while rotating around the rotation axis 2, the reflected light beam scans in the vertical direction. The vertical polarization angle ψ becomes a cosine curve as shown in FIG.

本発明の基本的原理は、第1図に示した多角柱ミラーの
同心軸回りの回転によって生じる横方向走査と、第3図
に示した円柱ミラーの斜交軸回シの回転によって生じる
縦方向走査とを、単一の反射体によって複合的に行なわ
せるものである。
The basic principle of the present invention is that the horizontal scanning is caused by the rotation of the polygonal mirror around the concentric axis shown in FIG. 1, and the vertical scanning is caused by the rotation of the cylindrical mirror around the oblique axis shown in FIG. The scanning is performed in a complex manner by a single reflector.

次に、本発明の一実施例を第5図について説明する。Next, an embodiment of the present invention will be described with reference to FIG.

個々の構成部材である回転軸2、駆動装置4、及び正多
角柱ミラー5は第1図に示した従来形装置におけると同
様の構成部材である。第1図に示した従来形装置の構成
と異なるところは、正多角柱5の立体幾何学的な対称軸
5&ヲ回転軸2の回転軸心2aに対して交角αで斜交ぜ
しめたことである。
The individual components, the rotating shaft 2, the drive device 4, and the regular polygon mirror 5, are the same components as in the conventional device shown in FIG. The difference from the configuration of the conventional device shown in FIG. 1 is that the three-dimensional geometric symmetry axis 5 of the regular polygonal prism 5 and the rotation axis 2a of the rotation axis 2 are obliquely intersected at an intersecting angle α. be.

正多角柱ミラー5を正2n角柱に形成して回転軸2を回
転させた場合、横方向の偏光角θの振れ角は第2図に示
したように2π/nラジアンとなる。
When the regular polygonal prism mirror 5 is formed into a regular 2n prism and the rotation axis 2 is rotated, the deflection angle of the lateral polarization angle θ becomes 2π/n radians as shown in FIG.

ま九、縦方向の偏向角ψの振れ角は第4図に示したよう
に4αラジアンとなる。本実施例は回転ミラーによって
走査を行なうのでAO偏光式に比して偏光角を大きくす
ることができる。
Also, the deflection angle of the vertical deflection angle ψ is 4α radians as shown in FIG. In this embodiment, since scanning is performed by a rotating mirror, the polarization angle can be increased compared to the AO polarization type.

回転速度と走査速度との関係は、次の如くである。正2
n角形ミラーが1回転すると縦方向には正、負方向に各
1回ずつ、横方向には正方向にのみ2n回走査するから
、回転速度′@:R回転/秒とすると1縦方向走査には
1/2R秒、1横方向走査には1/2nR秒を要するこ
とKなる。また走査の縦方向分解能はn本となる。
The relationship between rotation speed and scanning speed is as follows. Positive 2
When the n-gon mirror rotates once, it scans once each in the positive and negative directions in the vertical direction, and 2n times only in the positive direction in the horizontal direction, so if the rotation speed is R rotations/sec, it scans in the vertical direction once. This means that 1/2R second is required for one horizontal scan, and 1/2nR second is required for one horizontal scan. Further, the vertical resolution of scanning is n lines.

本実施例によれば2次元的な光ビーム走査ヲ錦めて簡単
な構成で実現でき、装置の小形軽量化、低価格化に著効
があシ、その上、単一の駆動手段を用いているので駆動
系統の取扱いや調整が容易である。
According to this embodiment, two-dimensional light beam scanning can be realized with a simple configuration, which is extremely effective in reducing the size, weight, and cost of the device.Furthermore, a single driving means is used. This makes handling and adjustment of the drive system easy.

第6図は上記と異なる実施例を示す。FIG. 6 shows an embodiment different from the above.

本実施例においても、正多角柱ミラー5の立゛体幾何学
的対称軸5m1回転軸2の回転軸心2aと交角αで斜交
させていることについては前例と同様であるが、本実施
例は次のようにして正多角柱きラー5をその対称軸5m
の回りにも回転せしめるように構成しておる。
In this embodiment as well, the three-dimensional geometrical symmetry axis 5m1 of the regular polygonal prism mirror 5 and the rotation axis 2a of the rotation axis 2 are obliquely intersected at an intersection angle α. For example, the regular polygonal prism cutter 5 is made with its axis of symmetry 5m as follows.
It is configured so that it can also rotate around the .

正多角柱ミラー5に、その幾何学的対称軸5aに一致さ
せて支承軸11ヲ貫通固着し、その下端を円錐状に尖ら
せてその頂角よシも大きい底角管有する皿形円錐軸受9
cで支承軸11回シの回転自在に、かつ支承軸11の賃
振シ傾動自在に支承する。
A dish-shaped conical bearing having a support shaft 11 that penetrates and is fixed to a regular polygonal prism mirror 5 in alignment with its geometrical symmetry axis 5a, the lower end of which is sharpened into a conical shape, and whose bottom angle is larger than its apex angle. 9
At c, the support shaft is supported so that it can freely rotate 11 times, and the support shaft 11 can freely tilt.

回転軸2の下端にクランク腕2b¥r固着し、その先端
部に軸受9at−設けて前記の支承軸11の上端を回転
自在に支承する。
A crank arm 2b\r is fixed to the lower end of the rotating shaft 2, and a bearing 9at is provided at the tip thereof to rotatably support the upper end of the support shaft 11.

上記の支承軸11の上端付近に傘歯車8ai固着し、回
転軸2と同心をなすように水平に設置した内歯傘歯車7
aと噛合せしめる。
A bevel gear 8ai is fixed near the upper end of the above-mentioned support shaft 11, and an internal bevel gear 7 is installed horizontally so as to be concentric with the rotating shaft 2.
Engage with a.

本実施例によれば横方向の偏向角θの振れ角は前例と同
様に2π/nラジアンとなり、縦方向の偏向角ψの振れ
角は4αラジアンとなる。
According to this embodiment, the deflection angle of the horizontal deflection angle θ is 2π/n radians, as in the previous example, and the deflection angle of the vertical deflection angle ψ is 4α radians.

傘歯車8aの歯数kms内歯傘歯車の歯数をhとすると
、回転軸2が1回転したとき正2n角柱ミラーでめる正
多角柱ミラー5かに一1回転する。従って、回転軸の1
回転あたり縦方向には正、負方向に各1回ずつ、横方向
には2n(k−1)回走前することになる。
If the number of teeth of the bevel gear 8a is kms and the number of teeth of the internal bevel gear is h, then when the rotating shaft 2 makes one revolution, it rotates every 1/1 rotation of the regular polygonal mirror 5 formed by the regular 2n prismatic mirror. Therefore, 1 of the rotation axis
Per rotation, it travels once each in the positive and negative directions in the vertical direction, and 2n(k-1) times in the horizontal direction.

従って、回転軸2の回転速度eR回/秒とすると1縦方
向走査には1/2R秒、1横方向走査には1/2n(k
−1)R秒を要することKなる。また走査の縦方向の分
解能はn(k−1)本となる。このように、正多角柱ミ
ラーを、その幾何学的対称軸の回りに回転せしめる手段
を併設すると縦方向の分解能を向上せしめ得るという効
果がある。
Therefore, if the rotational speed of the rotating shaft 2 is eR times/sec, one longitudinal scan takes 1/2R seconds, and one horizontal scan takes 1/2n(k
-1) It takes R seconds. Further, the vertical resolution of scanning is n(k-1) lines. In this way, when a means for rotating the regular polygonal prism mirror around its geometric symmetry axis is provided, the vertical resolution can be improved.

第7図は更に異なる実施例を示す。FIG. 7 shows a further different embodiment.

第6図の実施例では支承軸11の下端を皿形円錐軸受9
cで支承したが、本実施例ではこれに代えて支承軸11
の上端側と同様に次のごとく構成する。
In the embodiment shown in FIG. 6, the lower end of the support shaft 11 is mounted on a conical disc bearing 9
c, but in this embodiment, the support shaft 11 is used instead of this.
It is constructed as follows in the same way as the upper end side.

支承軸11の下端部に傘歯車8aと同一形状の傘歯車8
bヲ固着し、回転軸2と同心状に水平に設置した内歯傘
歯車7bに噛合せしめる。この内歯傘歯車7bは同7a
と同一形状の部材である。回転軸2の軸心2aに揃えて
回転軸12t−設け、その上端にクランク腕2cf固着
し、軸受9bf介して支承軸11の下端を回転自在に支
承する。
A bevel gear 8 having the same shape as the bevel gear 8a is attached to the lower end of the support shaft 11.
b is fixed and meshed with an internal bevel gear 7b installed horizontally and concentrically with the rotating shaft 2. This internal bevel gear 7b is the same as 7a.
It is a member with the same shape as . A rotating shaft 12t is provided aligned with the axis 2a of the rotating shaft 2, a crank arm 2cf is fixed to the upper end thereof, and the lower end of the support shaft 11 is rotatably supported via a bearing 9bf.

回転軸2の回転管歯車10a1同10b1同10C1及
び同10dt−介して回転軸12に伝動せしめ、クラン
ク腕2bと同2Cとの向きを反対方向に保ちつつ同一方
向に同一速度で回転させる。
The power is transmitted to the rotating shaft 12 through the rotary tube gears 10a1, 10b1, 10C1, and 10dt of the rotating shaft 2, and the crank arms 2b and 2C are rotated in the same direction at the same speed while keeping the directions opposite to each other.

第7図の実施例によれば、第6図の実施例に比して光ビ
ーム反射位置と回転軸心2aとの間の距離の変動を低く
抑えることができ、光ビームのミラーへの入射角度を大
きくとることができ、かつ走査の誤差を低く抑えること
ができる。
According to the embodiment shown in FIG. 7, fluctuations in the distance between the light beam reflection position and the rotation axis 2a can be suppressed lower than in the embodiment shown in FIG. A large angle can be taken, and scanning errors can be kept low.

以上説明したように、本発明は、多角柱ミラーの立体幾
何学的な対称軸と該多角柱ミラーの回転軸とt−斜交せ
しめることKより、小形、軽量、かつ安価で、その上取
扱いが容易でおるという優れた実用的効果を生じる。
As explained above, the present invention is small, lightweight, inexpensive, and easy to handle because the three-dimensional geometrical symmetry axis of the polygonal mirror and the rotation axis of the polygonal mirror are t-obliquely intersected. It has an excellent practical effect of being easy to clean.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は多角柱ミラーによる横方向の走査の説明図、第
2図は同じく回転角と偏向角との関係を示す図表、第5
図は円柱ミラーによる縦方向の走査の説明図、第4図は
同じく回転角と偏向角との関係を示す図表でめる。第5
図は本発明に係る光ビーム走査装置の一実施例を模式的
に示した斜視図、第6図及び第7図はそれぞれ上記と異
なる実施例を模式的に示した斜視図である。 1・・・光ビーム、2・・・回転軸、2a・・・同回転
軸心、6・・・円柱ミラーの幾何学的対称軸、4・・・
駆動装置、5・・・正多角柱ミラー、5a・・・同幾何
学的対称軸、6・・・円柱ミラー、7a、7b・・・内
歯傘歯車、8a、8b・・・傘歯車、9a 、 9b−
軸受、10m 、 10b 、 10c 、 10d−
・−歯車、11・・・支承軸。 代理人 弁理士  秋 本 正 実 第1図 第2図 第3図 第4図 第5図 第6図 第7図
Figure 1 is an explanatory diagram of horizontal scanning by a polygonal prism mirror, Figure 2 is a diagram showing the relationship between rotation angle and deflection angle, and Figure 5 is a diagram showing the relationship between rotation angle and deflection angle.
The figure is an explanatory diagram of vertical scanning by a cylindrical mirror, and FIG. 4 is a diagram showing the relationship between the rotation angle and the deflection angle. Fifth
The figure is a perspective view schematically showing an embodiment of a light beam scanning device according to the present invention, and FIGS. 6 and 7 are perspective views schematically showing embodiments different from the above. DESCRIPTION OF SYMBOLS 1... Light beam, 2... Rotation axis, 2a... Rotation axis, 6... Geometric symmetry axis of cylindrical mirror, 4...
Drive device, 5... regular polygonal columnar mirror, 5a... same geometric symmetry axis, 6... cylindrical mirror, 7a, 7b... internal bevel gear, 8a, 8b... bevel gear, 9a, 9b-
Bearing, 10m, 10b, 10c, 10d-
-Gear, 11...Support shaft. Agent Patent Attorney Tadashi Akimoto Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1、 側面を鏡面とした多角柱よりなる多角柱ミラーと
、これを定速回転せしめる駆動装置とによって構成され
、上記多角柱ミラーの側面に光ビームを投射して反射さ
せる光ビーム走査装置において、上記の多角柱ミラーの
幾何学的対称軸と該多角柱ミラーの回転軸とを斜交ぜし
めたことを%緻とする光ビーム走査装置。 2、 前記の多角柱ミラーは、該多角柱ミラーの幾何学
的対称軸の回シに回転する手段を併設したものであるこ
とを特徴とする特許請求の範囲第1項に記載の元ビーム
走査装置。
[Claims] 1. Consisting of a polygonal columnar mirror made of a polygonal column with mirrored side surfaces and a drive device that rotates the mirror at a constant speed, the light beam is projected onto the side surface of the polygonal columnar mirror and reflected. A light beam scanning device in which the geometric symmetry axis of the polygonal mirror and the rotation axis of the polygonal mirror are obliquely intersected. 2. The original beam scanning system according to claim 1, wherein the polygonal pillar mirror is additionally provided with a means for rotating around the geometric symmetry axis of the polygonal pillar mirror. Device.
JP57071273A 1982-04-30 1982-04-30 Light beam scanner Pending JPS58189609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57071273A JPS58189609A (en) 1982-04-30 1982-04-30 Light beam scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57071273A JPS58189609A (en) 1982-04-30 1982-04-30 Light beam scanner

Publications (1)

Publication Number Publication Date
JPS58189609A true JPS58189609A (en) 1983-11-05

Family

ID=13455938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57071273A Pending JPS58189609A (en) 1982-04-30 1982-04-30 Light beam scanner

Country Status (1)

Country Link
JP (1) JPS58189609A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0336743A2 (en) * 1988-04-05 1989-10-11 Canon Kabushiki Kaisha Scanning optical system
US4932733A (en) * 1987-05-22 1990-06-12 U.S. Philips Corp. Opto-mechanical analysis system using a single rotating polygon
WO2008081081A1 (en) 2006-12-29 2008-07-10 Picodeon Ltd Oy Optical scanner and its applications
WO2021175440A1 (en) * 2020-03-06 2021-09-10 Huawei Technologies Co., Ltd. Light-based ranging device design and operation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932733A (en) * 1987-05-22 1990-06-12 U.S. Philips Corp. Opto-mechanical analysis system using a single rotating polygon
EP0336743A2 (en) * 1988-04-05 1989-10-11 Canon Kabushiki Kaisha Scanning optical system
US5066083A (en) * 1988-04-05 1991-11-19 Canon Kabushiki Kaisha Scanning optical system
WO2008081081A1 (en) 2006-12-29 2008-07-10 Picodeon Ltd Oy Optical scanner and its applications
JP2010515093A (en) * 2006-12-29 2010-05-06 ピコデオン エルティーディー オイ Optical scanner, and configuration and system using optical scanner
US20100314364A1 (en) * 2006-12-29 2010-12-16 Picodeon Ltd Oy Optical scanner and its applications
WO2021175440A1 (en) * 2020-03-06 2021-09-10 Huawei Technologies Co., Ltd. Light-based ranging device design and operation

Similar Documents

Publication Publication Date Title
JPS628119A (en) Polygon mirror
US7768686B2 (en) Light-beam-scanning system utilizing counter-rotating prism wheels
KR890010753A (en) Optical scanning device
JPS58189609A (en) Light beam scanner
EP0701158A3 (en) Apparatus for recording images on interior surface of cylinder
US3847466A (en) Scanning arrangements
US3514619A (en) Optical-mechanical scanning apparatus utilizing oppositely oscillating optical wedges
US5734515A (en) Apparatus for positioning an optical line of sight within a hemispheric region
JP4202142B2 (en) Gimbal-supported scanning system and method
JPS5814335Y2 (en) scanning device
KR102658463B1 (en) Light reflecting device, light guiding device and light scanning device
JPS63269263A (en) Scanner for composite bar code
US3885857A (en) Convergent beam scanner with multiple mirror defocus compensation
US5696637A (en) Apparatus for positioning an optical line of sight within a hemispheric region
CN213780366U (en) Laser radar optical scanning system based on rotating optical wedge
JPH05165991A (en) Beam deflector
JPS6366528A (en) Parallel scanning beam generator
JPS58102152A (en) Ultrasonic microscope
JPH0628509A (en) Multipattern optical scanning device
JPH0526319A (en) Oscillation mechanism and reflecting mirror driving gear using it
US20100027090A1 (en) Scanning apparatus
JPH04115810A (en) Cutting device for optical member and method of cutting thereof
KR910020593A (en) Barcode reader
JPH1049618A (en) Laser scanner
JPH0672980B2 (en) Optical scanning device