JPS58189391A - Manufacture of electrolytically chromated steel plate - Google Patents

Manufacture of electrolytically chromated steel plate

Info

Publication number
JPS58189391A
JPS58189391A JP7125582A JP7125582A JPS58189391A JP S58189391 A JPS58189391 A JP S58189391A JP 7125582 A JP7125582 A JP 7125582A JP 7125582 A JP7125582 A JP 7125582A JP S58189391 A JPS58189391 A JP S58189391A
Authority
JP
Japan
Prior art keywords
chromium oxide
layer
steel plate
metallic
hydrated chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7125582A
Other languages
Japanese (ja)
Other versions
JPH0214437B2 (en
Inventor
Hiroshi Takano
宏 高野
Yoshitaka Kashiyama
樫山 義高
Hiroshi Ishikawa
博司 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7125582A priority Critical patent/JPS58189391A/en
Publication of JPS58189391A publication Critical patent/JPS58189391A/en
Publication of JPH0214437B2 publication Critical patent/JPH0214437B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To stably deposit a prescribed amount of Cr oxide hydrate on a metallic Cr layer formed on the surface of a steel plate by cathodic electrolysis, by carrying out anodic electrolysis in a plating bath contg. Cr<6+> to convert part of the metallic Cr layer into Cr oxide hydrate of Cr<3+>. CONSTITUTION:A metallic Cr layer is formed on the surface of a steel plate by cathodic electrolysis using an electrolytic soln. contg. Cr2O3 and NaSCN. The plate having the Cr layer is electrolyzed as an anode using an electrolytic soln. contg. >=2g/l Cr<6+> at >=3A/dm<2> (ASD) current density and ordinary temp. - 80 deg.C. >=1 Kind of salt amlong the alkali salts and NH4 salts of chromic anhydride and dichromic acid is used as a compound contg. Cr<6+>. Part of the metallic Cr layer is converted into Cr oxide hydrate of Cr<3+> by the electrolysis to obtain the desired electrolytically chromated steel plate having a metallic Cr layer as an under layer and a layer of Cr oxide hydrate of Cr<3+> as an upper layer on the surface.

Description

【発明の詳細な説明】 この発明は、水和クロム酸化物を所定量安定して付着さ
せることができる、電解クロメート処理鋼板の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an electrolytically chromate-treated steel sheet, which allows a predetermined amount of hydrated chromium oxide to be stably deposited.

電解クロメート処理鋼板は、鋼板表面上に、上層が水和
クロム酸化物下層が金属クロムの2層で構成されるメッ
キ鋼板である。従って、特に上層の水和クロム酸化物は
、その量または質が、耐食性、塗料密着性等の各種品質
特性に及ぼす影響が大きく、工業的製造ラインにおける
その付着量制御は安定品質を得るために最も重要である
。しかし工業的製造ラインでは、電極配置上の制約から
断続電解は不可避であり、その無通電時において、従来
の製造方法では、水和クロム酸化物中に配位している硫
酸根の影響により、水和クロム酸化物は液中へ溶解する
。また、その溶解量は操業条件によって変化するので、
最終的に付着している水和クロム酸化物量の電気的な制
御は容易ではない。
An electrolytic chromate-treated steel sheet is a plated steel sheet that has two layers on the surface of the steel sheet, the upper layer being hydrated chromium oxide and the lower layer being metallic chromium. Therefore, the amount or quality of hydrated chromium oxide in the upper layer has a large effect on various quality characteristics such as corrosion resistance and paint adhesion, and controlling the amount of chromium oxide deposited on industrial production lines is necessary to obtain stable quality. most important. However, in industrial production lines, intermittent electrolysis is unavoidable due to restrictions on electrode arrangement, and when no current is applied, in the conventional production method, due to the influence of sulfate groups coordinated in hydrated chromium oxide, Hydrated chromium oxide dissolves into the liquid. In addition, the amount dissolved varies depending on the operating conditions, so
It is not easy to electrically control the amount of hydrated chromium oxide that is ultimately deposited.

従来の電解クロメート処理鋼板は主に下記の方法で製造
されている。
Conventional electrolytic chromate treated steel sheets are mainly manufactured by the following method.

(1)クロメート処理液中で、陰極電解によって鋼板表
面上に下層の金属クロムと上層の水和クロム酸化物を同
時に形成させる方法(−液法)。
(1) A method in which a lower layer of metallic chromium and an upper layer of hydrated chromium oxide are simultaneously formed on the surface of a steel sheet by cathodic electrolysis in a chromate treatment solution (-liquid method).

(2)クロムメッキ工程で、鋼板表面上に金属クロム層
を析出させた後、別のクロメート処理液中で陰極電解す
ることにより前記金属クロム層上に水和クロム酸化物を
形成させる方法(二液法)。
(2) In the chromium plating process, a metal chromium layer is deposited on the surface of a steel sheet, and then hydrated chromium oxide is formed on the metal chromium layer by cathodic electrolysis in another chromate treatment solution (double liquid method).

まず(1)の方法においては、鋼板表面上に金属クロム
と水和クロム酸化物を同時形成きせるためには、その電
解液中に、硫酸根の存在が不可欠であり、鋼板表面上に
形成された水和クロム酸化物中には硫酸根が配位する。
First, in method (1), in order to simultaneously form metallic chromium and hydrated chromium oxide on the surface of the steel sheet, the presence of sulfate radicals is essential in the electrolyte. Sulfate groups are coordinated in the hydrated chromium oxide.

この硫酸根のため、鋼板表面上に形成された水和クロム
酸化物は、無通電時に電解液中に溶解する。また(1)
の方法の場合、鋼板表面上における金属クロムを所定量
確保しなければならないので、電解液中の硫酸根濃度に
は制約があり、鋼板表面上の水和クロム酸化物中の硫酸
根を減少させる目的で電解液中の硫酸根濃度を極端に低
減させることはできない。このため(1)の方法におい
ては、無通電時における鋼板表面上の水和クロム酸化物
の溶解は避けられず、鋼板表面上におけろ金属クロム析
出量、水和クロム酸化物の生成量と溶解量がうまくバラ
ンスする電解液組成および電解条件を選択しなければな
らない。
Due to this sulfate radical, the hydrated chromium oxide formed on the surface of the steel sheet dissolves in the electrolyte when no current is applied. Also (1)
In the case of the above method, it is necessary to secure a certain amount of metallic chromium on the surface of the steel sheet, so there are restrictions on the concentration of sulfate radicals in the electrolyte, and it is necessary to reduce the sulfate radicals in hydrated chromium oxide on the surface of the steel sheet. It is not possible to extremely reduce the concentration of sulfate groups in the electrolyte for this purpose. Therefore, in method (1), the dissolution of hydrated chromium oxide on the steel plate surface is unavoidable when no current is applied, and the amount of metallic chromium precipitated and the amount of hydrated chromium oxide produced on the steel plate surface are reduced. The electrolyte composition and electrolytic conditions must be selected so that the dissolved amount is well balanced.

また(2)の方法においては、クロムメッキ工程で鋼板
表面上に金属クロムを形成した後、さらに別個に水和ク
ロム酸化物を形成させるので、後工程の電解液中の硫酸
根を減少させることにより鋼板表面上の水和クロム酸化
物中の硫酸根を低減させることは可能である。しかし、
硫酸根を無添加の状態にしても、工業薬品中には微量で
あるが不可避の硫酸根が含有されており、鋼板表面上に
おけろ水和クロム酸化物中に配位する。またクロムメッ
キ工程では、鋼板表面上に金属クロムを形成させるため
に、電解液中に硫酸根が添加されており、金属クロム生
成時にも硫酸根を含有する水和クロム酸化物が鋼板表面
上に生成される。この鋼板表面上の水和クロム酸化物は
無通電浸漬を行なうことで、ある程度溶解除去されるが
、微量な水和クロム酸化物は除去されずに残存する。こ
の残存した水和クロム酸化物中の硫酸根は、後工程の電
解反応に関与して、第二工程時に鋼板表面上に生成する
水和クロム酸化物中にも硫酸根が配位する。
In addition, in method (2), after forming metallic chromium on the surface of the steel sheet in the chromium plating process, hydrated chromium oxide is formed separately, which reduces sulfate radicals in the electrolyte in the subsequent process. It is possible to reduce the sulfate radicals in hydrated chromium oxide on the steel plate surface. but,
Even if no sulfate radicals are added, industrial chemicals inevitably contain a small amount of sulfate radicals, which coordinate in the hydrated chromium oxide on the surface of the steel sheet. In addition, in the chromium plating process, sulfate radicals are added to the electrolytic solution in order to form metallic chromium on the surface of the steel sheet, and when metallic chromium is formed, hydrated chromium oxide containing sulfate radicals also forms on the surface of the steel sheet. generated. The hydrated chromium oxide on the surface of the steel sheet is dissolved and removed to some extent by non-current immersion, but a trace amount of hydrated chromium oxide remains without being removed. The sulfate groups in the remaining hydrated chromium oxide participate in the electrolytic reaction in the subsequent step, and the sulfate groups are also coordinated in the hydrated chromium oxide generated on the surface of the steel sheet during the second step.

したがって(2)の方法では、無通電時に鋼板表面上に
得られた水和クロム酸化物の電解液中への溶解は避けら
れない。
Therefore, in the method (2), dissolution of the hydrated chromium oxide obtained on the surface of the steel sheet when no current is applied into the electrolytic solution is inevitable.

以上から(1)、 (2)の方法では鋼板表面上に得ら
れた水和クロム酸化物の無通電時の電解液中への溶解は
避けられない。この事実は、工業的製造ラインにおいて
、多数の処理タンク内を鋼板が通過するとき、電極配置
方法の制約上、鋼板表面上に生成した水和クロム酸化物
は、電解タンク内のクロメート処理液中及び走行中に持
ち出し鋼板に付着したクロメート処理液中へ溶解する。
From the above, in methods (1) and (2), it is inevitable that the hydrated chromium oxide obtained on the surface of the steel sheet will dissolve into the electrolyte when no current is applied. This fact indicates that when a steel plate passes through many treatment tanks in an industrial manufacturing line, due to restrictions on the electrode arrangement method, hydrated chromium oxide generated on the surface of the steel plate is absorbed into the chromate treatment solution in the electrolytic tank. It also dissolves in the chromate treatment solution that adheres to the steel plate taken out during driving.

また、この溶解速度は電解液液温、電流密度または、電
解液の経時疲労程度など、さまざまな操業条件の変化に
よって変動し水和クロム酸化物付着制御に悪影響を及ぼ
す。また、等電気量でも、ラインスピードが変化すると
、水和クロム酸化物の溶解時間の変化によって、鋼板表
面への水和クロム酸化物付着量が変化するので、単純な
電気的制御はできず、付着量制御は容易ではなく、鋼板
表面に、水和クロム酸化物を、所定量安定に付着させる
ことは固装であった。
Further, this dissolution rate varies depending on various operating conditions such as the electrolyte temperature, current density, or degree of fatigue of the electrolyte over time, which adversely affects the control of hydrated chromium oxide adhesion. In addition, even if the amount of electricity is constant, if the line speed changes, the amount of hydrated chromium oxide deposited on the steel plate surface will change due to the change in the dissolution time of hydrated chromium oxide, so simple electrical control is not possible. It is not easy to control the amount of hydrated chromium oxide adhered to the surface of the steel plate, and it is necessary to stably adhere a predetermined amount of hydrated chromium oxide to the surface of the steel plate.

そこで、この発明は、以上のような問題を解消すべくな
されたもので、鋼板を陰極電解処理して、その表面に金
属クロム層を形成しく第一工程)、次いで、Cr” 2
.9 / l  以上を含んだメッキ浴で、電流密度3
 A/ di (ASD)以上で、前記鋼板を陽lfi
電解処理することによって、前記鋼板の表面に形成され
た前記金属クロム層の一部の金属クロムを、Cr3+の
水和クロム酸化物に変えて、前記鋼板の表面に、下層と
して前記金属クロム層を、上層としてCr3+ の水和
クロム酸化物層を形成する(第二工程)ようにした電解
クロメート処理鋼板の製造方法としたことに特徴を有す
る。
Therefore, this invention was made to solve the above problems, and involves cathodic electrolysis treatment of a steel plate to form a metallic chromium layer on its surface (first step), and then Cr"2
.. In a plating bath containing 9/l or more, the current density is 3
Above A/di (ASD), the steel plate is
By electrolytic treatment, a part of the metallic chromium layer formed on the surface of the steel sheet is changed into hydrated chromium oxide of Cr3+, and the metallic chromium layer is formed as a lower layer on the surface of the steel sheet. The present invention is characterized in that it is a method for manufacturing an electrolytically chromate-treated steel sheet, in which a hydrated chromium oxide layer of Cr3+ is formed as an upper layer (second step).

本発明の第一の特徴としては、第二工程で硫酸根を含有
しない水和クロム酸化物を鋼板表面上に生成することに
よって、無通電浸漬時にその水和クロム酸化物を液中に
溶解させないことがあげられる。
The first feature of the present invention is that by generating hydrated chromium oxide containing no sulfate radicals on the surface of the steel sheet in the second step, the hydrated chromium oxide is not dissolved in the liquid during non-current immersion. There are many things that can be mentioned.

第二工程では鋼板を陽極とするので、過去の知見では、
金属クロムは6価クロムへ酸化され、液中へ溶解するこ
とが知られていた。しかし発明者等が種々の電解条件を
変化させ、検討した結果、適当な電流密度(3ASD以
上)を選択すると、陽極処理によ、って3価クロムを主
体とする水和クロム酸化物が鋼板表面上に生成すること
を発見した。
In the second process, a steel plate is used as an anode, so according to past knowledge,
It was known that metallic chromium is oxidized to hexavalent chromium and dissolved in liquid. However, as a result of various studies by the inventors and others by changing various electrolytic conditions, if an appropriate current density (more than 3 ASD) is selected, hydrated chromium oxide, which is mainly composed of trivalent chromium, is produced in steel sheets by anodizing. discovered that it forms on the surface.

また、この鋼板表面上の水和クロム酸化物は、第二工程
の電解液中に硫酸根が存在していても、硫酸根を含有し
ない皮膜となる。以上の様に、硫酸根を含まない水和ク
ロム酸化物の生成機構は明らかではないが、次の様に推
定することができる。
Further, the hydrated chromium oxide on the surface of the steel sheet becomes a film that does not contain sulfate groups even if sulfate groups are present in the electrolyte in the second step. As described above, although the mechanism of formation of hydrated chromium oxide that does not contain sulfate groups is not clear, it can be estimated as follows.

即ち、6価クロムを含有する電解液中での陰極電解反応
の場合電解液中の6価クロムイオンの還元反応によって
3価クロムを主体とする水和クロム酸化物か鋼板表面上
に生成し、反応の際、電解液中の硫酸根がその水和クロ
ム酸化物中に配位する。
That is, in the case of a cathode electrolytic reaction in an electrolytic solution containing hexavalent chromium, hydrated chromium oxide mainly composed of trivalent chromium is generated on the steel sheet surface by the reduction reaction of hexavalent chromium ions in the electrolytic solution. During the reaction, sulfate groups in the electrolyte coordinate into the hydrated chromium oxide.

一方、陽極電解反応の場合、既に鋼板表面上に付着した
固体の金属クロムからの酸化反応が起る。
On the other hand, in the case of an anodic electrolysis reaction, an oxidation reaction occurs from solid metallic chromium already deposited on the surface of the steel sheet.

本発明の第二工程は、陽極処理であるので、鋼板表面上
の金属クロムは、酸化されて初めに、固体の3価クロム
を主体とする水和クロム酸化物に変換し、次いで固体の
水和クロム酸化物は一部6価クロムへと酸化され、電解
液中へ溶解すると推定される。従って、第二工程の電解
液中に8042−が存在していても、電解反応に関与す
る余地がない。
The second step of the present invention is anodization, so that the metal chromium on the surface of the steel sheet is first oxidized and converted into hydrated chromium oxide mainly consisting of solid trivalent chromium, and then solid water It is estimated that a portion of the chromium oxide is oxidized to hexavalent chromium and dissolved in the electrolyte. Therefore, even if 8042- is present in the electrolytic solution in the second step, there is no room for it to participate in the electrolytic reaction.

また、第二の特徴、とじては、鋼板表面上において、第
一工程の金属クロムと同時生成する水和クロム酸化物中
にはS Q 2−が存在し、不可避的にその皮膜が鋼板
表面上に残留するが、第二工程の陽極処理によって、こ
の硫酸根は完全に除去されることが挙げられる。この理
由は第一工程で鋼板表面上に残留する水和クロム酸化物
が第二工程の陽極処理反応によって酸化され6価クロム
の状態で電解液中に溶解する。同時に、この水和クロム
酸化物中のSO1′−も溶解除去されると推定される。
In addition, the second feature is that S Q 2- is present in the hydrated chromium oxide that is generated simultaneously with the metallic chromium in the first step on the surface of the steel sheet, and its film inevitably forms on the surface of the steel sheet. However, this sulfate group is completely removed by the second step of anodization. The reason for this is that the hydrated chromium oxide remaining on the surface of the steel sheet in the first step is oxidized by the anodizing reaction in the second step and is dissolved in the electrolyte in the form of hexavalent chromium. At the same time, it is presumed that SO1'- in this hydrated chromium oxide is also dissolved and removed.

この第二の特徴により、′第一工程における鋼板表面上
の水和り・ム酸化物の残留デ許容されると共に、鋼板表
面上に残留する水和クロム酸化物中の804′−量の多
少にかかわらずこれが除去されるので、第一工程の電解
条件、電解液の制約はない。
This second feature allows for the residual amount of hydrated chromium oxide on the surface of the steel sheet in the first step, and also reduces the amount of 804' in the hydrated chromium oxide remaining on the surface of the steel sheet. Since this is removed regardless of the electrolyte, there are no restrictions on the electrolytic conditions or electrolyte in the first step.

以上から、第二工程の陽極電解後に鋼板表面上に生成し
た水和クロム酸化物は、so4”−を含まないので、工
業的製造ラインにおいて、電解タンク内のクロメート処
理液中及び走行中に持ち出し鋼板に付着したクロメート
処理液中には水和クロム酸化物が溶解しない。これは先
述した様に、工業的製造ラインの操業条件の変化によっ
て、水和クロム酸化物の付着量の変動を考慮する必要が
ないので、付着量制御が容易となる。また水和クロム酸
化物の付着量は第二工程の電流密度と正比例するので、
簡単な電流値制御で水和クロム酸化物の付着量制御が可
能となり、付着量が安定する。
From the above, the hydrated chromium oxide produced on the surface of the steel sheet after the second step of anodic electrolysis does not contain SO4'', so it is carried out in the chromate treatment solution in the electrolytic tank and during running in the industrial production line. Hydrated chromium oxide does not dissolve in the chromate treatment solution that adheres to steel sheets.As mentioned earlier, this is because the amount of hydrated chromium oxide adhered takes into account changes in the operating conditions of industrial production lines. Since it is not necessary, it is easy to control the amount of attached chromium oxide.Also, since the amount of attached hydrated chromium oxide is directly proportional to the current density in the second step,
The amount of hydrated chromium oxide deposited can be controlled by simple current value control, and the amount of deposited is stabilized.

第一工程での電解液は、従来の電解クロメート用電解液
または、クロムメッキ用電解液として用いられるものを
使用する。たとえばクロム酸とロダンソーダーを含有す
る電解液、クロム酸とロダンソーダーとフッ素化合物を
含有する電解液、クロム酸と硫酸塩を含有する電解液等
である。この電解液中で鋼板を陰極として電解処理し、
その表面上に金属クロムを生成させる。
The electrolytic solution used in the first step is a conventional electrolytic chromate electrolytic solution or a chromium plating electrolytic solution. Examples include an electrolytic solution containing chromic acid and rhodan soda, an electrolytic solution containing chromic acid, rhodan soda, and a fluorine compound, and an electrolytic solution containing chromic acid and sulfate. In this electrolyte, a steel plate is used as a cathode for electrolytic treatment,
Generates metallic chromium on its surface.

引き続く第二工程では、電解液を、6価クロム(Cr”
)を29/1以上を含有する液または、同様に6価クロ
ムを2g/1以上含有する第一工程の電解液の希釈液と
する。例えば、6価クロムを含有する化合物として、無
水クロム酸、重クロム酸のアルカリ塩、アンモニウム塩
を1種または2種含有する水溶液等がある。6価クロム
の濃度を29/1以上としたのは、21/1未満では浴
抵抗が上昇し、電気損失が大きく、鋼板表面上における
水和クロム酸化物の生成効率も低下するからである。以
上の電解液中で、第一工程での電解クロメート処理鋼板
を、陽極として、電流密度3ASD 以上、液温は常温
以上80℃以下で電解処理する。N流密度を3ASD以
上としたのは、3ASD未満となると、鋼板表面上にお
けろ水和クロム酸化物の生成効率が低下するからである
。また、液温は80°C以上であっても、水和クロム酸
化物の生成効率は変化せず熱損失が大きくなるからであ
る。
In the subsequent second step, the electrolyte is converted into hexavalent chromium (Cr”
) as a solution containing 29/1 or more, or a diluted solution of the first step electrolyte containing 2 g/1 or more of hexavalent chromium. For example, examples of compounds containing hexavalent chromium include aqueous solutions containing one or two of chromic anhydride, alkali salts of dichromic acid, and ammonium salts. The reason why the concentration of hexavalent chromium is set to 29/1 or more is because if it is less than 21/1, the bath resistance will increase, the electrical loss will be large, and the production efficiency of hydrated chromium oxide on the steel plate surface will also decrease. In the above electrolytic solution, the electrolytic chromate-treated steel sheet in the first step is used as an anode, and electrolytically treated at a current density of 3 ASD or more and a solution temperature of room temperature or higher and 80° C. or lower. The reason why the N flow density is set to 3 ASD or more is because if it is less than 3 ASD, the production efficiency of hydrated chromium oxide on the surface of the steel sheet decreases. Further, even if the liquid temperature is 80° C. or higher, the production efficiency of hydrated chromium oxide does not change and heat loss increases.

次に、本発明の第二工程における、陽極処理効果、を、
試験例で説明する。
Next, the anodizing effect in the second step of the present invention,
This will be explained using a test example.

〔試験例1〕 第一工程の電解クロメート処理液として、CrO3: 
2509/1. H2SOl: 4.Oi/lを使用し
て、冷延鋼板を陰極として、液温45°C1電流密度3
0ASD、電解時間4 secで処理した後、3 se
c間無間型通電浸漬、150 m97 m”の金属クロ
ム及び5〜/ m’の水和クロム酸化物からなる皮膜を
生成させる。次いで、第二工程として、電解液をCry
3: 40 g / 11液温を35°Cとし、前記ク
ロメート処理鋼板を、陽極として、電流密度を0. 1
. 3. 5. 10. 15および20ASD て、
電解時間O05secで処理する。その結果得られたサ
ンプルについて、螢光X線でクロム付着量を測定した。
[Test Example 1] As the electrolytic chromate treatment liquid in the first step, CrO3:
2509/1. H2SOl: 4. Oi/l, using a cold rolled steel plate as a cathode, liquid temperature 45°C1 current density 3
After treatment with 0 ASD and electrolysis time of 4 sec, 3 sec
A film consisting of 150 m97 m'' of metallic chromium and 5~/m' of hydrated chromium oxide is produced by continuous electric current dipping for 300 m2.Then, as a second step, the electrolyte is
3: 40 g/11 The liquid temperature was 35°C, the chromate-treated steel plate was used as an anode, and the current density was 0. 1
.. 3. 5. 10. 15 and 20 ASD,
The electrolysis time is 005 seconds. The amount of chromium deposited on the resulting sample was measured using fluorescent X-rays.

測定は、第一手順で総Cr付着量を測定し、第二手順で
熱水中(100°C)で10分間浸漬し、可溶のクロム
量を測定する(水可溶であるから6価クロムと推定され
る。)次いで、第三手順で水和クロム酸化物を除去する
ため、熱アルカリ (1ON、 NaOH,120°C
)中にサンプルを10分間浸漬し、付着量を測定する。
The first step is to measure the total amount of Cr deposited, and the second step is to immerse it in hot water (100°C) for 10 minutes and measure the amount of soluble chromium (because it is water-soluble, it is (Estimated to be chromium) Then, in the third step, hot alkali (1ON, NaOH, 120°C) was used to remove the hydrated chromium oxide.
) for 10 minutes and measure the amount of adhesion.

以上の手順でサンプル表面上における水和クロム酸化物
量及びその中の6価クロム及び3価クロムを分別定置で
きる。これらの結果を第1図に示す。
By the above procedure, the amount of hydrated chromium oxide on the sample surface and the hexavalent chromium and trivalent chromium therein can be separated and fixed. These results are shown in FIG.

第1図から、第二工程の陽極処理により、3価りロム主
体の水和クロム酸化物がサンプル表面に生成しているこ
とがわかる。また、陽極処理によるサンプル表面におけ
る金属クロム付着量の減少量から、サンプル表面におけ
る金属クロムから3価クロム、または金属クロムから6
価クロムへの酸化反応におけるそれぞれの分配率を算出
した結果を第2図に示す。第2図から、電流密度が3 
ASD未満であると、サンプル表面において、金属クロ
ムから6価クロムへの分配率が大きく、3価クロムを主
体よする水和クロム酸化物の生成効率が低下することが
わかり、電流密度は3ASD以上(より好ましくは、5
 ASD以上)とする必要がある。
From FIG. 1, it can be seen that hydrated chromium oxide mainly composed of trivalent chromium was generated on the sample surface by the second step of anodization. In addition, from the amount of decrease in the amount of metallic chromium deposited on the sample surface due to anodization, it was found that metallic chromium on the sample surface was changed from trivalent chromium to trivalent chromium, or from metallic chromium to 6%.
Figure 2 shows the results of calculating the respective distribution ratios in the oxidation reaction to valent chromium. From Figure 2, the current density is 3
It was found that when the current density is less than 3 ASD, the distribution ratio from metallic chromium to hexavalent chromium is large on the sample surface, and the generation efficiency of hydrated chromium oxide, which is mainly composed of trivalent chromium, is reduced, and the current density is 3 ASD or more. (More preferably, 5
ASD or higher).

また、螢光X線により、サンプル表面におけろ水和クロ
ム酸化物中の硫酸根を測定した結果を第3図に示す。第
3図から、第二工程の陽極処理によって、水和クロム酸
化物中の硫酸根が減少し、第一工程で生成した硫酸根を
除去すると共に硫酸根を含有しない水和クロム酸化物を
サンプル表面に生成することができることがわかる( 
3ASD以上、好ましくは5ASD以上)。また、第二
工程で電解後、電解液中で無通電浸漬した後のサンプル
表面における水和クロム酸化物量の変化を示したのが第
4図である。第4図に示す様に、第二工程でサンプル表
面に生成した水和クロム酸化物は、電解液中では溶解し
ないことがわかる。また、第一工程の電解液中の無通電
浸漬によっても、この水和クロム酸化物は液中溶解しな
い。以上から、本発明は、先述した”硫酸根を含有しな
い水和クロム酸化物の生成 及び゛第一工程で残留した
水和クロム酸化物中の8042−の除去 の2特徴を有
しておりサンプル表面に生成した水和クロム酸化物は無
通電浸漬によって溶解しないことから、付着微制御が容
易な従って、その付着量が安定な製造法であることが実
証てきる。
Furthermore, the results of measuring the sulfate groups in the hydrated chromium oxide on the sample surface using fluorescent X-rays are shown in FIG. From Figure 3, the sulfate radicals in the hydrated chromium oxide are reduced by the anodizing treatment in the second step, and the sulfate radicals generated in the first step are removed, and a sample of hydrated chromium oxide containing no sulfate radicals is obtained. It can be seen that it can be generated on the surface (
3 ASD or more, preferably 5 ASD or more). Further, FIG. 4 shows the change in the amount of hydrated chromium oxide on the sample surface after electrolysis in the second step and non-current immersion in the electrolytic solution. As shown in FIG. 4, it can be seen that the hydrated chromium oxide produced on the sample surface in the second step does not dissolve in the electrolyte. Further, even by non-current immersion in the electrolyte solution in the first step, this hydrated chromium oxide does not dissolve in the solution. From the above, the present invention has the above-mentioned two characteristics: "generation of hydrated chromium oxide containing no sulfate groups" and "removal of 8042- from the hydrated chromium oxide remaining in the first step". Since the hydrated chromium oxide formed on the surface does not dissolve by non-current immersion, it has been demonstrated that this is a manufacturing method that allows for easy fine control of adhesion and, therefore, a stable amount of adhesion.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

以下に示す様にして本発明処理鋼板と本発明外の比較電
解クロメート処理鋼板との比較を行なった。
A comparison was made between the steel sheet treated according to the present invention and a comparative electrolytic chromate treated steel sheet other than the present invention as shown below.

〔実施例1〕 冷延鋼板を陰極とし、Cry3: 100 g/l、 
Na5CN: 0.5 i / l、  l’Ja2S
iFa : 711/11を含有すルミ解りロメート処
理液中で、液温50℃、電流密度20ASD、電解時間
2 secで電解クロメート処理を行ない、そして無通
電浸漬を2 sec間行なうことによって、水和クロム
酸化物5m9/ゴ、金属クロム150m9 / m’冷
延鋼板表面に付着させた。次いで、この鋼板を陽極とし
て、Crys : 50 g / l を含有する電解
クロメート処理液中で、液温40°C1電流密度10A
SD1電解時間0.5SeCで処理した。
[Example 1] A cold rolled steel plate was used as a cathode, Cry3: 100 g/l,
Na5CN: 0.5 i/l, l'Ja2S
Hydration was achieved by performing electrolytic chromate treatment in a luminophore treatment solution containing iFa: 711/11 at a temperature of 50°C, a current density of 20 ASD, and an electrolytic time of 2 seconds, followed by non-current immersion for 2 seconds. 5 m9/m' of chromium oxide and 150 m9/m' of metallic chromium were deposited on the surface of a cold-rolled steel sheet. Next, this steel plate was used as an anode in an electrolytic chromate treatment solution containing 50 g/l of Crys at a temperature of 40° C. and a current density of 10 A.
The treatment was carried out at SD1 electrolysis time of 0.5 SeC.

〔実施例2〕 第二工程の陽極処理の電解液をCrO3: 50 g/
ILH2So4: 0.39/l  含有したものとし
た以外は、実施例1と同じ条件で冷延鋼板を処理した。
[Example 2] The electrolyte for the second step of anodization was CrO3: 50 g/
A cold rolled steel sheet was treated under the same conditions as in Example 1, except that ILH2So4: 0.39/l was contained.

〔比較例1〕 冷延鋼板を陰極とし、Cry、 : 100 g/ 6
.Na5CN: 0.59/L Na2SiF6: 7
 g/lを含有する電解液中で、液温50°C1電流密
度30ASD、電解時間1.5SeCで電解クロメート
処理を行ない、そして無通電浸漬を2 sec間行なう
ことによって、水和クロム酸化物5 m9 / m’、
金属クロム1001n9/m’冷延鋼板表面に付着させ
た。次いで、この鋼板を陰極として、CrO3:50g
/lを含有する電解クロメート処理液中で、液温50 
’C1電流密度30ASD −処理時間1 secでク
ロメート処理した。
[Comparative Example 1] Using a cold rolled steel plate as a cathode, Cry: 100 g/6
.. Na5CN: 0.59/L Na2SiF6: 7
The hydrated chromium oxide 5 m9/m',
Metallic chromium 1001n9/m' was attached to the surface of a cold-rolled steel sheet. Next, using this steel plate as a cathode, 50 g of CrO3 was added.
/l in an electrolytic chromate treatment solution containing 50%
'C1 Chromate treatment was performed at a current density of 30 ASD and a treatment time of 1 sec.

〔比較例2〕 −4−・    ゛ 第二工程 の陰極処理における電解液をCrO3: 501/l。[Comparative example 2] −4−・  ゛゛ Second process The electrolyte in the cathodic treatment was CrO3: 501/l.

H2SO4:0.3 g/l含有するものとし、電流密
度30ASD、、電解時間0.5secテクロメート処
理スル以外は、比較例1と同し条件で冷延鋼板を処理し
た。
A cold-rolled steel sheet was treated under the same conditions as in Comparative Example 1, except that it contained 0.3 g/l of H2SO4, a current density of 30 ASD, and an electrolytic time of 0.5 sec, except that the techromate treatment was not performed.

〔比較例3〕 冷延鋼板を陰極として、CrO3:1009/l。[Comparative example 3] Using a cold rolled steel plate as a cathode, CrO3: 1009/l.

Na5CN : 0.5 E/ / i Na25iF
a : 75’ / l!を電解液として、液温50℃
、電流密度30ASD、電解時間] 、5 Secで電
解クロメート処理した。
Na5CN: 0.5 E/ / i Na25iF
a: 75'/l! as the electrolyte, the liquid temperature is 50℃
, current density 30 ASD, electrolysis time], 5 Sec.

以上の処理鋼板について、螢光X線でCr付着量水和ク
りム酸化中SO42−量を測定し、その結果を表−1に
示す。
Regarding the above-treated steel sheets, the amount of Cr deposited and the amount of SO42 during oxidation of hydrated comb were measured using fluorescent X-rays, and the results are shown in Table 1.

表−1 表−1から、本発明鋼板、実施例2の様に第二工程での
電解液中に硫酸根を含有していても鋼板表面に生成した
水利クロム酸化物中には硫酸根が配位しないことがわか
る。また比較例1〜比較例3に示す様に、電解液中の硫
酸根量が少ない程、水和クロム酸化物中の硫酸根は低減
し、比較例1の様に電解液中に硫酸根が添加されていな
くても、鋼板表面上の水和クロム酸化物中にはSO42
−が配位する(第一工程で残留した水和クロム酸化物中
の硫酸根が配位したと思われろ)。また、実施例1〜2
、比較例1〜:3について、処理後にそれぞれの電解液
中で無通電浸漬を5 sec〜20 sec行なった後
の鋼板表面上の水和クロム酸化物置を螢光X線で測定し
た結果を第5図に示す。第5図から、いずれの比較例も
鋼板表面上の水和クロム酸化物が、無通電浸漬によって
減少しており、電解液中で水和クロム酸化物か溶解する
ことがわかった。一方、本発明鋼板の実施例は、いずれ
も、その表面′上の水和クロム酸化物は、無通電浸漬に
よって減少せず、電解液中では水和クロム酸化物が溶解
しないことがわかった。こtIは前述した様に、本発明
鋼板は、水和クロム酸化物中にso4”−が含有しない
ことによると思われろ。
Table 1 From Table 1, it can be seen that even if the electrolyte in the second step of the steel sheet of the present invention contains sulfate groups as in Example 2, sulfate groups are present in the water-use chromium oxide generated on the steel sheet surface. It can be seen that there is no coordination. Furthermore, as shown in Comparative Examples 1 to 3, the smaller the amount of sulfate radicals in the electrolyte, the lower the amount of sulfate radicals in the hydrated chromium oxide. Even if it is not added, SO42 is present in the hydrated chromium oxide on the steel sheet surface.
- coordinates (it seems that the sulfate group in the hydrated chromium oxide remaining in the first step coordinates). In addition, Examples 1 to 2
For Comparative Examples 1 to 3, the results of measuring the hydrated chromium oxide on the steel plate surface using fluorescent X-rays after 5 sec to 20 sec of non-current immersion in each electrolytic solution after treatment are shown below. It is shown in Figure 5. From FIG. 5, it was found that in all comparative examples, the hydrated chromium oxide on the steel plate surface was reduced by non-current immersion, and that the hydrated chromium oxide was dissolved in the electrolytic solution. On the other hand, in all of the examples of the steel sheets of the present invention, it was found that the hydrated chromium oxide on the surface did not decrease by non-current immersion, and the hydrated chromium oxide did not dissolve in the electrolytic solution. This is probably due to the fact that the steel sheet of the present invention does not contain so4''- in the hydrated chromium oxide, as described above.

以上説明したように、本発明によれば、鋼板表面の水和
クロム酸化物が電解液中で無通電浸漬時に溶解しないこ
とから、工業的製造ラインでは、簡便な電気的制御によ
って、その水和クロム酸化物量の安定した付着制御が可
能である。
As explained above, according to the present invention, since the hydrated chromium oxide on the surface of the steel sheet does not dissolve in the electrolytic solution during non-current immersion, the hydrated chromium oxide on the surface of the steel sheet can be hydrated by simple electrical control on the industrial production line. It is possible to stably control the amount of chromium oxide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼板表面におけろ水和クロム酸化物晴と第二工
程電流密度との関係を示す図、第2図は鋼板表面の金属
クロムから酸化生成した3価クロムおよび6価クロムの
分配率と第二工程電流密度との関係を示す図、第3図は
鋼板表面の水和クロム酸化物中のSo、 ”−量と第二
工程電流密度との関係を示す図、第4図は無通電浸漬後
における鋼板表面の水和クロム酸化物量と第二工程電解
液中浸漬時間との関係を示す図、第5図は、無通電浸漬
時間と鋼板表面の水和クロム酸化物量との関係を示す図
である。 出願人 日本鋼管株式会社 代理人 堤敬太部 外1名 第1図 第2図 葎二工輯電jL敦71(ASD) 第3図
Figure 1 shows the relationship between hydrated chromium oxide dispersion on the steel plate surface and the second process current density, and Figure 2 shows the distribution of trivalent and hexavalent chromium produced by oxidation from metallic chromium on the steel plate surface. Figure 3 is a diagram showing the relationship between the So content in the hydrated chromium oxide on the steel plate surface and the second process current density, Figure 4 is a diagram showing the relationship between the So content and the second process current density. A diagram showing the relationship between the amount of hydrated chromium oxide on the steel plate surface after non-current immersion and the immersion time in the second step electrolyte solution, Figure 5 shows the relationship between the non-current immersion time and the amount of hydrated chromium oxide on the steel plate surface Applicant Nippon Steel Tube Co., Ltd. Agent Keita Tsutsumi and one other person Figure 1 Figure 2 Obani Kogyoden JL Atsushi 71 (ASD) Figure 3

Claims (1)

【特許請求の範囲】 鋼板を陰極電解処理して、その表面に金属クロム層を形
成し、 次いで、Cr” 2jj/l!以上を含んだメッキ浴で
、電流密度3A/dm”以上で、前記鋼板を陽極電解処
理することによって、前記鋼板の表面に形成された前記
金属クロム層の一部の金属クロムを、Crs十の水和ク
ロム酸化物に変えて、前記鋼板の表面に、下層として前
記金属クロム層を、上層としてCr3+の水和クロム酸
化物層を形成するようにしたことを特徴とする電解クロ
メート処理鋼板の製造方法。
[Claims] A steel plate is subjected to cathodic electrolytic treatment to form a metallic chromium layer on its surface, and then the above-mentioned plating is carried out at a current density of 3 A/dm or more in a plating bath containing Cr2jj/l! or more. By subjecting the steel plate to anodic electrolytic treatment, a part of the metallic chromium layer formed on the surface of the steel plate is changed into a hydrated chromium oxide of Crs, and the metal chromium is added to the surface of the steel plate as a lower layer. A method for manufacturing an electrolytically chromate-treated steel sheet, characterized in that a hydrated chromium oxide layer of Cr3+ is formed as an upper layer of the metal chromium layer.
JP7125582A 1982-04-30 1982-04-30 Manufacture of electrolytically chromated steel plate Granted JPS58189391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7125582A JPS58189391A (en) 1982-04-30 1982-04-30 Manufacture of electrolytically chromated steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7125582A JPS58189391A (en) 1982-04-30 1982-04-30 Manufacture of electrolytically chromated steel plate

Publications (2)

Publication Number Publication Date
JPS58189391A true JPS58189391A (en) 1983-11-05
JPH0214437B2 JPH0214437B2 (en) 1990-04-09

Family

ID=13455413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7125582A Granted JPS58189391A (en) 1982-04-30 1982-04-30 Manufacture of electrolytically chromated steel plate

Country Status (1)

Country Link
JP (1) JPS58189391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403464B1 (en) * 1998-12-09 2003-12-18 주식회사 포스코 Surface treatment method excellent in corrosion resistance and paint adhesion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403464B1 (en) * 1998-12-09 2003-12-18 주식회사 포스코 Surface treatment method excellent in corrosion resistance and paint adhesion

Also Published As

Publication number Publication date
JPH0214437B2 (en) 1990-04-09

Similar Documents

Publication Publication Date Title
EP2054539B1 (en) Method for deposition of chromium layers as hard- chrome plating, electroplating bath and hard- chrome surfaces
US4861441A (en) Method of making a black surface treated steel sheet
JPS58181889A (en) Preparation of single surface zinc electroplated steel plate
US2693444A (en) Electrodeposition of chromium and alloys thereof
US4007099A (en) Cathodic production of micropores in chromium
US4591416A (en) Chromate composition and process for treating zinc-nickel alloys
JPS58189391A (en) Manufacture of electrolytically chromated steel plate
US2469015A (en) Method and compositions for producing surface conversion coatings on zinc
US1496845A (en) Process of producing pure chromium by electrolysis
JPS63274797A (en) Production of zn or zn alloy electroplated steel sheet having superior chemical treatability
RU2814771C1 (en) Method of electroplating chromium coatings from electrolyte based on hexahydrate of chromium (iii) sulphate and sodium formate
JPS6028918B2 (en) Post-treatment method for non-plated side of single-sided zinc-based electroplated steel sheet
JPH01234596A (en) Electrolytic treatment of steel sheet plated with chromium
JPS5996292A (en) Production of steel sheet electroplated on one side
JPH03162598A (en) Production of lustrous black steel material
TW202039933A (en) Method for producing surface-treated steel sheet, and surface-treated steel sheet
KR100345718B1 (en) Chrome plating liquids and a method for formation of porous metallic chromium coating layer on steel sheets using it
JP2000282296A (en) Steel sheet for coating excellent in hydrogen brittleness resistance and corrosion resistance and its production
SU1137114A1 (en) Method for producing chromium coatings
CA1039227A (en) Anode coated with magnetite and the manufacture thereof
JPS6191400A (en) Post treatment of non-plating surface of steel sheet having composite organic plating on one surface
JPH07173684A (en) Surface treatment of metallic aluminum material
JPH06235092A (en) Method for electrolytically chromating steel sheet excellent in color tone stability
JPS62156297A (en) Production of surface treated steel products having high degree of blackening and excellent corrosion resistance and discoloration resistance
JPS63143292A (en) Production of electrolytically chromated steel sheet having excellent corrosion resistance