JPS58189036A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPS58189036A
JPS58189036A JP57072697A JP7269782A JPS58189036A JP S58189036 A JPS58189036 A JP S58189036A JP 57072697 A JP57072697 A JP 57072697A JP 7269782 A JP7269782 A JP 7269782A JP S58189036 A JPS58189036 A JP S58189036A
Authority
JP
Japan
Prior art keywords
catalyst
purification
exhaust gas
zirconium
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57072697A
Other languages
Japanese (ja)
Inventor
Keisuke Tashiro
圭介 田代
Nobuo Takei
宣夫 竹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP57072697A priority Critical patent/JPS58189036A/en
Publication of JPS58189036A publication Critical patent/JPS58189036A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain an extremely inexpensive catalyst usable as a three-component catalyst for purifying exhaust gas, by supporting palladium, iron and zirconium on a ceramic carrier. CONSTITUTION:As the exhaust gas purifying catalyst of an automobile, palladium, iron and zirconium are supported as catalytic metals by a ceramic carrier. Because thus obtained catalyst has high CO and HC purifying efficiency in a side rich in CO and H2 and shows high purifying efficiency with respect to three components of CO/HC/NOX, it is sufficiently usable as a three-component catalyst and is extremely inexpensive.

Description

【発明の詳細な説明】 本尭明は自動車の排気ガス浄化に用いられる触媒に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst used for purifying exhaust gas from automobiles.

近年、ドライバビリティ、燃料に対する向上費求から、
電子制御式燃料供給システムを搭載した自動車が増大し
ている。こうし次自動車は通當癖気ガス浄化のために3
元触媒を用いている。
In recent years, due to the demand for improved drivability and fuel costs,
The number of automobiles equipped with electronically controlled fuel supply systems is increasing. This next car is commonly used for gas purification.
The original catalyst is used.

かかる触媒は理−空燃比〔空気/燃料(ム/1)=14
7〕近傍VCふいてCo/HC/NOxの高い浄化性能
會費求されるため、従来では!ラチスーロノウム系又は
グラテナ−・豐ラジウムーロジウム系のものが用いられ
ている。しかしながらこれら触媒け^価な貴金属から構
成されているため、自動車の付加コストが高騰化すると
いう欠点があった。
Such a catalyst has an air-fuel ratio [air/fuel (mu/1)=14
7] Because high purification performance of Co/HC/NOx is required by wiping the nearby VC, conventionally! Latitudinium-based materials or Gratener-radium-rhodium materials are used. However, since they are composed of precious metals with high catalytic value, they have the disadvantage of increasing the additional cost of automobiles.

これに対し、本発明者らは上述した従来の3元触媒に代
るべき触媒成分につき種々研究を1ね次結果、3元触媒
と酸化触媒の主たる相違点が理論空燃比より燃料が多い
@(以下、リッチサイドと称す)におけるCO浄化率、
HC浄化率の優劣の差であることを究明した。
In contrast, the present inventors have conducted various studies on catalyst components that should replace the conventional three-way catalyst mentioned above, and have found that the main difference between the three-way catalyst and the oxidation catalyst is that the fuel is higher than the stoichiometric air-fuel ratio. (hereinafter referred to as rich side) CO purification rate,
It was determined that this was the difference in HC purification rate.

しかして、本発明者らは上記知見に基づき鋭意研究した
結果、セラミ、り担体に・ヤラジウムと共に鉄、ノルコ
ニウムt@媒金楓として相持させることによって、リッ
チサイドのCO浄化率、HC浄化率の向上が著しく、従
来の3元触媒と同様、Co/HC/NOxの3成分共高
い浄化率を示し、十分3元触媒として使用可能で極めて
安価な排気ガス浄化触1sを見い出し友。
As a result of intensive research based on the above findings, the inventors of the present invention found that by combining iron and norconium with yaradium in the ceramic carrier as a medium, the CO purification rate and HC purification rate on the rich side could be improved. We have discovered an extremely inexpensive exhaust gas purification catalyst that has a remarkable improvement, shows high purification rates for the three components Co/HC/NOx, and can be fully used as a three-way catalyst, just like the conventional three-way catalyst.

即ち、本発明の排気ガス浄化触媒はセラミック担体に・
ぐラジウムと鉄とジルコニウムを触媒金属として担持せ
しめたものである。
That is, the exhaust gas purification catalyst of the present invention is applied to a ceramic carrier.
It supports radium, iron, and zirconium as catalyst metals.

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

実施例 壕ず、硝酸・母うノウム溶液(paNo、 ts&/1
00履t)中に活性アルミナがウォッシュコートされ次
ハニカム構造のセラミック担体t−5時間浸漬し、骸セ
ラミ、り担体に硝酸パラジウムを含浸させた。つづいて
、このセラミ、り担体を130℃で3時間乾燥させた後
、500℃で3時間焼成してノ9ラジウムコーティング
セラミック担体會作製した。
Example: Nitric acid/mother porosity solution (paNo, ts&/1
The ceramic carrier having a honeycomb structure was wash-coated with activated alumina in 0.00 t) and then immersed for 5 hours, and the ceramic carrier was impregnated with palladium nitrate. Subsequently, this ceramic carrier was dried at 130° C. for 3 hours and then fired at 500° C. for 3 hours to prepare a radium-coated ceramic carrier.

次いで、硝酸第二鉄溶液(0,1+no4/z)に前記
パラジウムコーティングセラミ、り担体會5時1’&!
11を漬しテlI4111g二鉄f:19サ−v、13
0℃で31#間乾燥し友後500℃で3時間焼成してノ
!ラノウム/鉄コーチイングセライ、り担体を作製した
Next, the palladium-coated ceramic was added to the ferric nitrate solution (0,1+no4/z) and the carrier was heated to 5:1'&!
Soak 11 TeI4111g diiron f: 19 sa-v, 13
Dry at 0℃ for 31 minutes, then bake at 500℃ for 3 hours! A lanoum/iron coating carrier was prepared.

次いで、オキシ硝酸ジルコニウム溶液に前記・臂うゾウ
ム/鉄コーティングセラミ、り担体15時間浸漬してオ
キシ硝酸ジルコニウムteaさせ、130℃で3時間乾
燥させた後、500℃で3時間焼成して・ダラノウム/
鉄/ジルコニウムがコーティングされた排気ガス浄化触
ts1に製造した。
Next, the above-mentioned zirconium/iron coated ceramic carrier was immersed in the zirconium oxynitrate solution for 15 hours to form a zirconium oxynitrate solution, dried at 130°C for 3 hours, and then fired at 500°C for 3 hours. /
An iron/zirconium coated exhaust gas cleaning contact TS1 was manufactured.

比較例1 前記実施例と同様、硝酸・量ラジウム溶液中にセラミッ
ク担体を長時間浸漬して硝酸・9ラノウムを充分な量含
浸させ、130℃で十分乾燥させ友後、500℃で3時
間焼成してノクラノウムがコーティングされた排気ガス
触媒を製造し九〇比較例2 前記実施例と同様な方法で作製した・臂うノウムコーテ
ィングセラミック担体t、オキシ硝酸ノルコニウム溶液
(0,1mot/z )に3時間浸漬してオキシ硝酸ゾ
ルコニウムを含浸させ、130℃で3時間乾燥させた後
、500℃で3時間焼成してノ!ラジウム/ジルコニウ
ムがコーティングされた排気ガス浄化触mをII!した
Comparative Example 1 Similar to the above example, a ceramic carrier was immersed in a nitric acid/radium solution for a long time to impregnate a sufficient amount of nitric acid/9ranium, thoroughly dried at 130°C, and then fired at 500°C for 3 hours. 90 Comparative Example 2 An exhaust gas catalyst coated with Norconium oxynitrate (0.1 mot/z) was prepared by the same method as in the previous example. After soaking for hours to impregnate zolconium oxynitrate, drying at 130°C for 3 hours, and baking at 500°C for 3 hours. Exhaust gas purification catalyst II coated with radium/zirconium! did.

比較例3 前記実施例と同様な方法で作製し九ノ母うノウムコーテ
ィングセラミック担体t、 l14#第二鉄溶液(0,
1mO’/z)に3時間浸漬して硝酸謝二鉄會含浸させ
、130℃で3時間乾燥させた後、500℃で3時間焼
成してパラジウム/鉄がコーティングされた排気ガス浄
化触tI&を製造した。
Comparative Example 3 A ceramic carrier coated with cylindrical porcelain was prepared in the same manner as in the above example.
1 mO'/z) for 3 hours to impregnate it with nitric acid, dried at 130°C for 3 hours, and then fired at 500°C for 3 hours to obtain a palladium/iron coated exhaust gas purifying catalyst. Manufactured.

しかして、得られた本実施例の浄化触媒及び比IIR例
1〜3の浄化触媒の活性試験を第1図に示す活性試験a
mを用いて行なっ7’j 。
The activity tests of the purification catalyst of this example and the purification catalysts of Specific IIR Examples 1 to 3 were conducted as shown in FIG.
Do this using m 7'j.

即ち、上部にヒータ1が巻装され九反尾管2内O触縄充
填11!3に前記各触媒4を予め充填する。つづいて、
co/H21合ガスlンペt。
That is, the heater 1 is wound around the upper part, and each of the catalysts 4 is filled in advance in the O-touch filling 11!3 in the nine tail tube 2. Continuing,
co/H21 combined gas pump.

C3H6/C1H1ll混合ガスメンベロ、02メンベ
ア、Co、がンペ8、No &ンベ9、第1のN2&ン
ベ10及び第2ON、 &ンベIノから夫々ガスを自動
軍の運転時の排気ガス組成となるように混合器12に供
給し、第1.第2.第3のパルプJJI 、13m−1
3*を開き、第4.第5.第6のパルプ134 + I
JB 、136  を閉じて混合器12からの混合ガス
中O成分組成が一定となり、かつ流量が安定するまで反
応管2に対するパイノぐスを通して諸す。但し、lIl
!2のN2メンベ1ノからのN2ガスは水が満たされた
加湿ム14t−通して混合器12に供給される。混合r
i11と第1゜第4のパルプ131e134の分枝点の
間にFi運点計15が介装されている。
C3H6/C1H1ll mixed gas Menbero, 02 Menbea, Co, Ganpe 8, No & Nbe 9, 1st N2 & Nbe 10 and 2nd ON, & Nbe I No respectively, the exhaust gas composition during automatic military operation. 1. Second. Third pulp JJI, 13m-1
Open 3* and open 4th. Fifth. 6th pulp 134 + I
JB, 136 is closed and the pipe gas is passed through the reaction tube 2 until the O component composition in the mixed gas from the mixer 12 becomes constant and the flow rate becomes stable. However, lIl
! The N2 gas from the N2 membrane 1 of No. 2 is supplied to the mixer 12 through a humidifying chamber 14t filled with water. mixed r
An Fi point meter 15 is interposed between i11 and the branch points of the first and fourth pulps 131e134.

次いで、混合ガス中の成分組成が一足となった時点で第
1.第2.第3のパルプ131,13.。
Next, when the component composition in the mixed gas reaches the same level, the first. Second. Third pulp 131, 13. .

13、を閉じ、$4.第5.@60パルゾJ34゜JJ
s+JJst開いてヒータ1によシ自動車の触媒装置と
声j程度に加熱された反応管2に混合ガスを供給し、触
1s率を通りたガスをドレインポ、ト15、諏量計17
、開放し九第6の・々ル/13・を介して分析計18に
導入し、記録119で記録し、各触媒による浄化性能t
piべた。−]様に02メンベアからの酸素供給l【変
えて空燃比(ム/r )の異なる混合ガスについて6触
mによる浄化性能會論べた。しかるIc、co浄化率を
第2図に、HC浄化率を1g3図に夫々示した。なお、
第2図中OA、は本1j!施例の触lIAによるCO浄
化%性線、B1は比較例1の触媒による同特性−1CI
は比較例2の触tsKよる同特性線、Dlは比較例3の
触媒による同特性−である。鯖3医中のム婁は本寮m省
の触媒によるHC浄化特性線、B1は比較例1の触媒に
よる同%性線、C言は比較例2の触媒による同特性線、
DIは比較例30触媒による同特性線である。
13, close, $4. Fifth. @60 Palzo J34゜JJ
Open the heater 1 to supply the mixed gas to the catalyst device of the automobile and the reaction tube 2 heated to about 100 m, and the gas that has passed through the 1s rate to the drain port, to
, opened and introduced into the analyzer 18 through the 9th 6th cable /13, recorded in the record 119, and the purification performance t of each catalyst.
I loved pi. -], we discussed the purification performance of mixed gases with different air-fuel ratios (m/r) using 6 tm of oxygen supplied from 02 Menbea. The Ic and co purification rates are shown in Figure 2, and the HC purification rates are shown in Figure 1g3. In addition,
OA in Figure 2 is book 1j! The CO purification % characteristic line by the catalyst of Example 1IA, B1 is the same characteristic -1CI by the catalyst of Comparative Example 1
is the same characteristic line due to the catalyst of Comparative Example 2, and Dl is the same characteristic line due to the catalyst of Comparative Example 3. The 3-year-old mackerel is the HC purification characteristic line by the catalyst of Honryo M Ministry, B1 is the same % characteristic line by the catalyst of Comparative Example 1, C word is the same characteristic line by the catalyst of Comparative Example 2,
DI is the same characteristic line for Comparative Example 30 catalyst.

第2図及び1143図から明らかな如く、ノfラノウム
/鉄/ジルコニウムを担持した本実施例の浄化触媒は理
論空燃比(ム/v= 14.70 )より燃料が鳥い仙
、つまりリッチサイドのCO浄化率が最も^く、かつリ
ッチサイドのHe浄化率が・ダラノウム/ジルコニウム
′fr担持した比較例2の浄化触媒より若干劣るものの
、十分なHC浄化性能を有することがわかる。これに対
し、・臂うノウ、佼′ジルコニウム會担持した比較例2
の浄化触媒はリッチすイドのHc m’化率が鳥いもの
の、CO浄化率が劣り、・fラノウム/鉄を担持した比
較例30浄化触媒はり、チサイドのCO浄化率が比較ガ
2のもの比べて高いものの、He浄化率が極端に劣る。
As is clear from FIG. 2 and FIG. It can be seen that the catalyst has the highest CO purification rate, and has sufficient HC purification performance, although the rich side He purification rate is slightly inferior to the purification catalyst of Comparative Example 2 in which Dalanium/zirconium 'fr is supported. On the other hand, Comparative Example 2 in which zirconium was supported
The purification catalyst of Comparative Example 30, which supported rich acid, had a better Hc m' conversion rate, but its CO purification rate was lower than that of Comparative Example 30, which supported ・franium/iron, and the CO purification rate of Tiside was that of Comparative Example 2. Although it is relatively high, the He purification rate is extremely inferior.

このように本発明の浄化触媒が優れた浄化性能を有する
のけ、・々ラジウムに鉄とジルコニウムを併用すること
により、リッチサイドのCO浄化率に関してはそれらの
相乗効果によって、He浄化率に関してはF・の浄化率
の低さfZrの浄化率の補完効果によってなされるもの
と考えられる。なお、本実施例及び比較例1〜3の浄化
触媒はリッチサイドでのNOx浄化率は80チ以上であ
った。
Although the purification catalyst of the present invention has excellent purification performance as described above, by using iron and zirconium in combination with radium, the rich side CO purification rate is reduced due to their synergistic effect, while the He purification rate is reduced due to their synergistic effect. This is thought to be due to the complementary effect of the low purification rate of fZr. Note that the purification catalysts of the present example and comparative examples 1 to 3 had a NOx purification rate of 80 degrees or more on the rich side.

また、得られた本実施例と比較例IC+浄化触媒を空気
中で950℃の温度下にて100時間シンターリングを
行なった彼、前述し7を第1図図示の活性試験装置it
を用いてCO浄化率、HC#化率及びNOx浄化率を調
べた。その結果を下記第1表に示した。更に、上記シン
ターリング後の各触媒の低温活性度合を−べた。その結
果を下記第2衣に示した。
In addition, the obtained present example and comparative example IC + purification catalyst were sintered in air at a temperature of 950°C for 100 hours.
The CO purification rate, HC# conversion rate, and NOx purification rate were investigated using the following. The results are shown in Table 1 below. Furthermore, the low-temperature activity degree of each catalyst after the above-mentioned sintering was compared. The results are shown in Section 2 below.

第  1  表 第  2  表 上し第1表及び第2表よシ本実施例の浄化触媒は実際の
使用においても十分な浄化性能を有することがわかる。
From Table 1 and Table 2, it can be seen that the purification catalyst of this example has sufficient purification performance even in actual use.

以上詳述した如く、本発明によればリッチサイドのCO
#化率、He浄化率が高く、従来の萬価な3元触媒と同
様、co、yc、へOxの3成分共高い浄化率を示し、
もって3元触媒として十分使用可能で極めて安価な排気
ガス浄化触ts會提供できるものである。
As detailed above, according to the present invention, rich side CO
It has a high conversion rate and He purification rate, and shows high purification rates for the three components of CO, YC, and Ox, just like the conventional three-way catalyst.
As a result, it is possible to provide an extremely inexpensive exhaust gas purification catalyst that can be fully used as a three-way catalyst.

図(3)の簡単な脱明 第1図は本発明の実施例で用いた触媒の活性試験装置l
t−示す概略図、第2図は空燃比変化に対する各触媒の
CO浄化率を示す特性図、183図は空燃比変化に対す
る各触媒のHe浄化率を示す特性図である。
Figure 1 shows the catalyst activity test equipment used in the examples of the present invention.
FIG. 2 is a characteristic diagram showing the CO purification rate of each catalyst with respect to changes in the air-fuel ratio, and FIG. 183 is a characteristic diagram showing the He purification rate of each catalyst with respect to changes in the air-fuel ratio.

1・・・ヒータ、2・・・反応器、3・・・触媒充填筒
、4・・・触媒、5〜11・・・lンベ、1j・・・混
合器、18・・・分析計、19・・・記録計。
DESCRIPTION OF SYMBOLS 1... Heater, 2... Reactor, 3... Catalyst packed cylinder, 4... Catalyst, 5-11... Lumper, 1j... Mixer, 18... Analyzer, 19...Recorder.

出願人復代理人  弁理士 鈴 江 武 彦第2図 窒f比(A/F) 3i131jA !ど枢AIF)Applicant Sub-Agent Patent Attorney Suzue Takehiko Figure 2 Nitrogen f ratio (A/F) 3i131jA ! AIF)

Claims (1)

【特許請求の範囲】[Claims] セラミック担体にパラジウムと鉄とジルコニウム會触媒
金属として担持せしめてなる排気ガス浄化触媒。
An exhaust gas purification catalyst made by supporting palladium, iron, and zirconium as catalytic metals on a ceramic carrier.
JP57072697A 1982-04-30 1982-04-30 Catalyst for purifying exhaust gas Pending JPS58189036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57072697A JPS58189036A (en) 1982-04-30 1982-04-30 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57072697A JPS58189036A (en) 1982-04-30 1982-04-30 Catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS58189036A true JPS58189036A (en) 1983-11-04

Family

ID=13496813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57072697A Pending JPS58189036A (en) 1982-04-30 1982-04-30 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS58189036A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857497A (en) * 1985-11-08 1989-08-15 Shell Oil Company Supported metal catalysts and use thereof
EP0337446A2 (en) * 1988-04-13 1989-10-18 Phillips Petroleum Company Oxidation of carbon monoxide and catalyst therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857497A (en) * 1985-11-08 1989-08-15 Shell Oil Company Supported metal catalysts and use thereof
EP0337446A2 (en) * 1988-04-13 1989-10-18 Phillips Petroleum Company Oxidation of carbon monoxide and catalyst therefor

Similar Documents

Publication Publication Date Title
CN102076407B (en) Exhaust gas purification catalyst
JP4814887B2 (en) Honeycomb catalyst body and manufacturing method thereof
JPS63100919A (en) Purifying method for exhaust gas and catalyst
US20210086135A1 (en) Catalytically active particulate filter
JPH01270946A (en) Catalyst for purifying exhaust gas, and its production and use
US8506912B1 (en) Exhaust treatment system including a nickel-based catalyst
JPH03207446A (en) Exhaust gas purifying catalyst
JPH01228546A (en) Catalyst and method for purifying exhaust gas of internal combustion engine
JPS6146175B2 (en)
JPS58177153A (en) Methanol reforming catalyst
JP2000176249A (en) Purifying device of exhaust gas from internal combustion engine, purifying method of exhaust gas, and purifying catalyst of exhaust gas
US7384889B2 (en) Exhaust gas purifying catalyst and exhaust gas purifying system
JP2000508970A (en) Three-way catalyst for exhaust gas treatment
JPS6260139B2 (en)
JP2001232195A (en) Catalyst body
CN101678276A (en) Oxygen storage/release material and exhaust gas purifying catalyst comprising the same
JPS58189036A (en) Catalyst for purifying exhaust gas
EP1844843B1 (en) Use of an exhaust gas purifying catalyst composition containing zeolite for reducing hydrogen sulfide
JPS63185452A (en) Non-noble metal combustion catalyst and its production
JPH05277376A (en) Nox removing catalyst and nox removing method utilizing the catalyst
WO2020105545A1 (en) Exhaust-gas purification apparatus and method for manufacturing same
JP3498753B2 (en) Exhaust gas purification catalyst and method for producing the same
JPS6178439A (en) Catalyst for purifying exhaust gas
JP2003038936A (en) Exhaust gas purifying apparatus
JPS58189037A (en) Catalyst for purifying exhaust gas