JPS58187299A - Production of fused flux for submerged arc welding - Google Patents

Production of fused flux for submerged arc welding

Info

Publication number
JPS58187299A
JPS58187299A JP6952982A JP6952982A JPS58187299A JP S58187299 A JPS58187299 A JP S58187299A JP 6952982 A JP6952982 A JP 6952982A JP 6952982 A JP6952982 A JP 6952982A JP S58187299 A JPS58187299 A JP S58187299A
Authority
JP
Japan
Prior art keywords
hydrogen
flux
submerged arc
manganese dioxide
arc welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6952982A
Other languages
Japanese (ja)
Other versions
JPS619115B2 (en
Inventor
Isao Sugioka
杉岡 勲
Hajime Motosugi
本杉 元
Masami Yamaguchi
山口 将美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6952982A priority Critical patent/JPS58187299A/en
Publication of JPS58187299A publication Critical patent/JPS58187299A/en
Publication of JPS619115B2 publication Critical patent/JPS619115B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents

Abstract

PURPOSE:To prevent the welding defect occurring in hydrogen, by using manganese dioxide contg. a speific ratio of particles having specific grain sizes as an MnO raw material for a fused flux for submerged arc welding. CONSTITUTION:Manganese dioxide controlled in grain size in such a way that particles of <=350mu particle size are contained at >=65% by wt% is used as an MnO raw material for a fused flux for submerged arc welding. Since the manganese dioxide having such grain sizes permits easy removal of the moisture occluded therein, the effect of reducing the hydrogen in the flux is substantial and prevents the generation of any welding defect.

Description

【発明の詳細な説明】 本発明は水素による溶接欠陥を防止するのに有効な低水
素潜弧溶接用溶融型7う、クスの製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a melting mold for low hydrogen submerged arc welding which is effective in preventing welding defects caused by hydrogen.

潜弧溶接において低温割れ、ピット、ブローホール等の
水素に起因する溶接欠陥は重大な問題となっている。こ
れら欠陥の防止のため溶接材料面よりフラックスの低水
素化が種々検討されてきたが、低水素の代償としてじん
性の劣化あるいは溶接作業性の悪化が避けられなかった
。このため現状では、被溶接部の予熱、溶接部の後熱あ
るいは被溶接部の清浄化郷の溶接施工面から防止対策が
行われている。しかし、これらの作業工数増加は施工能
事の低下をきたす丸め、低水素フラックスの提供が強く
要望されている。
Welding defects caused by hydrogen, such as cold cracks, pits, and blowholes, have become a serious problem in submerged arc welding. In order to prevent these defects, various efforts have been made to reduce the hydrogen content of the flux from the perspective of welding materials, but as a trade-off for the low hydrogen content, deterioration in toughness or welding workability was unavoidable. Therefore, at present, preventive measures are taken from the viewpoint of welding work, such as preheating of the welded part, post-heating of the welded part, and cleaning of the welded part. However, these increased man-hours lead to a decrease in construction efficiency, and there is a strong demand for the provision of low-hydrogen fluxes.

そこで本発明者らは、7う、クス組成を変えることなく
より低水素化する方法を鋭意検討の結果、溶融型7う、
クスの水素はフラックス原材料中の吸蔵水分の影響が大
きく、この吸蔵水分は細粒粉子原材料を使用して溶融す
ることによや容易に除去され、7ラツクスの水素が低減
することを見い出し九。特にMnO成分原材料として一
般に使用される2酸化マンガンの吸蔵水分が他成分原材
料に比べ非営に多く、この2酸化マンガン使用の場合に
はより著るしい水素低減効果のあることを見い出した。
Therefore, the inventors of the present invention have conducted intensive studies on a method for lowering the hydrogen content without changing the composition of the molten type 7g.
It was discovered that hydrogen in flux is largely affected by occluded moisture in flux raw materials, and that this occluded moisture can be more easily removed by melting using fine powder raw materials, reducing hydrogen by 7 lux. . In particular, it has been found that manganese dioxide, which is commonly used as a raw material for the MnO component, has a higher amount of occluded water than other raw materials, and that the use of manganese dioxide has a more significant hydrogen reduction effect.

すなわち第1表はそれぞれ粒度の異なる珪砂、2酸化マ
ンガン、マグネシアクリンカ−1螢石を組合わせて46
%910□、40%Mn0,10%Mg0 。
In other words, Table 1 shows the combination of silica sand, manganese dioxide, and magnesia clinker-1 fluorite with different particle sizes.
%910□, 40%Mn0, 10%Mg0.

4慢Ca F2の組成を有する5種類の溶融型フラック
スを製造し、それによる溶接金属の拡散性水素量を第2
表に示す試験方法によシ測定した結果を示したものであ
るが、水素量におよぼす原材料粒度の影響は珪砂、マグ
ネシアクリンカ−1螢石では粗粒に比べ細粒原材料で若
干の水素量低減傾向が見られる程度であるのに対し、2
酸化マンガンの場合は粒度を細かくすることKよって著
しく水素量が低下し九。
Five types of molten fluxes having a composition of 40% CaF2 were manufactured, and the amount of diffusible hydrogen in the weld metal was determined by
The results are shown in the results measured using the test method shown in the table, and the effect of raw material particle size on hydrogen content is that for silica sand and magnesia clinker-1 fluorite, the hydrogen content is slightly lower with fine grain raw materials than with coarse grains. While there is a tendency, 2
In the case of manganese oxide, reducing the particle size significantly reduces the amount of hydrogen.

11第1図は、同じ(46% 8102.40%Mn0
110%MgO14チCa F2の組成を有する溶融型
フラ、クスにおいて、その製造に使用した2酸化マンガ
ンの粒子構成における350μ以下の粒子含有率と第2
表に示す試験方法による拡散性水素量の関係を示したも
のであり、2酸化マンガンの小径粒子を多く含有する程
水素量は減少した。
11 Figure 1 shows the same (46% 8102.40%Mn0
In the molten type FLA, which has a composition of 110% MgO14, CaF2, the particle content of 350μ or less in the particle structure of manganese dioxide used for its production and the second
This table shows the relationship between the amount of diffusible hydrogen according to the test method shown in the table, and the amount of hydrogen decreased as more small-diameter particles of manganese dioxide were contained.

このように、溶融型7ラツクスの原材料のうち特に2酸
化マンガンの粒度を細かくすることによって、溶接金属
中の拡散性水素量の低減が可能であるという全く新しい
知見を得た。
In this way, we have obtained a completely new finding that it is possible to reduce the amount of diffusible hydrogen in the weld metal by making the particle size of manganese dioxide, in particular, finer among the raw materials for the molten 7LAX.

本発明は以上の知見に基〈ものでその要旨とするところ
は、粒子径350μ以下の粒子を、重量−にして65−
以上含有するよう粒度調整した2酸化マンガンをMmO
原材料として用いることを特徴とする潜弧溶接用溶融型
フラックスの製造方法にある。
The present invention is based on the above knowledge, and its gist is that particles with a particle diameter of 350μ or less are
MmO
A method for producing a molten flux for submerged arc welding, which is characterized in that it is used as a raw material.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

溶融W7ラツクス中において水素はOH基として存在す
ると考えられておシ、これは溶融状態の)ラックスに水
分が接触することにより化学的に吸収されるもので、他
の条件が一定の場合には使用した原材料中の水分の多少
が出来上がった7う。
Hydrogen is thought to exist in the form of OH groups in the molten W7 lux, which is chemically absorbed when moisture comes into contact with the molten W7 lux.If other conditions are constant, 7) The amount of water in the raw materials used has been reduced.

クスの水素量に大きく影響する。This greatly affects the amount of hydrogen in the rice cake.

原材料中の水分は付着水分と吸蔵水分とに分けられ、付
着水分は原材料表面に物理的に吸着したもので比較的低
温で乾燥除去することが可能であるため、フラックスの
溶解途中で容易に蒸発除去され最終的々フラックスの水
素にはほとんど関係しない。一方、吸蔵水分は原材料内
部に結晶水、OH基等化学的結合に近い形で存在するも
ので、菫℃程度以上の高温になって初めて除去されるも
のである。
Moisture in raw materials is divided into adhering moisture and occluded moisture. Adhering moisture is physically adsorbed on the raw material surface and can be removed by drying at a relatively low temperature, so it easily evaporates during flux dissolution. It has little to do with the hydrogen that is removed and ultimately in the flux. On the other hand, occluded moisture exists inside the raw material in a form similar to chemical bonds, such as water of crystallization or OH groups, and is removed only when the temperature reaches a high temperature of about 50° C. or higher.

第3表は、溶融型7う、クス製造に用いられる主な原材
料の付着水分および吸蔵水分の分析結果を示すもので、
付着水分は110℃までに除去された水分量を重量法で
求め、吸蔵水分は110℃〜1000℃の間で放出され
る水分量をカールフィ、シャー法で求めたものである。
Table 3 shows the analysis results of the adhering moisture and occluded moisture of the main raw materials used in the production of melt-type rice cakes.
Adhering moisture was determined by gravimetrically determining the amount of moisture removed up to 110.degree. C., and occluded moisture was determined by the Karlfi-Schar method by determining the amount of moisture released between 110.degree. C. and 1000.degree.

この表で判るように、2酸化マンガンは他の原材料に比
べ水分含有量が多く、特に低温では除去することの不可
能な吸蔵水分の多いことが特徴的である。
As can be seen from this table, manganese dioxide has a higher moisture content than other raw materials, and is characterized by a large amount of occluded moisture that cannot be removed, especially at low temperatures.

すなわち、配合原材料に含まれる2酸化マンガンが細粒
の場合には、炉中に投入され溶融フラックスと接触し溶
融されるに到るまでの間の高温にさらされている期間内
にすげやく水分が除去されるため、溶融フラックス中に
は吸収されないのに対し、2酸化iンガンが粗粒の場合
には除去される水分は極く粒子表面層のみに限られ、内
部に水分を含んだまま溶融されるため水分が溶融フラ。
In other words, if the manganese dioxide contained in the blended raw materials is fine particles, it will quickly lose moisture during the period when it is exposed to high temperatures until it is put into the furnace, comes into contact with the molten flux, and is melted. is removed and is not absorbed into the molten flux. On the other hand, when the inorganic dioxide gun is coarse particles, the moisture removed is limited to the surface layer of the particles, leaving moisture inside. Moisture is melted because it is melted.

ジス中にOH基として吸収されるものと考えられる。It is thought that it is absorbed into the dispersion as OH groups.

なお、細粒化によって付着水分の増加が考えられるが、
これは前述のように溶解の初期段階において容易に蒸発
除去されるため、フラックス中の水素量にはほとんど影
響されない。
Furthermore, it is thought that the amount of adhering moisture increases due to grain refinement, but
Since this is easily evaporated and removed in the initial stage of dissolution as described above, it is hardly affected by the amount of hydrogen in the flux.

また、他の原材料については、もともと吸蔵水分量が少
ないため、見掛は上軸粒化してもその大きな効果が認め
られなかったものと考えられる。
In addition, it is considered that other raw materials had a small amount of occluded water to begin with, so even if they were apparently made into upper-shaft granules, no significant effect was observed.

第3表 本発明において、細粒化する原材料を2酸化iンがンの
みに限定したのはこの理由による。また、その粒度構成
について粒子径350μ以下の粒子の含有率を重量−に
して65q6以上としたのは、65%未満では粒度構成
が粗くなりフラックス中の水素低減効果が不十分となる
ことによるもので、この含有率が多くな〉粒度構成が細
粒側に寄る根水嵩低域効果は大となる。ただし実際の操
業上、63声(250メツシ&)以下の粒子の含有率は
、粉IIの発生、歩留低下等の問題の原因となるため低
くすることが望ましい。
Table 3 This is the reason why, in the present invention, the raw material to be refined is limited to only ion dioxide. In addition, regarding the particle size structure, the reason why the content of particles with a particle size of 350μ or less was set to 65q6 or more by weight is because if it is less than 65%, the particle size structure will become coarse and the hydrogen reduction effect in the flux will be insufficient. If this content is high, the grain size structure will be closer to the fine grain side, and the root water volume lowering effect will be greater. However, in actual operation, it is desirable to keep the content of particles of 63 tones or less (250 tones) low, as this causes problems such as the generation of powder II and a decrease in yield.

なお、粒子径350μは42メツシエに相当する。Incidentally, the particle size of 350 μm corresponds to 42 Messier.

また、第31!に示す原材料以外にも、ルチール、マグ
ネサイト、珪石、・螢石、氷晶石等が潜弧溶接用溶融型
7ラツクスの原材料として使用されるが、これらいずれ
の原材料も第3衣中の2酸化マンガンを除く他の原材料
と同程度の吸蔵水分量である。
Also, the 31st! In addition to the raw materials listed above, rutile, magnesite, silica, fluorite, cryolite, etc. are also used as raw materials for the molten type 7LAX for submerged arc welding, but all of these raw materials are It has the same amount of absorbed moisture as other raw materials except manganese oxide.

以下に本発明の実施例について述べる。Examples of the present invention will be described below.

第4表に示す5樵類の粒度構成を持つ2酸化マンガンを
M!10原材料として、第5嵌に示す組成の溶融型フラ
ックスを製造し、その溶接金属中の拡散性水素量を第2
9に示すJIS z3116で規定された方法で測定し
た。
Manganese dioxide having the particle size structure of the five types shown in Table 4 is M! 10 As a raw material, a molten flux having the composition shown in No. 5 was manufactured, and the amount of diffusible hydrogen in the weld metal was determined by
It was measured by the method specified in JIS z3116 shown in 9.

なお、第4表においてMl 、M2 、M3 、M4お
よびM5の原鉱石はすべて同一であり、このうちM3゜
M4およびM5が350μ以下の粒子をそれぞれ70,
90.100重11i嗟に調整した本発明の粒度構成で
ある。
In addition, in Table 4, the raw ores of M1, M2, M3, M4, and M5 are all the same, and among these, M3, M4, and M5 have particles of 350μ or less, respectively.
90. This is the particle size structure of the present invention adjusted to 100 weight 11 times.

第  4  表 第  5  表 第@表に1第2嵌に示゛す方法、すなわちJISZ31
16に規定され九すツマーノアーク溶接部の水率量#j
定方法に準拠し、溶接電流500A、アータ亀圧33v
、溶接速度30 m、41nの溶接条件で、グリセリン
置換法によ)得られた溶着金属の拡散性水素量測定結果
を示す。それらの結果によれば、いずれの組成の7う、
クスにおいても2酸化マンガンの粒度構成がよ)細粒側
である程拡散性水素i1は低下し、従来の組粒粒子を多
く含有する2散化マンガン使用に比べ1/2〜115程
度の水素量となり、本発明の着るしい効果か明らかであ
る。
Table 4 Table 5 The method shown in Table 1 and 2, that is, JIS Z31
The water content amount #j of the Kusumano arc weld specified in 16
In accordance with the established method, welding current 500A, arter torque 33V
, welding speed of 30 m, and welding speed of 41 nm under welding conditions using the glycerin substitution method). According to those results, 7% of any composition,
(Even in the case of wood grains, the finer the particle size composition of manganese dioxide), the lower the diffusible hydrogen i1 becomes, and compared to the conventional use of dispersed manganese that contains many aggregated particles, the hydrogen content is about 1/2 to 115 It is clear that the present invention has a comfortable effect on wear.

第6表 以上述べたごとく本発明によれば、従来のフラックス組
成を変えない丸めにしん性、溶接作業性を劣化させるこ
となく低水素溶融型フラックスが得られ、このフラック
スを使用することにより従来性われてい友水素に起因す
る溶接欠陥防止のための施工面での工数は大幅に軽減さ
れ、その工業的価値蝶着しく大きなものである。
Table 6 As stated above, according to the present invention, a low hydrogen melting flux can be obtained without changing the conventional flux composition and without deteriorating the rounding resistance and welding workability. The number of man-hours required for construction to prevent welding defects caused by free hydrogen hydroxides is greatly reduced, and its industrial value is enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2酸化マンガンの粒子構成における350声以
下の粒子含有率と拡散性水累警との関係の一例を示した
図である。 特許出願人 新日本製滅株式會社 第 l 図 zS     5θ      7J      10
028イヒマンガンオン手構人1;お1する35ら帽以
下の粒子沿侑孝(を量2) 手続補正書 (自発) 昭和57年6月170 特11′1庁長官 若杉和夫殿 1、 事件の大小 昭和57年特許願第069529号 2、 発明の名称 潜弧溶接用溶融myフラックス瓢造方法3 、  hl
i +Eをする者 事件との関係 特許出願人 東京都千代11区大手町二丁[16番3号(665)新
[1本製鐵株式會社 代表者 武  1)   豊 4、代理人〒100 東京都千代111区丸の内二丁114番1号6、 補正
の対象 明細書の発明の詳細な説明の欄 7 補正の内容 −51′
FIG. 1 is a diagram showing an example of the relationship between the content of particles of 350 tones or less in the particle structure of manganese dioxide and the rate of diffusible water. Patent applicant: Shin Nippon Seimei Co., Ltd. Figure zS 5θ 7J 10
028 Ihimanganon hand construction person 1; Particles below 35 yen (quantity 2) Procedural amendment (voluntary) June 1981 170 Special 11'1 Office Commissioner Kazuo Wakasugi 1, of the case Large and Small Patent Application No. 069529 of 1982 2 Title of Invention Melting My Flux Gourd Making Method for Submerged Arc Welding 3, hl
Relationship with the case of the person who engages in +E Patent applicant: Otemachi 2-chome, Chiyo 11-ku, Tokyo [No. 16-3 (665) Shin [1] Takeshi 1, representative of Nippon Steel Co., Ltd., Toyo 4, agent 〒100 Tokyo 2-114-1-6, Marunouchi 2-chome, 111-ku, Chiyo, Miyako, Detailed explanation of the invention in the specification subject to amendment 7 Contents of amendment-51'

Claims (1)

【特許請求の範囲】[Claims] 粒子径350μ以下の粒子を重量%にして65%以上含
有するよう粒度調整し九2酸化マンガンをMnO原材料
として用いることを特徴とする潜弧溶接用溶融型7う、
クスの製造方法。
Melting type 7 for submerged arc welding, characterized in that the particle size is adjusted to contain 65% or more by weight of particles with a particle size of 350μ or less, and manganese 92 oxide is used as the MnO raw material,
How to make sou.
JP6952982A 1982-04-27 1982-04-27 Production of fused flux for submerged arc welding Granted JPS58187299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6952982A JPS58187299A (en) 1982-04-27 1982-04-27 Production of fused flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6952982A JPS58187299A (en) 1982-04-27 1982-04-27 Production of fused flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JPS58187299A true JPS58187299A (en) 1983-11-01
JPS619115B2 JPS619115B2 (en) 1986-03-19

Family

ID=13405334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6952982A Granted JPS58187299A (en) 1982-04-27 1982-04-27 Production of fused flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPS58187299A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093696A (en) * 2006-10-12 2008-04-24 Nippon Steel & Sumikin Welding Co Ltd Fused flux for submerged arc welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093696A (en) * 2006-10-12 2008-04-24 Nippon Steel & Sumikin Welding Co Ltd Fused flux for submerged arc welding

Also Published As

Publication number Publication date
JPS619115B2 (en) 1986-03-19

Similar Documents

Publication Publication Date Title
AU2004222774B2 (en) Colloidal silica binder system
US6939413B2 (en) Flux binder system
US20020153364A1 (en) Welding electrode and method for reducing manganese in fume
JP3392347B2 (en) Sintered flux for submerged arc welding and method for producing the same
JPH0130597B2 (en)
KR900006927B1 (en) Fluxes for casting metals
JPS58187299A (en) Production of fused flux for submerged arc welding
JP3433681B2 (en) Sintered flux for submerged arc welding and method for producing the same
JP4845360B2 (en) Flux powder for brazing aluminum material and coating method of the flux powder
US4363676A (en) Granular flux for pipe welding
KR100400412B1 (en) Server-Merged Arc Welding Flux Composition and Manufacturing Method
JP3577995B2 (en) Manufacturing method of fired flux for submerged arc welding
JPS605396B2 (en) Melting type flux for submerged mark welding
JPS60127094A (en) Fused flux for submerged arc welding
US4062703A (en) Sand containing flux
KR100340640B1 (en) Compound of flux for submerged arc welding
KR20020075260A (en) Mixed flux for submerged arc welding and manufacturing method thereof
KR19990050187A (en) Submerged Arc Welding Flux with Titanium Dioxide
JPS59223199A (en) Fused flux for submerged arc welding
JPS5849357B2 (en) Flux for submerged arc welding
JPS6254569A (en) Production of composite brazed member
JPS6233300B2 (en)
BE520271A (en)
JPS6129836B2 (en)
JPS63252693A (en) Flux for submerged arc welding