JPS58187196A - Preparation of amino acid - Google Patents

Preparation of amino acid

Info

Publication number
JPS58187196A
JPS58187196A JP6858382A JP6858382A JPS58187196A JP S58187196 A JPS58187196 A JP S58187196A JP 6858382 A JP6858382 A JP 6858382A JP 6858382 A JP6858382 A JP 6858382A JP S58187196 A JPS58187196 A JP S58187196A
Authority
JP
Japan
Prior art keywords
immobilized
cells
medium
same
comparative example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6858382A
Other languages
Japanese (ja)
Inventor
Kenzo Yokozeki
健三 横関
Akira Kamimura
晃 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP6858382A priority Critical patent/JPS58187196A/en
Publication of JPS58187196A publication Critical patent/JPS58187196A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare efficiently an amino acid, by cultivating a microorganism, capable of producing the amino acid, and immobilized in a specific carrier. CONSTITUTION:A well-known microorganism capable of producing an amino acid is suspended in an aqueous solution containing a compound having photopolymerizable vinyl groups at both ends, e.g. a resin having no cationic or anionic group in the molecule but photopolymerizable vinyl groups at both ends, and the aqueous solution is then irradiated with ultraviolet light to polymerize the above-mentioned compound and entrap and immobilize the microorganism in the resultant polymer. The resultant immobilized miroorganism is then cultivated by the conventional method to collect the aimed amino acid from the resultant culture.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアミノ酸の製造法に関する。 微生物一体を用いてアミノ酸を製造する方法に関しては
種々の提案がなされているが、本発明者らはアミノ酸生
産能を有する微生物を固定化し。 得られた固定化一体を用〜・て効率よくアミノ酸を製造
すべく研究を重ねた。その結果、固定化担体として特定
の光重合性化合物を使用することによって目的が達成で
きることを見出し、本発明を完成するに至った。 本発明は両端に光を照射することによって重合すること
ができるビニル基を有する化合物を含有する水性溶液に
アミノ酸生産能を有する微生物を懸濁し、この懸濁液に
光を照射して上記化合物を重合せしめて1記アミノ酸生
産能な有する微生物を重合物中に包括させ、得られた重
合物を培jlkK加え、この培地を通気、攪拌下に保つ
ことを%−とするアミノ酸の製造法である。 アミノ酸生産能を有する微生物については種々のものが
知られており、これら微生物を以下に例示する。 (1)リジン生産菌 ミクロコツカス・グルタミクス 特公昭36−6499
同   上             91j 52−
102498(2)ヒスチジン生iisi ブレビバクテリウム・フラバム 特公11851−93
85コリネバクテリウム・グルタミクム    同 5
2−18798バチルス・ズブチリス       同
 50−13358セツチア・マルセスセンス    
 Pl 50−37279ミクロバクテリクム・アンモ
ニアフイ ラム                    同 4
g−18829働グルタミン酸生意■ ブレビバクテリウム・ラクトフエルメンタムムTO01
3869プレビバクテリクム・フラバムムTCO140
67プレピパクテリクム・デイバリカタムムTO014
020コリネバクテリウム・グルタミクムムTC(31
3032(4トリプトファン生aim ブレビバクテリウム・フラバム 特公昭48−1882
8ミクロバクテリクム・アンモニアフイ ラム             同 48−18828
コリ枦9テリクム・グルタミクム   同 48−18
8287−スロバクター・シトレウス    特開昭4
9−126893エンテロバクタ−・クロアカニ   
   44 51−57888バチルス・ズブチリス 
    特公昭53−39517セラテア・マルセツセ
ンス   %1lllIfi55−81591エシェリ
ヒア・コリ        同 56−92796バチ
ルス・ズブチリス     特公昭51−6754ブレ
ビバクテリウム・フラバム 特開昭49−61388ク
レチア・カテホルマ      特公昭51−6754
竜ラチア・マルセスセンス   特開昭52−8729
7エシエリヒア・コリ      特公昭52−381
15(句プロリン生産■ ブレビバクテリウム・72バム 特公昭43−1175
1コリネバクテリウム・グルタミクム    同 49
−28431バラコロバクトラム・コリホルメ    
 同 44−1193バチルス・ズブチリス     
  同44−1198エシエリヒア゛コリ      
  同 44−1198(7)スレオニン生産菌 ミクロコツカス・グルタミクム 特公昭47−3899
6エシエリヒア°コリ        同 46−34
193エアロバクター・エアロケネス  同48−23
54セラチア・マルセツセンス    同48−235
4コリネバクテリウム・グルタミクム  特公昭47−
34956プレビバクテリウム・フラグ五      
同 45−26708ta+アスパラギン駿生!− ブレビバクテリウム・7ラバム     I¥f開@5
0−88288η (3)フェルアラニン生産− コリネバクテリウム・グルタミクム  特公昭56−1
0035ミクロコツカス・グルタミクス      1
wj  37−6345バチルス・ズブチリス    
   i!fJ  37−6345プレビパクテリクム
・アンモニアゲネス  同 37−6345ミコバクテ
リクム・リドクラウス    特開昭49−75785
エシエリヒア・スリ        同 55−165
797−バリン生産■ ミクロコツカス・グルタミクス    特公昭37−1
692バチルス・ズブチリス       同 37−
12448エシエリヒア・コリ        IIQ
  37−12448ブレビバクテリウム・ケトグルタ
ミクム  同 51−46836コリネパクテリクム・
グルタミクム    同 52−116セラチア・マル
セツセンス   特公昭48−24274(ロ)イソロ
イシン生産菌 ミクロコツカス・グルタミクス    特公昭47−3
8995ブレビバクテリウム・フラバi      同
 51−6237コリネバクテリウム・グルタミクム 
 特開昭51−73188セラチア・マルセスセンス 
  特公昭51−7755バチルス・ズブチリス   
    同52−30593(ロ)システィン、シスチ
ン生産■ ブレビバクテリウム・フラバム    特公昭53−1
4637エシエリヒア・コリ       特開昭54
−80490115プシエラ・ニューモニアエ    
 rlill  54−80490バチルス・ズブチリ
ス      同 54−80490(ロ)シトルリン
生産菌 バチルス・ズブチリス      811840−16
756同   上            l1i11
111150−18@88バチルス・メガテリウム  
  特公昭40−16756プレビバクテリウム・フラ
バム     同 51−6238に)アラニ生産量麿 ミクロバクテリウムアンモニア フイラ”111850−100288 に)ホモセリン生産■ コリネバクテリウム・グルタミクム   特公昭51−
36356に)グルタミン生産■ ブレビバクテリウム・フラバム     時分af45
3−17675同   上           特開
昭54−62388コリネづクテリウム・グルタミクム
    同 50−89590エシエリヒア・コリ  
     同 56−23893(ロ)チロシン生産■ ブレビバクテリウム・フラバム    特公昭49−3
8837コリネノザテリウム・グルタミクム    同
 55−46717バチルス・ズブチリス      
 同49−38837−セリン生意■ ブレビバクテリウム・ラクトフェル メンタム              特開昭48−8
7083コリ枦(クテリウム・グルタミクム   特公
昭51−33188コリネパクテリクム・グルシノフエ
ルム ATOO21341−ロイシン生産− ブレビバクテリウム・フラバム    特公昭48−2
4275コリネバクテリウム・グルタミクム   %開
開50−123877セラチア・マルセツセンス   
%余H47−26313ミクロコツカス・グルタミクム
     特公昭35−18347エシエリヒア・コリ
        同 43−8711プレビバクテリク
ム・ラクトフェル メンタム                同 43−
8712バチル虫・ズブチリス       ljl 
 43−10996コリネバクテリウム・グルタミクム
  特−昭53−24096φ心メデオニン生重曹 プロタミノバクタ−・キャンデイダス 特開昭50−3
1092コリネバクテリクム・グルタミクム  特公昭
55−40240エシエリヒア・コリ       M
紹56−35992次に、本発明で用いる光重合性化合
物とは両端に光を照射することによって重合することが
できるビニル基な有する化合物を意味し、たとえば「化
学と生物」第199、第10号、第620〜628頁に
開示されている分子中にカチオンまたはアニオン基を有
せず、両末端に光1合可能なビニル基な有する樹k(A
がある。この樹脂は次のような一般式で表わされるもの
であり、具体例とし
The present invention relates to a method for producing amino acids. Although various proposals have been made regarding methods for producing amino acids using microorganisms, the present inventors immobilized microorganisms capable of producing amino acids. We conducted repeated research to efficiently produce amino acids using the obtained immobilized material. As a result, they discovered that the objective could be achieved by using a specific photopolymerizable compound as an immobilization carrier, and completed the present invention. The present invention involves suspending microorganisms capable of producing amino acids in an aqueous solution containing a compound having a vinyl group that can be polymerized by irradiating light on both ends, and irradiating this suspension with light to produce the above-mentioned compound. This is a method for producing amino acids that involves polymerizing and enclosing microorganisms capable of producing amino acids in the polymer, adding the resulting polymer to a culture medium, and maintaining the culture medium under aeration and stirring. . Various microorganisms are known that have the ability to produce amino acids, and these microorganisms are exemplified below. (1) Lysine-producing bacterium Micrococcus glutamicus Special Publication No. 36-6499
Same as above 91j 52-
102498 (2) Histidine iisi Brevibacterium flavum Special Publication 11851-93
85 Corynebacterium glutamicum same 5
2-18798 Bacillus subtilis 50-13358 Settsia marcescens
Pl 50-37279 Microbacterium ammoniaphyllum same 4
g-18829 Glutamic acid function ■ Brevibacterium lactofermentum TO01
3869 Previbacterium flavumum TCO140
67 Prepipactericum deivaricatamm TO014
020 Corynebacterium glutamicum TC (31
3032 (4 Tryptophan Aim Brevibacterium flavum Special Publication 1882-1882)
8 Microbacterium ammoniaphyllum 48-18828
Colium 9 Tericum glutamicum same 48-18
8287-Slobacter citreus JP-A-4
9-126893 Enterobacter cloacani
44 51-57888 Bacillus subtilis
Special Publication No. 53-39517 Serratea marsetuscens %1llIfi55-81591 Escherichia coli Same No. 56-92796 Bacillus subtilis Special Publication No. 51-6754 Brevibacterium flavum No. 49-61388 Cretia cateforma Special Publication No. 51-6754
Dragon Lathia marcescens JP-A-52-8729
7 Esierihia Cori Special Publication 1977-381
15 (Phrase Proline Production ■ Brevibacterium 72 Bum Special Publication 1975-1175
1 Corynebacterium glutamicum same 49
-28431 Rosecolobactrum coliforme
44-1193 Bacillus subtilis
44-1198 Escherichia Accori
44-1198 (7) Threonine-producing bacterium Micrococcus glutamicum Special Publication No. 47-3899
6 Esierhia ° Cori same 46-34
193 Aerobacter Aerokenes 48-23
54 Serratia marsetuscens 48-235
4 Corynebacterium glutamicum Special Publication 1977-
34956 Previbacterium flag V
Same 45-26708ta + asparagin Shuno! - Brevibacterium 7 labum I¥f open @5
0-88288η (3) Feralanine production - Corynebacterium glutamicum Special Publication 1982-1
0035 Micrococcus glutamicus 1
wj 37-6345 Bacillus subtilis
i! fJ 37-6345 Previpactericum ammoniagenes 37-6345 Mycobacterium lidoclaus JP-A-49-75785
Esierihia Sri 55-165
797-valine production ■ Micrococcus glutamicus Special Publication 1977-1
692 Bacillus subtilis same 37-
12448 Essielichia coli IIQ
37-12448 Brevibacterium Ketoglutamicum 51-46836 Corynepactericum
Glutamicum 52-116 Serratia marsetuscens Special Publication 1986-24274 (b) Isoleucine producing bacterium Micrococcus glutamicus Special Publication 1977-3
8995 Brevibacterium flava i 51-6237 Corynebacterium glutamicum
JP-A-51-73188 Serratia marcescens
Special Publication Showa 51-7755 Bacillus subtilis
52-30593 (b) Cystine, cystine production ■ Brevibacterium flavum Special Publication 1977-1
4637 Esierihia coli JP-A-1973
-80490115 Psiella pneumoniae
rlill 54-80490 Bacillus subtilis 54-80490 (b) Citrulline producing bacterium Bacillus subtilis 811840-16
756 ditto l1i11
111150-18@88 Bacillus megaterium
111850-100288) Homoserine production ■ Corynebacterium glutamicum Special Publication 51-6238) Previbacterium flavum
36356) Glutamine production ■ Brevibacterium flavum time af45
3-17675 Same as above JP 54-62388 Corynebacterium glutamicum Same 50-89590 Escherichia coli
56-23893 (b) Tyrosine production ■ Brevibacterium flavum Special Publication 1977-3
8837 Corynenozatherium glutamicum 55-46717 Bacillus subtilis
49-38837-Serine production ■ Brevibacterium lactofermentum JP-A-1987-8
7083 Corynepacterium glutamicum (Special Publication No. 51-33188 Corynepactericum glucinopherum ATOO21341-Leucine Production- Brevibacterium flavum Special Publication No. 1977-2)
4275 Corynebacterium glutamicum % opening 50-123877 Serratia marsetuscens
% extra H47-26313 Micrococcus glutamicum 18347 Escherichia coli 43-8711 Previbacterium lactofermentum 43-
8712 Bacillus subtilis ljl
43-10996 Corynebacterium glutamicum Special-Sho 53-24096φ Heart Medeonine Raw Baking Soda Protaminobacter Candidus JP-A-Sho 50-3
1092 Corynebacterium glutamicum Special Publication 1984-40240 Escherichia coli M
Introduction 56-35992 Next, the photopolymerizable compound used in the present invention refers to a compound having a vinyl group that can be polymerized by irradiating both ends with light. No., pp. 620-628 discloses a tree k (A
There is. This resin is expressed by the following general formula, and specific examples include:

【はポリエチレングリコールを主鎖
とした親水性の1)IT−1000,INT−2000
,INT−4000゜IN’!’−6000’?ボ9プ
ロピレングリコールな主鎖とした疎水性のINTP−1
000,11NTP−2000゜1N??−3000な
どがある。なお、これらの数値は主鎖のおよその分子量
を示している。 / 8/ / さらに、本発明では光重合性樹脂として下記の一般式で
示される分子中にカチオ/またはアニオン基な有し、両
末端に光重合可能なビニル基な有する樹脂(6)を上記
樹脂(4)と併用することができる。 (1)カルボン酸型アニオン樹脂(]INT−207)
(ここでnは1〜20の正整数である。)(劾すン酸戯
アニオンIIJI(INT−220)(ここでnは1〜
9の正整数である。)(3)第四級アンモニウム塩型カ
チオン#!IkCEkJT−425)(ここでn)i1
〜9の正整数である。)上記光重合性化合物の水性溶液
に前記の7ミノ酸生産能を有する微生物を懸濁する。こ
こで微生物としては通常の方法で培養して得た微生物菌
体を含む棲養箪をそのまま用いてもよく、遠心分離など
の操作によって分離した菌体、その洗浄したものなどを
用いてもよい。 光重合性化合物と微生物一体を含む懸濁液に光を照射し
て該化合物を重合せしめる。微生物菌体を光重合性化合
物に包括する方法としては、微生物一体を水性溶媒に懸
濁し、これと光重合性化合物とをよく混合したのち光を
照射して重合せしめればよい。光線は250〜600 
nmの範囲の波長のものが最も好ましい。 光重合性化合物の重合により微生物菌体は重合物中に@
L括され、国定化微生物菌体が得られる。 このようにし′C得られたアミノ酸生産能を有する微生
物の固定化重合物を用いて目的とするアミノ酸を製造す
るには、当皺微生物の生育に必要な成分やアミノ酸の生
成量の増加に寄与する成分などを含む通常の培地に該重
合物を加え、この培地を通常用いる通気、攪拌下に保て
ばよい。また、重合物を加えた培地のpIKは微生物の
種類、生産されるアミノ酸の種類などを考慮して適当な
値に調節すればよいが、通常は678程度とする。この
培地は20〜40’C,好ましくは25〜35℃にて1
0〜100時間、好ましくは48〜72時間保持するこ
とによって十分量のアミノ酸が生成、蓄積する。 本発明によればアミノ酸生産能を有する微生物菌体は重
合物に強固に包括、固定化されているため、該重合物か
ら洩れ出す微生物一体をi極めて少なく、安定した活性
が持続し効率よくアミノ酸を製造することができる。本
発明では特定の光重合性化合物な担体として選択したこ
とにより既知の固定化担体な用いた場合に比しアミノ酸
の蓄積量が高く、実用性に富む方法である。 次に本発明を実施例により詳しく説明する。 実施例1 ブイヨン寒天培地に30℃で24時間培養シタブレビバ
クテリウム・ラクトフェルメンタム(FgRM P−4
547)の1白金耳を下記組成(lj) A培地Km種
し、30℃にて24時間培養した。 ム培地 グルコース            4g/dJ大豆蛋
白加水分解液     150〜/dZ(全窒素として
)(NHa)自80.          4.5 9
/dlKH,Po、            0.1 
  #Mg80.・7)1.OO,041 F0++′2ppm Mn++               2ビオチン 
         500   r/eビタミンB、 
         2007rニア         
   40   aid/diニコチンアミド    
    5 アデニン           lO lグルタミン酸ソーダ     10  1CaC0,
4%(別殺菌) (pki8.0.115℃、10分殺im)培養終了後
、培養12dtJ!:1a心分離して得た菌体な以下の
実験に供した。 光重合性化合物19.ベンゾイノエチルエーテル10■
を0.85 ’A食塩水1.5 ILtにmかし、これ
に同食塩水1dに懸濁した上記の微生物菌体(混1体)
を混ぜ、この混合物をシート上に伸ばし、300〜40
0r】IIlの波畏の近紫外線を表@3分間つつ照射し
た。得られた重合物を5×5uの大きさVζ切断し、0
.85%食塩水で洗浄した。)このようにして固定化微
生物菌体を得た。 次に、こび)固定化微生物菌体を下記組成のB培地20
auを含む500d容の肩付フラスコに加え、通気攪拌
しながら30℃で72時間保った。 B培地 グルコース           8  9/dt(N
H4)m80i           4.5   g
幻1@PO4Q、l   M ビオチン          500  17gビタミ
ンB r         200アラニア     
     40 〜7′tLlニコチンアミド    
    5 アデニン          10   lグルタミン
酸ソーダ     10 培養終了後、リジンの生成量と培養液の濁度(培養液の
26倍希釈液について56 ’l nmの吸光度を測定
)を求めた。結果を第1表に示す。 比較例1 4%アルギン酸11dK実施例1と同じ085%食塩水
IILtK懸濁した湿菌体を加えた混合液を15囁Ca
C1g中に滴]して固定化微生物菌体(直径約5鱈)を
得た。これを0.85%食塩水で洗浄後、実施例1と同
様にB培地に加え、以下同様に行なった。結果を第1表
に示づ。 比較例2 実施例1の湿菌体を0.85%食塩水1 mlに懸濁し
7.40℃に保ち、これを50Cに保持した4%のに一
力うギーナン1mと混合した後、10℃にて固化した。 得られた固形物を5 ); 5 ’X 5 Uの大きさ
に切断し、これを15%KCl溶液中に投入し、ゲルを
強固にした。得られた固定化微生物菌体を085%KO
j溶液で洗浄したのち、実施例1と同様にB培地に加え
、以下同様に行な一つだ。結果を第1表に示す。 比較例3 実施例1の湿1体を0.85%食塩水2 xxlに懸濁
し、これにアクリルアミド0.759とメチレンビスア
クリルアミド30〜を加えた。この混合物を5%β−ジ
メチルアミンプロピオニトリル0.5dと2.5%Ks
SsOs 0.5 Nを含む溶液と混ぜ室温でゲル化せ
しめた。得られたゲルを5X5X5Mの大きさに切断し
たのち0.85%食塩水で洗浄して固定化微生物菌体を
得た。これを実施例1と同様にB培地に加え、以下同様
に行なった。結果を第1表に示す。 比較例4 この例では実施例1の湿菌体を固定化することなくB培
地に加え、以下実施例1と同様に行なった。結果を第1
表に示す。 48時間培養    68時間培養 kNT−2000   1.05  0.05   1
.70   U、05実j!NT−40000,770
,031,50U 03施ENT−60001280,
042030,07アルキン酸    0.6   0
.418   1.13   0.20比 カラギー犬ン   0.58  0,08   0.8
6  0.70較 アクリルアミド   0.38   0,07    
0.52   0.15例 −1,590,792820,88 表から明らかなように1本発明によれは担体からの微生
物菌体の洩れが非常に少なく、しかもリジンの生産量は
既知の担体を用(・た場合よりもすぐれている。 実施例2 ブイヨン寒天培地に30”C−C−24時間培養したブ
レビバクテリウム・ラクトフェルメンタムFBI’tM
P−1565)1白金耳をグA、 コ−x 3 g/’
dj 。 (NH4)*SOa 1.09.’cu、  KH1I
PO41,59/di 、  m@so4・7H20お
よび酵母エキス1.097diを含む培地に接種し、3
0℃で24時間培養した。 培養終了後、培養液2dを遠心分離して得た一体を以下
の実験に供した。 光重合性化合物1g、ベンゾインエチルエーテルlO〜
を085%食塩水1.5m[溶かし、これに同食塩水1
dに懸濁した上記の微生物菌体(湿菌体)を混ぜ、この
混合物をシート上に伸ばし、300〜400 nmの波
長の近紫外線を表裏3分間づつ照射した。得られた重゛
合物を5×5uの大きさに切断し、0.85%食塩水で
洗浄した。このようにして固定化微生物菌体を得た。 次に、この固定化微生物菌体を下記組成のC培地20m
を含む500au容肩付フラスコに加え、通気攪拌しな
がら30°Cで72時間保持した。 C培地 グルコース         10   Q/dl(N
lI4)禦5045 KIJ *P04           0.1   
g□  Mg804−711.0        0.
04  FFe+′+2ppm Mn++2   # ビオテン          500 μVlビタミン
B 15 Q   z アルギニン          50mf//(11培
養終了後、ヒスチジンの生成電と培養液の濁度(培養液
の26倍希釈液について562t〕mの吸光度を測定ン
を求めた。結果を第2表に示す。 比較例5 4%アルギン酸11LtK実施例2と同じ0.85%食
塩水IILtに溶がした湿菌体を加えた混合液を15%
Ca1l、中に滴下して固定化微生物菌体(直径約5鳳
)を得た。これを0.85%食塩水で洗浄後、実施例2
と同様に行なった。結果を第2表に示す。 比較例6 実施例2の湿1体を0,85%食塩水1!Llに懸濁し
、40℃に保ち、これを50°Cに保持した4%のに一
カラギーナンIJI7と混合した後、10″Cにて固化
した。得られた固形物を5)、5x−50の大きさに切
断(、これを15%KCj耐液中に投入し−(ゲルを強
固にした1、得られた固定化微生物一体を(1,85%
KOj溶液で洗浄した後、実施例2と同様に行なった。 −結果を第2表に示ブ。 比較例7 実施例2の湿菌体を0.85%食塩水2aJ14j%!
濁し1、これにアクリルアミド0.759とメチレンビ
スアクリルアミド30〜を加えた。この混合物を5%β
−ジメチルアミンプロピオニトリル0゜51と2.5%
K15ses O,5id、を含む溶液と混ぜ、室温で
ゲル化せしめた。得られたゲルY、< 5 >、 5 
X 5 mの大きさに切断したのち0.85%食塩水で
洗浄して固定化微生物菌体を得た。これを用℃・実施例
2と同様に行なった。結果を第2表に示す。 比較例8 実施例2の湿菌体を固定化することなくC培地に加え、
以下実施例2と同様に行なった。結果を第2表に示す。 第2表 ENT−20000290,06 ENT−40000,41(J、12 実ENT−6000(1580,11 アルギン酸        0.43     0.4
9比 カラギーナン       11.32      Q
、32較 アクリルアミド       0.11      (
1,H)例 −0920,90 実施例3 ブイヨン寒天培地に30″Cて24時間培養したブレビ
バクテリウム・ラクトフェルメンタムAJ11445 
(FERMP−5162)の1白金耳を下記組成のD培
地に接種し、30℃で24時間培養した。 D培地 グルコ1−ス       5 9/di肚、i’04
0.1  /’ Mn++2y ビタミン=、      200  r/e大豆蛋白加
水分解液  36〜/a(全窒素として)尿素    
     0.4g/J(別殺l1ii+)(pH7,
9,115”Cで10分殺菌)培養終了後、培養液20
aJを遠心分離して得た菌体な以)の実験に供した。 光重合牡化合物1g、ベンゾインエチルエーテル10ダ
を0,85%食塩水1.5111A K溶かし、これに
同食塩水1dに懸濁した一F記の微生物酸体(fi菌体
)を混ぜ、この混合物をシート十に伸ばし。 300〜400 nmの波長の近紫外線を5分間照射し
また。得られた1合物を5×5錦の大きさに切断し、0
.85%食塩水で洗浄した。このようYr して固定化
微生物菌体を得た。 次に、この固定化微生物菌体を、前記り培地にお−・て
グルコースの添加量を3.6g/jとし、尿素の添加量
を0.297dlK変えたこと以外は同じ組成の培地2
0al17を含む500Iu谷の屑句フフスコに投入し
、30°Cで振とう検査した。8時向波に尿素をさらに
05%S!反になるように添加(合計0.7%)し、培
養をさらに16時間続けた。 培養終工(24時間)後、グルタミン酸の生成量と培養
液の濁度(培II液の26倍希釈液について552 n
mの吸光度を測定)を求めた。結果を第3表に示す。ま
た、培養終r仮の固定化菌体な無―的に回収し、新しい
培地を用(・上記と同様にして再びグルタミン酸の製造
に供(た、こりときの結果も第3表−に示す。 比較例9 実施例3と同じ湿菌体を用いたこと以外は比較例1と同
様にしてアルギン酸な担体とする固定化微生物菌体を得
た。この固定化菌体な用(・実施例3と同様に行なった
。結果を第3表に示す。 比較例10 実施例3と同じ湿菌体を用いたこと以外は比較例2と同
様にしてに一カラキーナンを担体とする固定化微生物菌
体を得た。この固定化菌体を用いて実施例3と同様に行
なった。結果を第3表に示す。 比較例11 実施例3と同じ湿菌体を用いたこと以外は比較例3と同
様にしてアクリルアミドを担体とする固定化微生物菌体
を得た。この固定化菌体を用いて実施例3と同様に行な
った。結果を第3表に示す。 比較例12 実施例3の湿菌体を固定化することなく培地に加えて、
以下実施例3と同様に行なった。結果を第3表に示す。 第1回   第2目 実INT−20000,240,060,300,03
施INT−40000,090,060,150,03
例I胛−6000 0.24  0,06  0.23
  0.03アルギン酸   0.21    0.0
7   0.40   0.20比 カラギーナン   0.03    0.10    
0,03   0.11較 アクリルアミド   0.03    0.10   
0,03   0.10例 −1,200,490,720,46 実施例4 ブイヨン寒天培地[30°Cで24時間培養したハf 
)k ス・ズブチリス(Eaclllus 5ubti
lis )Fl<RM P−5289の1白金耳を下記
組成のE培地に接種し、30℃で24時間培養した。 E培地 グルコース       3  9,1dlNli40
7        2 LCI           0.2   #肚、po
、         0.1   #M鴫SO4・7H
,00,04# Fe3O4・7ki@0     0.01  lMn
3O4・4H,00,011 カザミノ酸        1.0I Oa00.        4    #  (別殺−
)培養終了後、培養液2dを遠心分離して得た一体を以
下の実験に供した。 光重合性化合物19.ベンゾインエチルエーテルlO〜
を0.85%食塩水1.5 atに溶かし、これに同食
塩水ll1I7に懸濁した上記の微生物一体(y1菌体
)を混ぜ、この混合物をシート上に伸ばし、300〜4
00 nmの波長の近紫外線を表裏3分間づつ照射した
。得られた重合物を575■の大きさに切断し、0.8
5%食塩水で洗浄した。このようにして固定化微生物菌
体を得た。 次に、この固定化微生物菌体を、前記Σ培地においてグ
ルコースの添加量を1097diとし、カザミノ酸の添
加量を0.497’dl K変更したこと以外は同じ組
成の培地20a7を含む500容の肩付フラスコに加え
30℃で90時間振とう培養した。培養終了後、トリプ
トファンの生成蓋と培養液の濁度(培養液の26倍希釈
液にっ(・て562 nmの吸光度を測定)を求めた。 結果を第4表に示1゜比較例13 実施例4と同じ湿菌体を用(・たこと以外は比較例1と
同様にしてアルギン酸な担体とする固定化微生物菌体を
得た。この固定化菌体を用いて実施例4と同様に行なっ
た。結果な第4表に示す。 比較例14 実施例4と同じ湿菌体を用(たこと以外は比較例2と同
様にしてに一カラギーナンを担体とする固定化微生物菌
体を得た。この固定化菌体を用いて実施例4と同様に行
なった。結果を第4表に示す。 比較例15 実施例4と同じ湿菌体を用いたこと以外は比較例3と同
様にしてアクリルアミドを担体とする固重化微生物菌体
を得た。この固定化一体を用いて実施例4と同様に行な
った。結果を第4表に示す。 比較例16 実施例4の湿菌体を固定化することなく培地に加え、以
下卑施例4と同様に行なった。結果を第4表に示す2゜ 第4表 kNT−20000,380,08 EN’l!−40000,420,12実ΣNT−60
000,440,13 ENT−4000: 施’ENT207(8・2)0°28   0.05例
、BNT−4000二 IN’i’22o (8:2)     0°39  
   °°09、 EN’l’ −4000” BNT425(8:2)     ”19   007
アルギン酸          0.37     0
.42比 カラギーナン        0.26  
   0.34較 例 アクリルアミド        0.15    
 0.29−               0.80
       0.75ブイヨン寒天培地に30°Cで
24時間培養したエシェリヒア・コリ(杉9展りCす9
(0ハ)  AJ11335 (FIRM P−490
1) ノ1白金耳を下記組成のy#I地に接種し、30
℃で24時間培養した。 !培地 グルコース         3   %(NH4)1
804       1    ’Kk1.P0.  
       0.1   #Mg80.・7H,00
,1y Fe804’ 7に1@O0,00! 1jin 80
4 ・4H* OO,001ttRNム       
    02  〃L−アスパラギン酸  100  
MVd/L−ノロリン        45   〃L
−インロイシン    10  N L−メチオニン      10   〃ヒfiミニy
B、        100  tn(i/dl酵母エ
キス         05  %0aCO14% (
別設m) (pH7,0,115℃でlO分殺#)培養終了後、培
養液1dを遠心分離して得た菌体な以下の実験に供した
。 光重合性化合物1g、ベンゾインエチルエーテルlO〜
をl、 5 mlの085襲食塩水に溶かし、これに間
食塊水11に懸濁した上記の微生物1体(湿菌体)を混
ぜ、この混合物をシート上に伸ばし。 300〜400 nmの波長の近紫外線を表裏3分間づ
つ照射した。得られた重合物を5 X 5 IIIの大
ぎさに切断し、0.85%食塩水で洗浄した。このよう
にして固定化微生物菌体を得た。 次K、この固定化微生物一体を、前記!培地から酵母エ
キス05%を除いた組成の培地2olLtを含む500
d容の肩付フラスコに投入し、30’Cで48時間培養
した。 培養終了後、スレオニンの生成量と培養液の濁度(培養
液の26倍希釈液について562 nmの吸光度を測定
)を求めた。結果を第5表に示す、。 比較例17 実施例5と同じ湿菌体を用いたこと以外は比較例1と同
様にしてアルギン酸な担体とする固定化微生物菌体を得
た。この固定化菌体を用いて実施例5と同様に行なった
。結果を第5表に示づ。 比較例18 実施例5と同じ湿菌体を用し・たこと以外は比較例2と
同様にしてに一カラギーナンを担体とする固定化微生物
菌体を得た。この固定化菌体を用いて実施例5と同様に
行なった。結果を第5表に示1゜ 比較例19 実施例5と同じ湿菌体を用いたこと以外は比較例3と同
様にしてアクリルアミドを担体とする固定化微生物菌体
を得た。この固定化菌体な用い−(実施例5と同様に行
なった。結果を第5表に示す。 比較例20 実施例5の湿1体を固定化することなく培地に加えて、
以下実施例5と同様に行なった。結果を第5表に示す。 第5表 鴬NT−20000,620,06 嶌NT−40000,350,06 夾 hNT−jooo     O,40o、osアル
ギン酸         0.32     0.18
比 カラギーナン        0.43     0.
19較 −1,480,30 実施例6 ブイヨン寒天培地に30゛Cで24時間培養したブレビ
バクテリウム・ラクトフェルメンタムFIRMP−52
48の1白金耳をグルコース3g肩、 (NH,)、8
Q41、09/di 、 KH*PO41,59/di
、  Mg80n ・7H@Oおよび種し、30℃で2
4時間培養した。培養終了後、培養液2dを遠心分離し
て得た菌体を以]の実験に供した。 光重合性化合物1g、ベンゾインエチルエーテル10〜
を0.85%生理食塩水1.5−に溶がし、これに同食
塩水1dに懸濁した上記の微生物画体(湿一体)を混ぜ
、この混合物をシート上に伸ば/し、300〜400 
nmの波長の近紫外線を5分間照射した。得られた重合
物を5×5鴎の大きさに次に、この固定化微生物菌体を
下記組成のG培地20−を含む500ILt容の肩付フ
ラスコに投入し、30℃で72時間培養した。 Gjl地 グルコース       3  9yal(NH4)1
1804    1,0  //紐1PO41,5# 
 ’ Mg8Q、・7H*0   0.04  ’ビオチン 
       5.0  μg 7cuサイアミン塩酸
塩     20.0μg/a1Pす80.・711m
0       1 〜/dtMn80.−4H601
M L−チロシン       40  1DL−メチオニ
ン     40  l大豆蛋白加水分解液     
3.0114/lluフマル酸−1,2g/d/ 酢#     0・3″/″ 培養終了後、フェニルアラニンの生成量と培養液の濁度
(培養液の26倍希釈液について562nmの吸光度を
測定)を求めた。結果を第6表に示す。 比較例21 実施例6と同じ湿菌体を用いたこと以外は比較例1と同
様にしてアルギン酸な担体とする固定化微生物菌体を得
た。この固定化一体を用いて実施例6と同様に行なった
。結果を第6表に示す。 比較例22 実施例6と同じ湿菌体を用いたこと以外は比較例2と同
様にしてに一カラギーナンを担体とする固定化微生物菌
体を得た。この固定化一体を用いて実施例6と同様に行
なった。結果を第6表に示す。 比較例23 実施例6と同じ湿菌体を用(・たこと以外は比較例3と
一様にしてアクリルアミドを担体とする固定化微生物菌
体を得た。この固定化菌体を用いて実施例6と同様に行
なった。結果を第6表に示す。 比較例24 実施例6の湿菌体を固定化することなく培地に加え、以
下実施例6と同様に行なった。結果を第6表に示す。 第6表 gnT−20000,820,08 EN’l’−40001,000,18実ENT−60
001,020,16 アルギン酸          0.93     0
.48比 カラギーナン         0.78     0
.42較 アクリルアミド        0.51     0
.31例 −2,201,10 実施例7 ブイヨン寒天培地に30℃で24時間培養したコリネバ
クテリウム・グリシノ7エルム(Coryae−シgy
terium glyc4nophelum )ム’f
’0021341の1白金耳を下記組成のM培地に接種
し、30’Cで24Ii培地 グルコース   0,5% 酵母エキス   l、0〃 ペプトン    l−θ′ Na0j      Q、 5 tt (pH7,0,115”Cで10分殺#1)培養終了後
、培養液lxiな遠心分離1て得た菌体を以下の実験に
供した。 光重合性化合物19.ベンゾインエチルエーテル10η
を085%食福水15−に溶かし、こ、れに−食塩7X
IILtに懸濁した上記の微生物菌体(湿1体)を混ぜ
、この混合物をシート上に伸ば′し、300〜400 
ninの波長の近紫外線を表裏3分間づつ照射した。得
られた重合物を5X5fiの大きさに切断し、0.85
%食塩水で洗浄した。このようKして同定化微生物一体
を得た4゜ 次に、この固定化微生物菌体を下記組成のI培地201
17を含む500d容の肩付フラスコに投入し、30℃
で48時閲振とうp培養した。 ■培地 グルコース      5% グリシン       21 CNHa)*80a      0.3  #Kti、
PO40,1# Mg804・7H,00,051 ビオチン       0,2  μ07dサイアミン
     11 葉酸    11 ニコチン酸アミド   2.51 酵母エキス      0.5  % (3a00畠2.5  % (別設i[1)(pH7,
0,115℃で10分殺11!り培養終了後、セリンの
生成量と培養液の濁度(培養液の26倍希釈液について
562 nmの吸光度を測定)を求めた。結果を第7表
に示す。また、培養終了後の固定化菌体を無菌的に回収
し、新しい培地を用い上記と同゛様にして再びセリンの
製造に供した。このときの結果も第7表に示す。 比較例25 実施例7と同じ湿菌体を用いたこと以外は比較例1と同
様にしてアルギン酸な担体とする固定化微生物菌体を得
た。この固定化菌体を用いて実施例7と同11に行なっ
た。結果を第7表に示す。 比較例26 実施例7と同じ湿菌体を用いたこと以外は比較例2と同
様にしてに一カラギーナンを担体とする固定化微生物菌
体を得た。この固定化菌体を用いて実施例7と同様に行
なった。結果な第7表に示す。 比較例27 実施例7と−じ湿―体を用いたこと以外は比較N3と同
様にしてアクリルアミドを担体とする固定化微生物菌体
を得た。この固定化菌体を用いて実施例7と同様に行な
った。結果を第7表に示す。 比較例28 実施例7の湿一体を固定化することなく培地に加え、以
下実施例7と同様に行なった。結果を第7表に示す。 第7表 nNT−20000,200,060,300,211
NT−40000,160,060,220,22実E
NT−60000,260,150,270,19施(
INT−4000゜ ENT207 (8:2)  0・14 0.10  
0・43 0.10例、FiN’l”−4000: B、T220(8,、0,160,060,510,0
3、]iiN’r−4000: 、、、、425(8,、0,150,040,200,
03アルギン酸     0.20  0,36  0
,38  0.47比 カラギーナン    0.20  0.35  0.4
0 0.37較 アクリルアミド    0.08  0゜10  0,
12  0.35例 −0,50,680,30,70 特許出願人味の素株式会社
[Hydrophilic 1) IT-1000, INT-2000 with polyethylene glycol as the main chain
,INT-4000゜IN'! '-6000'? Hydrophobic INTP-1 with a propylene glycol main chain
000,11NTP-2000゜1N? ? -3000 etc. Note that these numbers indicate the approximate molecular weight of the main chain. / 8 / / Furthermore, in the present invention, the photopolymerizable resin has a cationic/or anionic group in the molecule represented by the following general formula and a photopolymerizable vinyl group at both ends (6). It can be used in combination with resin (4). (1) Carboxylic acid type anion resin (]INT-207)
(Here, n is a positive integer from 1 to 20.) (Here, n is a positive integer from 1 to 20.)
It is a positive integer of 9. ) (3) Quaternary ammonium salt type cation #! IkCEkJT-425) (where n)i1
It is a positive integer of ~9. ) The microorganism having the ability to produce a 7-mino acid is suspended in the aqueous solution of the photopolymerizable compound. Here, as the microorganism, a culture chamber containing microbial cells obtained by culturing in a usual manner may be used as it is, or microbial cells separated by an operation such as centrifugation, or a washed version thereof, etc. may be used. . A suspension containing a photopolymerizable compound and a microorganism is irradiated with light to polymerize the compound. As a method for enclosing microbial cells in a photopolymerizable compound, the microorganisms may be suspended in an aqueous solvent, thoroughly mixed with the photopolymerizable compound, and then irradiated with light to polymerize. Rays are 250-600
Most preferred are wavelengths in the nm range. Due to the polymerization of the photopolymerizable compound, microbial cells are incorporated into the polymer.
A nationally defined microbial cell is obtained. In order to produce the desired amino acid using the immobilized polymer of the microorganism with amino acid-producing ability obtained in this way, it is necessary to increase the production amount of the components and amino acids necessary for the growth of the microorganism. The polymer may be added to a conventional medium containing ingredients such as those mentioned above, and the medium may be maintained under conventional aeration and agitation. Furthermore, the pIK of the medium to which the polymer has been added may be adjusted to an appropriate value taking into account the type of microorganism, the type of amino acid produced, etc., but it is usually about 678. This medium is heated at 20-40'C, preferably 25-35'C.
A sufficient amount of amino acids is produced and accumulated by holding for 0 to 100 hours, preferably 48 to 72 hours. According to the present invention, microorganisms capable of producing amino acids are tightly encapsulated and immobilized in the polymer, so that the amount of microorganisms that leak out from the polymer is extremely small, stable activity continues, and amino acid production is efficiently carried out. can be manufactured. In the present invention, by selecting a specific photopolymerizable compound as the carrier, the amount of amino acids accumulated is higher than when known immobilized carriers are used, and the method is highly practical. Next, the present invention will be explained in detail with reference to examples. Example 1 Citabrevibacterium lactofermentum (FgRM P-4) was cultured on bouillon agar medium at 30°C for 24 hours.
One platinum loop of No. 547) was seeded with the following composition (lj) A medium Km, and cultured at 30°C for 24 hours. Glucose 4g/dJ Soybean protein hydrolyzate 150~/dZ (as total nitrogen) (NHa) 80. 4.5 9
/dlKH,Po, 0.1
#Mg80.・7)1. OO,041 F0++'2ppm Mn++ 2Biotin
500 r/e vitamin B,
2007r near
40 aid/di nicotinamide
5 Adenine lO l Sodium glutamate 10 1CaC0,
4% (separate sterilization) (pki8.0.115℃, 10 minutes sterilization) After completion of culture, culture 12dtJ! :1a The bacterial cells obtained by separating the hearts were used in the following experiments. Photopolymerizable compound 19. Benzoinoethyl ether 10■
was added to 1.5 ILt of 0.85'A saline solution, and the above microorganism cells (mixed 1 body) suspended in 1 d of the same saline solution were added.
Mix and spread this mixture on a sheet, 300 to 40
0r] IIl was irradiated with near-ultraviolet light for 3 minutes. The obtained polymer was cut into a size Vζ of 5×5u, and
.. Washed with 85% saline. ) Immobilized microbial cells were thus obtained. Next, the immobilized microbial cells were transferred to B medium 20 with the following composition.
The mixture was added to a 500 d shoulder flask containing au and kept at 30° C. for 72 hours with aeration and stirring. B medium glucose 8 9/dt (N
H4) m80i 4.5 g
Phantom 1 @PO4Q, l M Biotin 500 17g Vitamin B r 200 Alania
40 ~7'tLl Nicotinamide
5 Adenine 10 l Sodium glutamate 10 After completion of the culture, the amount of lysine produced and the turbidity of the culture solution (absorbance at 56'l nm was measured for a 26-fold dilution of the culture solution) were determined. The results are shown in Table 1. Comparative Example 1 A mixture of 4% alginic acid 11dK and wet bacterial cells suspended in 085% saline IILtK, which is the same as in Example 1, was mixed with 15% Ca
Cl] to obtain immobilized microbial cells (approximately 5 cods in diameter). After washing this with 0.85% saline, it was added to medium B in the same manner as in Example 1, and the same procedure was carried out thereafter. The results are shown in Table 1. Comparative Example 2 The wet bacterial cells of Example 1 were suspended in 1 ml of 0.85% saline solution and kept at 7.40°C, and this was mixed with 1 m of 4% Nippon Guinan kept at 50°C. Solidified at ℃. The obtained solid was cut into a size of 5); 5' x 5 U, and this was poured into a 15% KCl solution to solidify the gel. The obtained immobilized microbial cells were reduced to 0.85% KO.
After washing with solution J, add to medium B in the same manner as in Example 1, and proceed in the same manner. The results are shown in Table 1. Comparative Example 3 The wet product of Example 1 was suspended in 2 xxl of 0.85% saline, and 0.759 of acrylamide and 30~ of methylenebisacrylamide were added thereto. This mixture was mixed with 0.5d of 5% β-dimethylamine propionitrile and 2.5% Ks.
The mixture was mixed with a solution containing 0.5 N of SsOs and allowed to gel at room temperature. The obtained gel was cut into a size of 5×5×5M and washed with 0.85% saline to obtain immobilized microbial cells. This was added to medium B in the same manner as in Example 1, and the same procedure was carried out thereafter. The results are shown in Table 1. Comparative Example 4 In this example, the wet bacterial cells of Example 1 were added to medium B without being immobilized, and the same procedure as in Example 1 was carried out. Results first
Shown in the table. 48 hour culture 68 hour culture kNT-2000 1.05 0.05 1
.. 70 U, 05 real j! NT-40000,770
,031,50U 03SHENT-60001280,
042030,07 Alkynoic acid 0.6 0
.. 418 1.13 0.20 ratio carrageen dog 0.58 0.08 0.8
6 0.70 comparison acrylamide 0.38 0.07
0.52 0.15 Example - 1,590,792820,88 As is clear from the table 1, according to the present invention, the leakage of microbial cells from the carrier is extremely small, and the amount of lysine produced is lower than that of the known carrier. Example 2 Brevibacterium lactofermentum FBI'tM cultured on bouillon agar medium for 30"C-C for 24 hours
P-1565) 1 platinum loop is 3 g/'
dj. (NH4)*SOa 1.09. 'cu, KH1I
Inoculated into a medium containing PO41,59/di, m@so4・7H20 and yeast extract 1.097di,
The cells were cultured at 0°C for 24 hours. After the culture was completed, the culture solution 2d was centrifuged and the resulting product was used in the following experiment. 1 g of photopolymerizable compound, lO of benzoin ethyl ether
1.5 m of 085% saline solution [dissolved, add 1.5 m of the same saline solution]
The above-mentioned microbial cells (wet cells) suspended in d were mixed, this mixture was spread on a sheet, and near-ultraviolet light having a wavelength of 300 to 400 nm was irradiated for 3 minutes on each side of the sheet. The obtained polymer was cut into a size of 5 x 5 u and washed with 0.85% saline. In this way, immobilized microbial cells were obtained. Next, this immobilized microbial cell was added to 20 m of C medium having the following composition.
The mixture was added to a 500 au shouldered flask containing 300 au and kept at 30°C for 72 hours with aeration and stirring. C medium glucose 10 Q/dl (N
lI4) 5045 KIJ *P04 0.1
g□ Mg804-711.0 0.
04 FFe+'+2ppm Mn++2 #Biotene 500 μVl Vitamin B 15 Q z Arginine 50mf// (11 After completion of culture, measure the generated charge of histidine and the turbidity of the culture solution (absorbance at 562 t]m for a 26-fold dilution of the culture solution) The results are shown in Table 2. Comparative Example 5 4% alginic acid 11LtK A mixture of wet bacterial cells dissolved in the same 0.85% saline IILt as in Example 2 was added to 15%
The solution was dropped into Ca1l to obtain immobilized microbial cells (about 5 mm in diameter). After washing this with 0.85% saline, Example 2
I did the same thing. The results are shown in Table 2. Comparative Example 6 One wet body of Example 2 was mixed with one part of 0.85% saline solution! After mixing with 4% carrageenan IJI7 kept at 50°C and solidifying at 10"C, the obtained solid was suspended in 5), 5x-50 This was cut into pieces of 15% KCj liquid-resistant solution to solidify the gel.
After washing with KOj solution, the same procedure as in Example 2 was carried out. -The results are shown in Table 2. Comparative Example 7 The wet bacterial cells of Example 2 were added to 0.85% saline solution 2aJ14j%!
To turbidity 1, 0.759% of acrylamide and 30~ of methylenebisacrylamide were added. Add this mixture to 5% β
-Dimethylamine propionitrile 0°51 and 2.5%
It was mixed with a solution containing K15ses O,5id and allowed to gel at room temperature. Obtained gel Y, <5>, 5
After cutting into a size of 5 m x 5 m, the pieces were washed with 0.85% saline to obtain immobilized microbial cells. This was carried out in the same manner as in Example 2 at 10°C. The results are shown in Table 2. Comparative Example 8 The wet bacterial cells of Example 2 were added to C medium without immobilization,
The following steps were carried out in the same manner as in Example 2. The results are shown in Table 2. Table 2 ENT-20000290,06 ENT-40000,41 (J, 12 Real ENT-6000 (1580,11 Alginic acid 0.43 0.4
9 ratio carrageenan 11.32 Q
, 32 comparison acrylamide 0.11 (
1,H) Example-0920,90 Example 3 Brevibacterium lactofermentum AJ11445 cultured on bouillon agar medium at 30"C for 24 hours
One platinum loopful of (FERMP-5162) was inoculated into D medium having the following composition, and cultured at 30°C for 24 hours. D medium glucose 1-su 5 9/di 肚, i'04
0.1 /' Mn++2y Vitamin =, 200 r/e Soybean protein hydrolyzate 36~/a (as total nitrogen) Urea
0.4g/J (separately killed l1ii+) (pH7,
Sterilize at 9,115"C for 10 minutes) After culturing, add 20
Bacterial cells obtained by centrifuging aJ were used for experiments. Dissolve 1 g of the photopolymerized compound and 10 da of benzoin ethyl ether in 1.5111 AK of 0.85% saline, mix with this the microbial acid body (fi bacterial cell) of 1F suspended in 1 d of the same saline, and add this. Spread the mixture into ten sheets. It was then irradiated with near ultraviolet light with a wavelength of 300 to 400 nm for 5 minutes. The obtained 1-go mixture was cut into 5×5 brocade pieces, and
.. Washed with 85% saline. Immobilized microbial cells were thus obtained. Next, the immobilized microbial cells were transferred to medium 2 with the same composition except that the amount of glucose added was changed to 3.6 g/j and the amount of urea added was changed by 0.297 dlK.
500 Iu of waste containing 0al17 was added to Fufusco, and a shaking test was conducted at 30°C. Add 05% S of urea to the wave at 8 o'clock! The cells were added in reverse order (total 0.7%) and the culture was continued for an additional 16 hours. After the completion of the culture (24 hours), the amount of glutamic acid produced and the turbidity of the culture solution (552 n for a 26-fold dilution of medium II)
The absorbance of m) was determined. The results are shown in Table 3. In addition, at the end of the culture, the temporarily immobilized bacterial cells were recovered and used in a new medium.The results were also shown in Table 3. Comparative Example 9 Immobilized microbial cells to be used as an alginic acid carrier were obtained in the same manner as in Comparative Example 1 except that the same wet cells as in Example 3 were used. The results are shown in Table 3. Comparative Example 10 Immobilized microorganisms using carakeenan as a carrier were prepared in the same manner as in Comparative Example 2, except that the same wet cells as in Example 3 were used. This immobilized bacterial cell was used in the same manner as in Example 3. The results are shown in Table 3. Comparative Example 11 Comparative Example 3 except that the same wet bacterial cells as in Example 3 were used. Immobilized microbial cells using acrylamide as a carrier were obtained in the same manner as in Example 3. Using these immobilized cells, the same procedure as in Example 3 was carried out. The results are shown in Table 3. Comparative Example 12 Example 3 In addition to the culture medium without immobilizing wet bacterial cells,
The following steps were carried out in the same manner as in Example 3. The results are shown in Table 3. 1st 2nd Memo INT-20000, 240, 060, 300, 03
SINT-40000,090,060,150,03
Example I -6000 0.24 0.06 0.23
0.03 Alginic acid 0.21 0.0
7 0.40 0.20 ratio carrageenan 0.03 0.10
0.03 0.11 Acrylamide 0.03 0.10
0.03 0.10 cases - 1,200,490,720,46 Example 4 Broth agar medium [Haf cultured at 30°C for 24 hours
)k Eacllus 5ubti
One loopful of P-5289 was inoculated into E medium having the following composition and cultured at 30°C for 24 hours. E medium glucose 3 9,1dlNli40
7 2 LCI 0.2 #肚、po
, 0.1 #M Shizu SO4・7H
,00,04# Fe3O4・7ki@0 0.01 lMn
3O4・4H,00,011 Casamino acid 1.0I Oa00. 4 # (Separate assassination-
) After the completion of the culture, the culture solution 2d was centrifuged and the resulting product was used in the following experiment. Photopolymerizable compound 19. Benzoin ethyl ether lO~
was dissolved in 1.5 at of 0.85% saline, mixed with the above-mentioned microorganisms (y1 bacterial cells) suspended in the same saline, spread this mixture on a sheet, and
The front and back surfaces were irradiated with near ultraviolet light having a wavelength of 0.00 nm for 3 minutes each. The obtained polymer was cut into a size of 575 cm, and the size of 0.8
Washed with 5% saline. In this way, immobilized microbial cells were obtained. Next, the immobilized microbial cells were transferred to 500 volumes of medium 20a7 with the same composition except that the amount of glucose added was changed to 1097 di and the amount of casamino acid added was changed to 0.497'dl K in the Σ medium. It was added to a flask with a shoulder and cultured with shaking at 30°C for 90 hours. After the cultivation was completed, the tryptophan production lid and the turbidity of the culture solution (absorbance at 562 nm was measured using a 26-fold dilution of the culture solution) were determined. The results are shown in Table 4. Comparative Example 13 Immobilized microbial cells to be used as an alginic acid carrier were obtained in the same manner as in Comparative Example 1 except that the same wet cells as in Example 4 were used. The results are shown in Table 4. Comparative Example 14 Using the same wet microbial cells as in Example 4, immobilized microbial cells using carrageenan as a carrier were prepared in the same manner as in Comparative Example 2 except that The same procedure as in Example 4 was carried out using the immobilized cells. The results are shown in Table 4. Comparative Example 15 Same as Comparative Example 3 except that the same wet cells as in Example 4 were used. A solidified microbial cell using acrylamide as a carrier was obtained. Using this solidified body, the same procedure as in Example 4 was carried out. The results are shown in Table 4. Comparative Example 16 Wet bacteria of Example 4 The cells were added to the culture medium without immobilization, and the following procedure was carried out in the same manner as in Example 4.The results are shown in Table 4. 12 real ΣNT-60
000,440,13 ENT-4000: し'ENT207 (8・2) 0°28 0.05 example, BNT-40002IN'i'22o (8:2) 0°39
°°09, EN'l'-4000" BNT425 (8:2) "19 007
Alginic acid 0.37 0
.. 42 ratio carrageenan 0.26
0.34 Comparative example Acrylamide 0.15
0.29-0.80
Escherichia coli (Cedar 9) cultured on 0.75 bouillon agar medium at 30°C for 24 hours.
(0ha) AJ11335 (FIRM P-490
1) Inoculate No. 1 platinum loop onto y#I ground with the following composition, and
The cells were cultured at ℃ for 24 hours. ! Medium glucose 3% (NH4) 1
804 1 'Kk1. P0.
0.1 #Mg80.・7H,00
,1y Fe804' 7 to 1@O0,00! 1jin 80
4 ・4H* OO,001ttRNmu
02 L-aspartic acid 100
MVd/L-Nororin 45 〃L
-Inleucine 10 N L-Methionine 10
B, 100 tn (i/dl yeast extract 05%0aCO14% (
Separately provided (m) (pH 7, 0, 1O fractionated at 115° C.) After completion of the culture, the culture solution 1d was centrifuged and the cells obtained were used in the following experiment. 1 g of photopolymerizable compound, lO of benzoin ethyl ether
1, dissolved in 5 ml of 085 saline solution, mixed with 1 of the above microorganisms (wet bacterial cells) suspended in 11 snack water, and spread this mixture on a sheet. Near ultraviolet rays having a wavelength of 300 to 400 nm were irradiated for 3 minutes each on the front and back sides. The obtained polymer was cut into 5×5 III pieces and washed with 0.85% saline. In this way, immobilized microbial cells were obtained. Next, let's look at this immobilized microorganism as described above! 500 containing 2olLt of medium with the composition excluding 05% yeast extract from the medium
The cells were placed in a d capacity flask with a shoulder and cultured at 30'C for 48 hours. After the culture was completed, the amount of threonine produced and the turbidity of the culture solution (absorbance at 562 nm was measured for a 26-fold dilution of the culture solution) were determined. The results are shown in Table 5. Comparative Example 17 Immobilized microbial cells to be used as an alginic acid carrier were obtained in the same manner as in Comparative Example 1 except that the same wet cells as in Example 5 were used. The same procedure as in Example 5 was carried out using this immobilized bacterial cell. The results are shown in Table 5. Comparative Example 18 Immobilized microbial cells using carrageenan as a carrier were obtained in the same manner as in Comparative Example 2, except that the same wet cells as in Example 5 were used. The same procedure as in Example 5 was carried out using this immobilized bacterial cell. The results are shown in Table 5.1 Comparative Example 19 Immobilized microbial cells using acrylamide as a carrier were obtained in the same manner as in Comparative Example 3 except that the same wet cells as in Example 5 were used. Using this immobilized microbial cell (this was carried out in the same manner as in Example 5. The results are shown in Table 5. Comparative Example 20 The wet cells of Example 5 were added to the medium without immobilization,
The following steps were carried out in the same manner as in Example 5. The results are shown in Table 5. Table 5 Utsugi NT-20000,620,06 Shima NT-40000,350,06 夾hNT-jooo O,40o,os Alginic acid 0.32 0.18
Specific carrageenan 0.43 0.
Comparison 19-1,480,30 Example 6 Brevibacterium lactofermentum FIRMP-52 cultured on bouillon agar medium at 30°C for 24 hours
48-1 platinum loop with 3g of glucose, (NH,), 8
Q41, 09/di, KH*PO41, 59/di
, Mg80n 7H@O and seeded at 30°C for 2
It was cultured for 4 hours. After the culture was completed, the culture solution 2d was centrifuged and the obtained bacterial cells were used in the following experiment. 1 g of photopolymerizable compound, 10 ~ benzoin ethyl ether
Dissolved in 0.85% physiological saline (1.5 - liters), mixed with the above microbial image (wet one) suspended in 1 d of the same saline solution, and spread/spread this mixture on a sheet. 300-400
Near ultraviolet light having a wavelength of nm was irradiated for 5 minutes. The resulting polymer was cut into a size of 5 x 5, and the immobilized microbial cells were placed in a 500 ILt shoulder flask containing 20-G medium with the following composition, and cultured at 30°C for 72 hours. . Gjl ground glucose 3 9yal(NH4)1
1804 1,0 //String 1PO41,5#
'Mg8Q, 7H*0 0.04 'Biotin
5.0 μg 7cu Thiamine Hydrochloride 20.0 μg/a1P 80.・711m
0 1 ~/dtMn80. -4H601
M L-Tyrosine 40 1DL-Methionine 40 l Soybean protein hydrolyzate
3.0114/llu fumaric acid - 1.2 g/d/ Vinegar # 0.3''/'' After culturing, measure the amount of phenylalanine produced and the turbidity of the culture solution (absorbance at 562 nm for a 26-fold dilution of the culture solution) ) was sought. The results are shown in Table 6. Comparative Example 21 Immobilized microbial cells to be used as an alginic acid carrier were obtained in the same manner as in Comparative Example 1, except that the same wet cells as in Example 6 were used. The same procedure as in Example 6 was carried out using this immobilized body. The results are shown in Table 6. Comparative Example 22 Immobilized microbial cells using carrageenan as a carrier were obtained in the same manner as in Comparative Example 2, except that the same wet cells as in Example 6 were used. The same procedure as in Example 6 was carried out using this immobilized body. The results are shown in Table 6. Comparative Example 23 Immobilized microbial cells using acrylamide as a carrier were obtained in the same manner as in Comparative Example 3 except for using the same wet cells as in Example 6. The procedure was carried out in the same manner as in Example 6. The results are shown in Table 6. Comparative Example 24 The wet bacterial cells of Example 6 were added to the culture medium without immobilization, and the procedure was carried out in the same manner as in Example 6. The results are shown in Table 6. It is shown in the table. Table 6 gnT-20000,820,08 EN'l'-40001,000,18 Actual ENT-60
001,020,16 Alginic acid 0.93 0
.. 48 ratio carrageenan 0.78 0
.. 42 comparison acrylamide 0.51 0
.. Example 31 - 2, 201, 10 Example 7 Corynebacterium glycinoelum (Coryae-Sigy) cultured on bouillon agar medium at 30°C for 24 hours.
terium glyc4nophelum )mu'f
One platinum loop of '0021341 was inoculated into M medium with the following composition and incubated at 30'C in 24Ii medium Glucose 0.5% Yeast extract 1, 0〃 Peptone 1-θ' Na0j Q, 5 tt (pH 7, 0, 115") After incubation #1), the culture solution was centrifuged for 10 minutes and the resulting bacterial cells were subjected to the following experiment. Photopolymerizable compound 19. Benzoin ethyl ether 10η
Dissolve in 085% food fortune water 15-, then add 7X salt.
Mix the above microorganism cells (1 wet cell) suspended in IILt, spread this mixture on a sheet,
Near ultraviolet rays with a wavelength of 100 nm were irradiated for 3 minutes each on the front and back sides. The obtained polymer was cut into a size of 5×5fi and 0.85
% saline solution. After obtaining the identified microorganisms in this manner, the immobilized microorganisms were transferred to I medium 201 with the following composition.
17 into a 500 d shouldered flask and heated to 30°C.
The cells were incubated for 48 hours and cultured. ■Medium glucose 5% glycine 21 CNHa) *80a 0.3 #Kti,
PO40,1# Mg804・7H,00,051 Biotin 0.2 μ07d Thiamine 11 Folic acid 11 Nicotinic acid amide 2.51 Yeast extract 0.5% (3a00 Hatake 2.5% (separate i[1) (pH7,
Killed in 10 minutes at 0,115℃ 11! After the completion of the culture, the amount of serine produced and the turbidity of the culture solution (absorbance at 562 nm was measured for a 26-fold dilution of the culture solution) were determined. The results are shown in Table 7. In addition, the immobilized bacterial cells after completion of the culture were collected aseptically and subjected to the production of serine again in the same manner as above using a new medium. The results at this time are also shown in Table 7. Comparative Example 25 Immobilized microbial cells to be used as an alginic acid carrier were obtained in the same manner as in Comparative Example 1, except that the same wet cells as in Example 7 were used. Examples 7 and 11 were carried out using this immobilized bacterial cell. The results are shown in Table 7. Comparative Example 26 Immobilized microbial cells using carrageenan as a carrier were obtained in the same manner as in Comparative Example 2, except that the same wet cells as in Example 7 were used. The same procedure as in Example 7 was carried out using this immobilized bacterial cell. The results are shown in Table 7. Comparative Example 27 Immobilized microbial cells using acrylamide as a carrier were obtained in the same manner as Comparative N3 except that the same wet body as in Example 7 was used. The same procedure as in Example 7 was carried out using this immobilized bacterial cell. The results are shown in Table 7. Comparative Example 28 The same procedure as in Example 7 was carried out except that the wet material of Example 7 was added to the medium without immobilization. The results are shown in Table 7. Table 7 nNT-20000, 200, 060, 300, 211
NT-40000, 160, 060, 220, 22 Real E
NT-60000, 260, 150, 270, 19 (
INT-4000゜ENT207 (8:2) 0.14 0.10
0.43 0.10 cases, FiN'l"-4000: B, T220 (8,, 0,160,060,510,0
3, ]iiN'r-4000: , , , 425 (8,, 0,150,040,200,
03 Alginic acid 0.20 0.36 0
,38 0.47 ratio carrageenan 0.20 0.35 0.4
0 0.37 Acrylamide 0.08 0°10 0,
12 0.35 cases - 0,50,680,30,70 Patent applicant Ajinomoto Co., Inc.

Claims (1)

【特許請求の範囲】[Claims] 両端に光を照射することKよって重合することができる
ビニル基を有する化合物を含有する水性S*にアミノ酸
生産能を有する微生物を懸濁し、この懸濁1lEK光を
照射して上記化合物を重合せしめて上記アミノ酸生産能
を有する微生物を重合物中に包括させ、得られた重合物
を培地に加え、この培地な通気、攪拌下に保つことな特
徴とするアミノ障の製造法。
A microorganism capable of producing amino acids is suspended in an aqueous S* containing a compound having a vinyl group that can be polymerized by irradiating light at both ends, and this suspension is irradiated with 11EK light to polymerize the above compound. 1. A method for producing amino acids, which comprises: incorporating the microorganism capable of producing amino acids in a polymer; adding the obtained polymer to a culture medium; and maintaining the culture medium under aeration and stirring.
JP6858382A 1982-04-26 1982-04-26 Preparation of amino acid Pending JPS58187196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6858382A JPS58187196A (en) 1982-04-26 1982-04-26 Preparation of amino acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6858382A JPS58187196A (en) 1982-04-26 1982-04-26 Preparation of amino acid

Publications (1)

Publication Number Publication Date
JPS58187196A true JPS58187196A (en) 1983-11-01

Family

ID=13377950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6858382A Pending JPS58187196A (en) 1982-04-26 1982-04-26 Preparation of amino acid

Country Status (1)

Country Link
JP (1) JPS58187196A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283182A (en) * 1986-09-17 1994-02-01 Beecham Group Plc Preparation of immobilized hydantoinase stabilized with divalent metal ions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283182A (en) * 1986-09-17 1994-02-01 Beecham Group Plc Preparation of immobilized hydantoinase stabilized with divalent metal ions

Similar Documents

Publication Publication Date Title
KR960705947A (en) Process for producing substance
JPH0559709B2 (en)
JPS6115696A (en) Preparation of l-isoleucine by fermentation method
JPS58187196A (en) Preparation of amino acid
JP2876739B2 (en) Production method of L-lysine by fermentation method
US5188947A (en) Process and microorganism for producing l-ornithine by corynebacterium, brevibacterium, or athrobacter
JPS5814199B2 (en) Method for producing L-phenylalanine
JPH0362396B2 (en)
JPS58187197A (en) Production method of l-lysine
JPS6287088A (en) Production of l-alanine and d-aspartic acid
JPH0272888A (en) Production of l-valine
JPS63269991A (en) Production of l-isoleucine
JPS6324896A (en) Production of l-glutamic acid by fermentation
JPS63112992A (en) Production of l-threonine
JPS58187187A (en) Immobilized microorganism capable of producing l-alanine, immobilization method thereof and preparation of l-alanine by using the same
JPH0411195B2 (en)
JPH0456598B2 (en)
JPS59120094A (en) Preparation of l-proline by fermentation
JPS58158194A (en) Preparation of l-phenylalanine by fermentation process
JPH04228085A (en) Production of l-tryptophan
JPS58141789A (en) Preparation of l-glutamic acid by fermentation
JPH037590A (en) Production of l-alanine
JPS6078590A (en) Preparation of l-phenylalanine by fermentation
JPH0361436B2 (en)
JPH0279989A (en) Production of l-alanine