JPS58186431A - Granulating method of resinous material - Google Patents

Granulating method of resinous material

Info

Publication number
JPS58186431A
JPS58186431A JP7097882A JP7097882A JPS58186431A JP S58186431 A JPS58186431 A JP S58186431A JP 7097882 A JP7097882 A JP 7097882A JP 7097882 A JP7097882 A JP 7097882A JP S58186431 A JPS58186431 A JP S58186431A
Authority
JP
Japan
Prior art keywords
materials
belt conveyor
string
belt
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7097882A
Other languages
Japanese (ja)
Other versions
JPS6123014B2 (en
Inventor
Shohei Maeta
前多 昌平
Masayoshi Kawahara
河原 正悦
Takahiro Ichinose
一ノ瀬 孝宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP7097882A priority Critical patent/JPS58186431A/en
Publication of JPS58186431A publication Critical patent/JPS58186431A/en
Publication of JPS6123014B2 publication Critical patent/JPS6123014B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To granulate a resinous material which solidifies like glass when cooled uniformly by flowing said material down on a coolable belt conveyor and cooling the material to a specific temp. range then disintegrating the material to a specified shape. CONSTITUTION:The melt from a melt feed pipe 1 is flowed as plural liquid streams onto a conveyor belt 10 having cooling means 8, 9 through a piping 2 to form plural pieces of cord-like spread materials 3. When the cord-like materials are in the temp. range of the softening point of said material or below and the grass transition temp. or above, the materials are pressed to an impeller 4 to form cut surfaces in the materials 3. When the cord-like spread materials 5 are cooled down to the temp. of the grass transition temp. or below, the materials are dislodged from the conveyor 10 so as to collide against a collision plate 6, by which the materials are disintegrated and are formed as granules 7 which are disintegrated thoroughly to each piece.

Description

【発明の詳細な説明】 に粘度が増大し遂にはガラス状に固化するような物質、
即ち融点を持たない樹脂状物質の造粒方法に関する。
[Detailed description of the invention] A substance whose viscosity increases and finally solidifies into a glass-like state,
That is, the present invention relates to a method for granulating a resin-like substance that does not have a melting point.

さらに詳しくはゴム用添加剤として用いられるアルキル
フェノール会ホルマリン樹脂やアルキルフェノール・サ
ルファイド樹脂などの比較的少量で多品種が生産されて
いるような樹脂状物質に巾広く利用できる簡便な造粒方
法に関する。
More specifically, the present invention relates to a simple granulation method that can be widely used for resinous substances such as alkylphenol formalin resins and alkylphenol sulfide resins, which are used as rubber additives and are produced in a wide variety of products in relatively small quantities.

従来、樹脂状物質の造粒方法として、(1)高温の溶融
液を空間へ噴霧して霧滴が落下するまでに冷却・固化さ
せて粒状物を得る方法、(2)溶融液を冷却液中に滴下
して固化させ、冷却液と分離して粒状物を得る方法、あ
るいは(3)冷却できるベルトコンベア上に溶融液會一
滴づつ分離して点滴し、その1ま冷却・固化させて粒状
物を得る方法などがある。しかしこれらの方法はいずれ
も膨大な、または複雑な装置を必要とするとともに被処
理物質の物性によっては正常に造粒できない場合もある
Conventionally, methods for granulating resinous substances include (1) spraying a high-temperature molten liquid into a space and cooling and solidifying the droplets before they fall to obtain granules; (2) using the molten liquid as a cooling liquid. (3) Separate the molten liquid drop by drop onto a cooling belt conveyor and drip it, then cool and solidify it to obtain granules. There are ways to get things. However, all of these methods require a large amount of or complicated equipment, and depending on the physical properties of the material to be treated, normal granulation may not be possible.

即ち、(1)の方法では噴霧のために溶融液の粘度はで
きるだけ低い方が好ましいが、このために温度を上げる
と被処理物質によっては分解や変質が起り、良好な噴霧
状態をつくれない場合がある。さらにこの方法では冷却
・固化のために膨大l空間を必要とし、したがって装置
も大型で高価なものとなる。次に(2)の方法では通常
冷却液として水音利用するが、被処理物質が水に溶けた
り水によって変質したシする場合は別の冷却液が必要と
なり、さらに冷却液との分離や乾燥などの追加工程が必
要となりエネルギー消費も多くなる。さらに(3)の方
法は比較的簡便なように思われるが粒状物となる1個1
個を分離して滴下する必要があるため滴下部分に複雑な
構造の装置が要求されるとともに処理能率を高めること
は困難である。したがって装置も大型化し高価なものと
なる。
That is, in method (1), it is preferable for the viscosity of the melt to be as low as possible for spraying, but if the temperature is raised for this purpose, decomposition or alteration may occur depending on the substance to be treated, and good spray conditions may not be achieved. There is. Furthermore, this method requires a huge amount of space for cooling and solidification, and therefore the equipment is large and expensive. Next, in method (2), water sound is normally used as a cooling liquid, but if the substance to be treated is dissolved in water or deteriorated by water, a separate cooling liquid is required, and further separation from the cooling liquid or drying is required. Additional steps such as these are required, which also increases energy consumption. Furthermore, method (3) seems to be relatively simple, but it produces granular particles.
Since it is necessary to drop each individual separately, a device with a complicated structure is required for the dropping part, and it is difficult to increase processing efficiency. Therefore, the device also becomes large and expensive.

以上のような状況から、現在ゴム用添加剤として用いら
れる樹脂状物質のように比較的少量で多品種を生産する
ような場合にはほとんど造粒することなく、塊状で固化
したものを粉砕して粉末として提供されている。しかし
ながらこのような粉末を得る場合では塊状固化物の取り
出しに人力がかかり生産性が悪く、また使う側でもこの
ような粉末では流れが悪く飛散しゃ丁いという欠点を有
している。
Due to the above situation, when producing a wide variety of products in relatively small quantities, such as resinous substances currently used as rubber additives, it is almost impossible to granulate the material, instead grinding the solidified material into chunks. It is available as a powder. However, when obtaining such a powder, it requires manual labor to remove the solidified mass, resulting in poor productivity, and on the user side, such powder has the disadvantage that it has poor flow and is difficult to scatter.

本発明は以上のような実状に立脚し、それら欠点を改良
すべ〈発明されたものであり、冷却によってガラス状に
固化するあらゆる樹脂状物質に適用でき、しかも少量多
品種生産でも品種切替利用が容易にできる安価な装置し
か必要としない簡便な造粒方法を提供することをその目
的とするものである。
The present invention is based on the above-mentioned circumstances and has been invented to improve these shortcomings.It can be applied to any resinous substance that solidifies into a glass-like state by cooling, and can also be used to switch types even in small-lot, high-mix production. The object is to provide a simple granulation method that requires only inexpensive equipment.

しかして、本発明者らは、上記の如き目的に対処し・こ
れに適合すべく、種々の検討を行ない、その結果、先ず
高温では液状であるが、冷却するとガラス状に固化する
、いわゆる融点をもたない樹脂状物質に、その物質の軟
化点以下で、かつガ定の形状を与えるようにすれば容易
に造粒できることを見出した。
In order to meet and meet the above objectives, the inventors of the present invention conducted various studies, and as a result, they found that the so-called melting point, which is liquid at high temperatures, but solidifies into glass when cooled. It has been found that granulation can be easily achieved by giving a resin-like substance that does not have a granule a uniform shape at a temperature below the softening point of the substance.

そこで、更に上記検討に続き、上記の造粒をより簡便に
実施し得る方法について検討を重ねたところ、被処理物
質を溶融液の状態で、複数本のひも状に展開し、これを
その軟化点以下で、かつガラス転移点以上の温度まで、
即ち塑性変形可能な温度まで冷却し、この複数本のひも
状展開物1−挙に一定長さ毎に切断すれば一定形状の粒
状物になし得ること、又、ひも状に展開する方法として
は、冷却可能なベルトコンベア上へ被処理物の浴融液′
に複数本の液流として流下丁れば、容易に達成できるこ
と、更にひも状展開物を切断する方法としては、羽根車
を用い、その先端速度がベルトの走行と等速になるよう
回転さ+!:′lxがら該ひも状展開物に押しつけると
いう簡便な方法によって充分であることなど葡知見する
に至った。
Therefore, following on from the above studies, we further investigated a method that could more easily carry out the above granulation, and found that the material to be treated is spread out in a molten state in the form of multiple strings, and this is softened. to a temperature below the glass transition point and above the glass transition point,
That is, by cooling to a temperature that allows plastic deformation and cutting these multiple string-like expanded pieces at a time to a certain length, it is possible to make granules of a certain shape. , the bath melt of the processed material is transferred onto a coolable belt conveyor.
This can be easily achieved by cutting the string-like material as multiple liquid streams.Another way to cut the string-like material is to use an impeller, which is rotated so that its tip speed is equal to the running speed of the belt. ! We have come to the conclusion that a simple method of pressing ``lx'' onto the string-like developed material is sufficient.

殊に上記の羽根車によるひも状展開物の切断は単なる羽
根型を押しつけるという、いわゆる成形操作で、切断点
は完全に切れているのではなく、僅かな厚みを残して連
らなった形状であるが、このように成型されたひも状展
開物は、ガラス転移点以下の温度まで冷却されると破砕
性を呈するようになり、僅かな厚みしかない切断点は僅
かな衝激で容易に破砕して、一定形状の粒状物になるこ
とも判明した。
In particular, the cutting of the string-like developed material by the impeller is a so-called forming operation in which a blade shape is simply pressed, and the cutting point is not a complete cut, but a continuous shape with a slight thickness remaining. However, the string-like developed product formed in this way becomes friable when cooled to a temperature below the glass transition point, and the cut point, which has only a small thickness, can easily be shattered by a slight impact. It was also found that granules with a certain shape can be formed.

即ち本発明は、融点を持たない、?ガラス状に固化する
樹脂状物質を溶融液の状態で複数本の液流に分割し流下
さぞ、これを冷却手段の備わったベルトコンベア上に受
けてその走行によって展開。
That is, the present invention does not have a melting point. A resin-like substance that solidifies into glass is divided into multiple liquid streams in the form of a molten liquid, which are then flowed down onto a belt conveyor equipped with a cooling means, where they are spread as they run.

冷却し該物質がその軟化点以下でかつガラス転移点以上
の温度となる範囲のところで、先端速度がヘルドコンヘ
アの走行と等速になるように回転する羽根車を該物質に
押しっけて羽根型による切断面を形成さぞ、さらに冷却
して該物質のガラス転移点以下の温度とした後、ベルト
コンベアから脱落して、これが落下する途中に設けた衝
突板に衝突させて切断面毎に破砕さぜることからなる造
粒方法を特徴とするものである。
When the substance is cooled to a temperature below its softening point and above its glass transition point, a rotating impeller is pushed against the substance so that the tip speed is equal to the traveling speed of the healdconhair to form a vane. After the material is further cooled to a temperature below the glass transition point of the material, it falls off the belt conveyor and collides with a collision plate installed on the way down, crushing each cut surface. The granulation method is characterized by a granulation method comprising:

以下、更に上2本発明方法の具体的な実施の態様につい
て詳述する。
Hereinafter, specific embodiments of the above two methods of the present invention will be further described in detail.

添付図面第1図は、本発明方法を実施する装置の概要を
示す図であり、溶融液送入管(1)を通じて高温では溶
融した液状となるが、冷却すると徐々に粘度が増大し、
遂にはガラス状に固化する、!IJち、融点をもたない
樹脂状物質の溶融液を送入し、複数本の液流に分割流下
させる配管(21k経て下部に配置された冷却手段ケも
つコンベアベルト・図では冷却水入口(8)と冷却水出
口(9)ヲ有しコンベアベルトの移送面に冷却を噴射し
冷却させる手段を内部に収設したコンベアベルト部上に
複数本の液流として流下さぞ、該ベルトコンベア00)
上で受止してその走行によって前記液流を複数本のひも
状(図示せず)に展開しつつ冷却し、その後、ベルトコ
ンベア00)の走行と共に前記ひも状展開物(3)の温
度がその物質の軟化点以下で、かつガラス転移点以上。
Figure 1 of the accompanying drawings is a diagram showing an outline of the apparatus for carrying out the method of the present invention.The melt is passed through the melt inlet pipe (1) and becomes a molten liquid at high temperatures, but when it is cooled, the viscosity gradually increases.
It will finally solidify into glass! IJ is a pipe that feeds a molten liquid of a resinous substance that does not have a melting point and divides it into multiple liquid streams (a conveyor belt with a cooling means placed at the bottom after passing through 21k; the figure shows a cooling water inlet ( The belt conveyor 00) has a cooling water outlet (9) and a cooling water outlet (9), and flows down as a plurality of liquid streams onto the conveyor belt section, which is equipped with a means for injecting cooling onto the transfer surface of the conveyor belt.
As the belt conveyor 00) runs, the liquid stream is cooled while being spread out into a plurality of strings (not shown), and then as the belt conveyor 00) runs, the temperature of the string-like spread material (3) increases. Below the softening point of the substance and above the glass transition point.

温度とヶる範囲。と。ろ去、ヤこに配置すしている前記
ベルトコンベアCIO+の走行速度と等速の先端速度で
回転している羽根車(4)に該ひも状展開物(3)を当
接ぞしめ・ 接キ沌舖ミそのひも状展開物を羽根車(4)に押しつけ
ることによって該ひも状展開物に切断面を形成さぞ、引
続き更に冷却を行ない、該ひも状展開物(5)の温度が
ガラス転移点以下の温度となってからベル]・コンベア
00)終端より脱落さぞ、その脱落途中に設置されてい
る衝突板(6)に衝突さぜることによってひも状展開物
を最終的にその切断面毎に破砕し、完全に1個宛に破砕
された粒状物(7)として形成している。
Temperature and range. and. The string-like developed material (3) is brought into contact with the impeller (4) which is rotating at a tip speed that is equal to the running speed of the belt conveyor CIO+, which is disposed on the filter. A cut surface is formed on the string-like developed material by pressing it against the impeller (4), and the string-like developed material (5) is further cooled until the temperature reaches the glass transition point. When the temperature reaches the following level, the belt will fall off from the end of the conveyor 00), and by colliding with the collision plate (6) installed in the middle of falling, the string-like developed object will be finally formed on each cut surface. The granules (7) are completely crushed into one piece.

なお、上記の装置例としては、本発明の実施に必要な、
冷却手段を備えたベルトコンベア00)として一般的な
スチールベルトの裏面に冷却水を噴霧してこのベル)k
冷却せしめる所謂ベルトフレーカ−を用いているが、勿
論、本発明はこのようなベルトフレーカ−に限るもので
はす<、例えばゴム製のベルトコンベアでもコンベア上
に?frKが均一に流れるようにして冷却可能とした装
置であれば利用可能である。
In addition, as an example of the above-mentioned apparatus, necessary for carrying out the present invention,
This belt conveyor (00) equipped with a cooling means is made by spraying cooling water on the back side of a common steel belt.
A so-called belt flaker for cooling is used, but of course the present invention is not limited to such a belt flaker. For example, is it possible to use a rubber belt conveyor as well? Any device that allows frK to flow uniformly and can be cooled can be used.

又、前記溶融した樹脂状物質を複数本の液流に分割して
流下させる方法として−ば、ベルトコンベア上に水平に
設置した配管の下部に複数個の一定口径の穴を設け、こ
の配管に溶融液?送入するという簡便な方法が利用でき
る。このときの溶融液の温度はその液が流動し得る温度
であればよく、特に高温を必要とするものではない。ま
た上記配管に設ける穴の口径はひも状展開物め太さに関
係し・希望する太さによって自由に選択するととができ
る。更にこの穴から流出する溶融液の流出速度はその液
流が一定であれば送入王によって変えることができる。
In addition, as a method for dividing the molten resinous substance into a plurality of liquid streams and flowing them down, a plurality of holes of a constant diameter are provided at the bottom of a pipe installed horizontally on a belt conveyor, and the pipe is Molten liquid? You can use the simple method of sending it. The temperature of the molten liquid at this time may be any temperature that allows the liquid to flow, and does not require a particularly high temperature. Further, the diameter of the hole provided in the piping is related to the thickness of the string-like developed product and can be freely selected depending on the desired thickness. Furthermore, the outflow speed of the melt flowing out of this hole can be varied by the feed valve if the flow is constant.

次に前記ベルトコンベアの走行速度は一般には溶融液の
流下速度にはy等速に丁速度より遅い場合はベルトコン
ベア上にできるひるのが好ましい。若しベルト速度が溶
融液の流下も状展開物は蛇行したものとなりやすく、ま
た逆の場合には流下する溶融液をベルトコンベアが引張
る形となり、ひも状展開物の太さが不均一となり易い。
Next, it is generally preferable that the running speed of the belt conveyor is a uniform flow rate of the melt, and if it is slower than the same speed, there will be a drop on the belt conveyor. If the belt speed is too low for the melt to flow down, the string-like developed product tends to become meandering, and if the belt conveyor is the opposite, the falling melt is pulled by the belt conveyor, and the thickness of the string-like developed product tends to be uneven. .

従って通常、上記両速度は略等速である。Therefore, normally, the above-mentioned two speeds are substantially constant.

かぐして、上記ひも状展開物はベルトコンベア上にあっ
て、該コンベアの走行と共に移行し、コンベア走行途次
に設けられている羽根車(4)に押しつけられる。
The string-like developed product is placed on a belt conveyor, moves as the conveyor runs, and is pressed against an impeller (4) provided at the end of the conveyor.

第2図は、前記実施過程において、ベルトコンベアの途
中の上部に配設され、ひも状に展開された樹脂状物質を
切断するだめの羽根車(4)の詳細図であり、同図に示
したように、円筒(4a)の外周に等間隔に一定の巾と
長さの板(4b) ’i溶接したものが用いられる。こ
の場合、羽根の先端部は切断を゛容易にするため、鋭角
に仕上げるのが望ましいが、特に焼入れなどによる硬化
処理の必要はない。なぜならばこの羽根車は樹脂状物質
が塑性変形しゃ丁い、やわらかな状態のところへ切り込
みを入れるだけの役目を果せばよいからである。しかし
、この羽根車のセット位置は、ひも状展開物の温度がそ
の物質の軟化点以下でかつガラス転移点以上の温度とな
る範囲でなければならない。好ましくは軟化点とガラス
転移点との丁度中間点の附近の温度とするのがよい。も
し軟化点より高い温度の位置に羽根車ケセントするとひ
も状展開物には未だ流動性があり、羽根車に耐着したり
切断面を与えてもその形状が保たれなかったりする。ま
たガラス転移点以下の温度の位置に羽根車全セット丁る
とひも状展開物は完全に固化しているため、前述の如く
羽根車を押しつけることによって破砕がおこり、一定の
形状の粒状物に成形することができなくなる。なお羽根
車の回転はベルトコンベアとの接触によって与えること
も可能であり、この方法は、自動的に羽根車の先端速度
とベルトコンベアの走行速度が等速となる簡便な方法で
あるが、好壕しくに羽根車をベルトコンベアの走行と同
期して回転させる動力伝達装置を持つのが望ましい。
FIG. 2 is a detailed view of the impeller (4), which is disposed at the upper part of the belt conveyor in the implementation process and is used to cut the resinous material spread out in the form of a string. As shown above, plates (4b) of a constant width and length are welded to the outer periphery of the cylinder (4a) at equal intervals. In this case, the tips of the blades are desirably finished at an acute angle to facilitate cutting, but there is no particular need for hardening treatment such as quenching. This is because the impeller only has to perform the role of making an incision where the resinous material is in a soft state, preventing plastic deformation. However, the setting position of this impeller must be in a range where the temperature of the string-shaped developed material is below the softening point of the material and above the glass transition point. Preferably, the temperature is just around the midpoint between the softening point and the glass transition point. If the impeller is placed at a temperature higher than the softening point, the string-like developed product will still have fluidity and will not be able to adhere to the impeller or maintain its shape even if a cut surface is applied. In addition, when a complete set of impellers is placed at a temperature below the glass transition point, the string-like developed material will be completely solidified, and as mentioned above, crushing will occur by pressing the impeller, resulting in granules of a certain shape. It becomes impossible to mold. Note that the rotation of the impeller can also be given by contact with the belt conveyor, and this method is a simple method that automatically makes the tip speed of the impeller and the running speed of the belt conveyor equal, but it is not preferable. It is desirable to have a power transmission device that rotates the impeller in synchronization with the running of the belt conveyor.

このようにすれば羽根車とベルトコンヘアとノ接触点で
、羽根車に回転を与えるための摩擦力は必要なくなり、
専らひも状展開物に切断面を与えるだけの押しつけ圧さ
えあればよいことになりベルトコンベアのベルト面およ
び羽根車の羽根先端部の耐久性が向上することになる。
In this way, there is no need for frictional force to rotate the impeller at the point of contact between the impeller and the belt conveyor.
It is only necessary to apply a pressing pressure that is sufficient to give a cut surface to the string-shaped developed product, and the durability of the belt surface of the belt conveyor and the tip of the blade of the impeller is improved.

以上のような各操作を経て切断面を与えら゛れたひも状
展開物(5)は前述したように未だ完全には切断されて
おらず、ガラス転移点以下まで冷却された後ベルトコン
ベアから脱落するときは切断面毎に区分される粒状物が
数個から十数個連らなった。
The string-like developed material (5), which has been given a cut surface through the above-mentioned operations, is not yet completely cut as described above, and after being cooled to below the glass transition point, it is removed from the belt conveyor. When it fell off, there were several to ten or more granules separated by each cut surface.

形で落下する。そのため本発明では最後にこのように連
らなった粒状物?1個づつに破砕する方法として粒状物
の落下速中に衝突板(6)ヲ設けるという極めて簡単な
方法を用いる。衝突板の取付位置は粒状物が1個づつ破
砕するに十分な落差(被処理物質によって異なるが30
〜50crnあれば十分)をもった位置とする必要があ
り、かつ衝突して破砕した粒状物が堆積しないように傾
斜をつけて落下するように配慮する必要はあるが、それ
以外の形状や取付方法などについては何ら制約はない。
Fall in shape. Therefore, in the present invention, the last particulate matter connected like this? As a method of crushing the particles one by one, an extremely simple method is used in which a collision plate (6) is provided during the falling speed of the particles. The mounting position of the collision plate should be set at a height sufficient to crush the granules one by one (this varies depending on the material to be treated, but
~50 crn is sufficient), and care must be taken to ensure that the particulates collided and crushed do not accumulate and fall at an inclination, but other shapes and installations are required. There are no restrictions on the method.

゛以上、本発明の方法′ft詳しく説明したが、この本
発明の方法によれば冷却可能なベルトコンベアと樹脂状
物質の溶融液を流下する複数個の穴を設けた配管と、先
端速度がベルトコンベアの走行と等速になるように回転
する羽根車と、一連の粒状物が落下するとき衝突するよ
うに設置した衝突板とがあれば造粒が可能であり、でき
た粒状物は一定の形状、大きさに揃っていて、しかも造
粒後に乾燥などの余分の工程も全く必要としない。また
冷却手段を備えたコンベア上へ流下させるため溶融した
樹脂状物質を流下する配管以外の装置には樹脂状物質が
液状で付着したままになるところは、なく、したがって
上記の配管され取替えるかまたけ洗い替えを行なえば容
易に他の樹脂状物質の造粒にも利用できる特色を有する
The method of the present invention has been described in detail above, but according to the method of the present invention, a belt conveyor that can be cooled, a pipe provided with a plurality of holes through which a molten liquid of a resinous substance flows, and a tip speed that is Granulation is possible if there is an impeller that rotates at the same speed as the belt conveyor and a collision plate that is installed so that a series of falling granules collide with each other, and the resulting granules are constant. It has a uniform shape and size, and does not require any extra steps such as drying after granulation. In addition, there is no part of the equipment other than the piping through which the molten resinous material flows down onto a conveyor equipped with a cooling means, where the resinous material remains in liquid form, and therefore the piping described above must be replaced or replaced. It has the feature that it can be easily used for granulation of other resinous substances by simply washing and replacing it.

次に上記本発明方法をさらに明確にするため以下に実施
例をあげる。しかし、勿論本実施例によって本発明の方
法を限定するものではないことは云うまでもない。
Next, in order to further clarify the above-mentioned method of the present invention, examples will be given below. However, it goes without saying that the method of the present invention is not limited to this example.

(実施例) 5鵡φの穴をlOw+間隔で25個−列に設けた内径3
0鰭の配管を、巾400ttaxで冷却可能な部分の長
すL 5 mのスチールベルトフレーカ−の一端の上部
に、約50簡の間隔をあけて配設し、この配管にゴム用
添加剤として用いられるアルキルフェノール・ホルマリ
ン樹脂の一種(商品名:スミカノール620)の溶融液
を125℃で0.4覧Gの圧力で送入したところ、25
本の粘稠な液流となってベルトフレーカ−上に流下した
。ベルトフレーカ−のベルト速度をL 25 m/f+
で走行サセるとともにベルト裏面に20℃の冷却水を噴
霧したところ、溶融液の流下点から約40crn走行し
たところでひも状に展開された物質は釣95℃となった
。この位置に羽根車を設置して該ひも状展開物を切断す
れば容易に切断面が形成され、これがベルトフレーカ−
から脱落するときは約35℃ま丁冷却されていた。そし
てこれが約20cm1下したところにステンレス製の衝
突板を傾斜して置いたところ、すべて切断面毎に破砕し
て長さ8〜9胴、巾4〜6 tan 、厚み約3m+の
一定形状の粒状物を得ることができた。このときの処理
能力は23に?/Hr  であった。なお、この物質の
軟化点は約100℃、ガラス転移点は約50℃であった
(Example) 25 holes of 5 mm diameter provided in rows with lOw + spacing - inner diameter 3
0 fin piping is installed at an interval of about 50 fins above one end of a steel belt flaker with a width of 400 ttax and a coolable part length L 5 m, and a rubber additive is installed in this piping. When a melt of a type of alkylphenol formalin resin (trade name: Sumikanol 620) used as
A viscous liquid stream of books flowed down onto the belt breaker. The belt speed of the belt breaker is L 25 m/f+
As the belt continued to run, cooling water at 20°C was sprayed onto the back surface of the belt, and the temperature of the material spread out in the form of a string reached 95°C after running approximately 40 crn from the point where the melt flowed down. If an impeller is installed at this position and the string-like developed material is cut, a cut surface is easily formed, and this is the belt breaker.
When it fell off, it had cooled down to about 35°C. When this was lowered by about 20cm1 and a stainless steel collision plate was placed at an angle, all of the pieces were crushed at each cut surface, resulting in uniformly shaped particles of 8 to 9 bodies in length, 4 to 6 tan in width, and about 3 m+ in thickness. I was able to get things. The processing power at this time is 23? /Hr. Note that this material had a softening point of about 100°C and a glass transition point of about 50°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する装置例の概要図、第2図
は本発明方法に使用される羽根車の1例を示す概召斜視
図である。 (II・・・樹脂状物質の溶融液送入管。 (2)・・・複数本の液流に分割流下する配管。 (3)・・・ひも状展開物、(4)・・・羽根車。 (5)・・・切断面のできたひも状展開物。 (6)・・・衝突板。 (7)・・・完全に1個づつに破砕された粒状物。 (8)・・・冷却水入口。 (9)・・・冷却水出口。 OD・・・ベルトコンペア本体。
FIG. 1 is a schematic diagram of an example of an apparatus for implementing the method of the present invention, and FIG. 2 is a schematic perspective view showing an example of an impeller used in the method of the present invention. (II... Pipe for feeding the melt of resinous substance. (2)... Piping that divides the liquid into multiple streams. (3)... String-like developed material, (4)... Vane Car. (5)... String-like developed object with a cut surface. (6)... Collision plate. (7)... Granular material completely crushed into pieces. (8)... Cooling water inlet. (9)... Cooling water outlet. OD... Belt compare body.

Claims (1)

【特許請求の範囲】[Claims] l 高温では溶融した液状となるが冷却すると徐々に粘
度が増大し遂にはガラス状に固化する樹脂状物質の溶融
液を冷却し固化させる操作において冷却手段を備えたベ
ルトコンベア上に溶融液を複数本の液流に分割して流下
さぞ、ベルトコンベアの走行によって複数本のひも状に
展開さぞながら冷却し、該ひも状展開物の温度がその物
質の軟化点以下で、かつ、ガラス転移点以上の温度とな
る範囲のところで、その先端速度がベルトコンベアの走
行と等速で回転する羽根車を押しつけることによって該
ひも状展開物に切断面を形成させ、さらに冷却して該ひ
も状展開物の温度がガラス転移点以下の温度となってか
らベルトコンベアよシ脱落させ、落下する途中に設けた
衝突板に衝突させることによって、該ひも状展開物をそ
の切断面毎に破砕させることを特徴とする樹脂状物質の
造粒方法。
l At high temperatures, it becomes a molten liquid, but as it cools, its viscosity gradually increases and it finally solidifies into a glass-like state.In the operation of cooling and solidifying a molten liquid of a resinous substance, a plurality of molten liquids are placed on a belt conveyor equipped with a cooling means. The liquid is divided into two liquid streams and cooled as they are spread out into multiple strings as they run on a belt conveyor, and the temperature of the string-like spread is below the softening point of the substance and above the glass transition point. In a temperature range of The string-like developed material is broken into its cut surfaces by falling off the belt conveyor after the temperature reaches a temperature below the glass transition point and colliding with a collision plate provided on the way of falling. A method for granulating resinous substances.
JP7097882A 1982-04-26 1982-04-26 Granulating method of resinous material Granted JPS58186431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7097882A JPS58186431A (en) 1982-04-26 1982-04-26 Granulating method of resinous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7097882A JPS58186431A (en) 1982-04-26 1982-04-26 Granulating method of resinous material

Publications (2)

Publication Number Publication Date
JPS58186431A true JPS58186431A (en) 1983-10-31
JPS6123014B2 JPS6123014B2 (en) 1986-06-04

Family

ID=13447117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7097882A Granted JPS58186431A (en) 1982-04-26 1982-04-26 Granulating method of resinous material

Country Status (1)

Country Link
JP (1) JPS58186431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129678A (en) * 1985-11-29 1987-06-11 株式会社大川原製作所 Belt conveyor type vacuum drier having improved cooling effect
JP2003062830A (en) * 2001-08-28 2003-03-05 Matsushita Electric Works Ltd Method and apparatus for cooling kneaded resin mixture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129678A (en) * 1985-11-29 1987-06-11 株式会社大川原製作所 Belt conveyor type vacuum drier having improved cooling effect
JPH0697136B2 (en) * 1985-11-29 1994-11-30 株式会社大川原製作所 Belt conveyor vacuum dryer with enhanced cooling effect
JP2003062830A (en) * 2001-08-28 2003-03-05 Matsushita Electric Works Ltd Method and apparatus for cooling kneaded resin mixture

Also Published As

Publication number Publication date
JPS6123014B2 (en) 1986-06-04

Similar Documents

Publication Publication Date Title
US6592350B1 (en) Underwater pelletizer with separator
JP5726406B2 (en) Apparatus and method for granulating wax and wax-like material
TWI238772B (en) Pelletizing die, pelletizing apparatus, and method for producing pellets of expandable thermoplastic resin
EP3043973B1 (en) Method for producing superficially crystalline spherical granules by means of hot cut pelletizing, and apparatus for carrying out the method
JP6046489B2 (en) Tableting ammonium sulfate
JP4227522B2 (en) Equipment for thermal granulation of thermoplastic polymers
KR20150122652A (en) Melt-processing system
US4269584A (en) Hot pelletizer for extruders
US9808979B2 (en) Method and device for making granules
JPS58186431A (en) Granulating method of resinous material
JP3996695B2 (en) Granulation method and apparatus
JPS57167303A (en) Recovery of polymer from undried polymer bead or polymer slurry
US20160279829A1 (en) Apparatus and process for granulating molten material
US4482517A (en) Method and equipment for producing solid granules of pitch in the form of cylinders crushed at the ends
CN212237171U (en) Rotary drum sulfur granulation complete equipment with cooling flow channel
DE19808769A1 (en) Method and device for producing granules
JPS62199408A (en) Method and apparatus for preparing synthetic resin pellet
CN215233994U (en) Horizontal rotating spray head for tower type granulation of molten mass
KR100494295B1 (en) Method for preparing hydrophilic resin granule
CN218318589U (en) Raw material heating equipment is used in plastic packaging product production
US9950446B2 (en) Device for granulating melt material
JPS63126705A (en) Granulation device
CN215996570U (en) Dropping machine
US6575722B1 (en) Apparatus for producing and cooling polymer pellets
JPH02290233A (en) Manufacturing device for granular gel