JPS58185788A - Manufacture of electrode - Google Patents

Manufacture of electrode

Info

Publication number
JPS58185788A
JPS58185788A JP57068611A JP6861182A JPS58185788A JP S58185788 A JPS58185788 A JP S58185788A JP 57068611 A JP57068611 A JP 57068611A JP 6861182 A JP6861182 A JP 6861182A JP S58185788 A JPS58185788 A JP S58185788A
Authority
JP
Japan
Prior art keywords
electrode
nickel
substrate
valence state
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57068611A
Other languages
Japanese (ja)
Other versions
JPH0245718B2 (en
Inventor
Masao Fukuoka
福岡 正雄
Yoshiaki Tanaka
義明 田中
Katsutoshi Yoshimoto
吉本 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP57068611A priority Critical patent/JPS58185788A/en
Publication of JPS58185788A publication Critical patent/JPS58185788A/en
Publication of JPH0245718B2 publication Critical patent/JPH0245718B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an electrode having high performance and durability by immersing an electrode substrate having an Ni or Ni alloy surface in an aqueous soln. of a salt of a bivalent or higher-valent metal which is nobler than the oxidation-reduction potential of a soln. in which the high valence state becomes a low valence state. CONSTITUTION:An electrode substrate having an Ni or Ni alloy surface is immersed in an aqueous soln. of a salt of a bivalent or higher valent metal which is nobler than the oxidation-reduction potential of a soln. in which the high valence state becomes a low valence state. Cupric chloride, ferric chloride, ferric nitrate or the like is used as the metallic salt. The concn. of the metallic salt is adjusted to 20-50g/l, and the pH of the aqueous soln. is adjusted to <=4, especially <=2. The substrate is then covered with an active substance for an electrode.

Description

【発明の詳細な説明】 本発明は、新規な電極の製造方法である。特にアルカリ
金属ハロゲン化物水溶液の電解や水の電解などに陰極と
して用いると低い水素過電圧となる電極の製造方法であ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a novel method for manufacturing electrodes. In particular, this is a method for producing an electrode that exhibits a low hydrogen overvoltage when used as a cathode for electrolysis of aqueous alkali metal halide solutions, water electrolysis, and the like.

従来から、■集的な電解技術は多く知られており、中で
もアルカリ金属ハロゲン化物特に塩化ナトリウム、塩化
カリウムの水溶液の電解や水の電解により水素を発生さ
せる反応などは工業上多く用いられでいる。従って本発
明は、このような水素発生反応における水素過電圧の低
い電極を得るにある。
Conventionally, many comprehensive electrolysis techniques have been known, and among them, reactions that generate hydrogen by electrolysis of aqueous solutions of alkali metal halides, particularly sodium chloride and potassium chloride, and water electrolysis are widely used in industry. . Therefore, the object of the present invention is to obtain an electrode with low hydrogen overvoltage in such a hydrogen generation reaction.

従来、上記電極としては、軟鋼を基体とし、該基体表面
を酸洗、電解エツチング、プラスト法等により粗面化し
た後、その上に電極活性物質を被覆したものが用いられ
ていた。ところが、軟鋼上に上記電極活性処理を施した
電極を用いて電解を行った場合、電極活性に優れている
ほど電極基体である鉄の溶出が容易となり、それに伴い
触媒活性度が低下する。これを防止するためには、密着
性の良い緻密な触媒層をコーディングするとともに、耐
食性を有する基体または耐食性皮膜を有する基体を用い
ることが必要である。本環境中での耐蝕性材料としては
、一般にニッケル及びその合金が知られている。そこで
上記材料で基体を製作し、該基体表面に電極活性物質を
被覆した電極を製作することが考えられる。ところが、
ニッケル及びその合金を電極基体として用いた場合、該
基体自身の耐食性のために電極活性物質被覆のための密
着性向上を目的とした粗面化等の前処理が困難となり活
性物質の密着性が確保し難い。
Conventionally, the above-mentioned electrodes have been made of mild steel, the surface of which has been roughened by pickling, electrolytic etching, plasting, etc., and then coated with an electrode active material. However, when electrolysis is carried out using an electrode that has been subjected to the above electrode activation treatment on mild steel, the better the electrode activity is, the easier the elution of iron, which is the electrode base, is accompanied by a decrease in catalyst activity. In order to prevent this, it is necessary to coat a dense catalyst layer with good adhesion and to use a substrate with corrosion resistance or a substrate with a corrosion-resistant film. Nickel and its alloys are generally known as corrosion-resistant materials in this environment. Therefore, it is conceivable to manufacture a substrate using the above-mentioned material and manufacture an electrode by coating the surface of the substrate with an electrode active substance. However,
When nickel and its alloys are used as electrode substrates, the corrosion resistance of the substrate itself makes it difficult to perform pretreatment such as surface roughening for the purpose of improving adhesion for coating the electrode with active materials, and the adhesion of the active materials may deteriorate. Difficult to secure.

そこで本発明は、ニッケル又はニッケルを主成分とする
合金よりなる表面を有する基体とし、その表面に活性物
質を被覆した電極であって、その活性物質の密着性を向
上し、延いては、電極としての性能及び耐久性のよい電
極の製造方法を提供するものである。
Therefore, the present invention provides an electrode that has a surface made of nickel or an alloy containing nickel as a main component and coats the surface with an active substance, which improves the adhesion of the active substance and further improves the electrode. The present invention provides a method for manufacturing an electrode with good performance and durability.

即ち、本発明はニッケル又はニッケルを主成分とする合
金よりなる表面を有する電極基体を2以上の原子価を持
ら、その高原子価状態から低原子価状態に至る溶液の酸
化還元電位が該溶液中におけるニッケル金属の電極電位
よりも負である金属の塩水溶液中に浸漬し、その後該基
体に電極活性物質を被覆することを特徴とする電極の製
造方法である。
That is, the present invention provides an electrode substrate having a surface made of nickel or an alloy containing nickel as a main component, which has a valence of 2 or more, and whose solution redox potential from a high valence state to a low valence state is the same. This method of manufacturing an electrode is characterized by immersing the substrate in an aqueous salt solution of a metal that is more negative than the electrode potential of nickel metal in the solution, and then coating the substrate with an electrode active material.

本発明の最大の特徴は、上記特定の金属塩の水溶液で電
極基体を処理する点にある。かくすることにより、その
後行われる活性物質の被覆は、電鍍、又は塗布、焼付け
など公知の被覆手段が制限なく使用し得る。中でも、後
述する含硫ニッケル被覆などは好ましい活性物質となる
The greatest feature of the present invention is that the electrode substrate is treated with an aqueous solution of the above-mentioned specific metal salt. Thereby, for the subsequent coating of the active substance, any known coating means such as electroplating, coating, or baking can be used without restriction. Among these, a sulfur-containing nickel coating, which will be described later, is a preferred active material.

従来、ニッケル素材の化学加工、例えばメッキ■稈前処
理とシテハ例、tG、f i) NHO,−H,5o−
H,PO,+HC。
Conventionally, chemical processing of nickel materials, such as plating ■Culm pretreatment and shiteha example, tG, f i) NHO, -H,5o-
H, PO, +HC.

H3O2、ii) Fe Cffjll、 iii> 
HN O,+ HC12+ )1.01が知られている
。本発明の処理には、塩化第2鉄溶液による処理が含有
されるけれども、従来かかる処理を施した基体に活性物
質を被覆した電極が極めて水素過電圧が低く、且つその
性能の持続性が大きいという知見は全くない。
H3O2, ii) Fe Cffjll, iii>
HN O,+ HC12+ ) 1.01 is known. Although the treatment of the present invention includes treatment with a ferric chloride solution, it is said that conventional electrodes in which a substrate subjected to such treatment is coated with an active substance have extremely low hydrogen overvoltage and long-lasting performance. I have no knowledge at all.

本発明に用いられるニッケル又はニッケルを主体とする
合金よりなる表面を有する電極基体とは、該基体がニッ
ケル又はそれを主体とする合金よりなるものは勿論、そ
の他、例えばメッキの如く鉄等の金属の表面にニッケル
又はそれを主体とする合金の被覆層を有するものの総称
である。
The electrode base having a surface made of nickel or an alloy mainly composed of nickel used in the present invention is not only one in which the base is made of nickel or an alloy mainly composed of nickel, but also other metals such as iron such as plated. It is a general term for materials that have a coating layer of nickel or an alloy mainly composed of nickel on the surface.

本発明において特に重要なことは、特定の金属塩水溶液
中に上記基体を浸漬することにある。該金属塩としては
、塩化第2銅、塩化第2鉄、硝酸第2鉄、硫酸第2鉄、
塩化第2クロム、塩化第2スズ、硝酸第2クロム等水溶
液中で2以上の原子価を持ちその高原子価状態から低原
子価状態に至る溶液の酸化還元電位が該溶液中における
ニッケル金属の電極電位よりも崗であれば公知のものが
特に制限なく使える。
What is particularly important in the present invention is that the substrate is immersed in an aqueous solution of a specific metal salt. The metal salts include cupric chloride, ferric chloride, ferric nitrate, ferric sulfate,
The redox potential of chromic chloride, tin chloride, chromic nitrate, etc., which has a valence of 2 or more in an aqueous solution and goes from a high valence state to a low valence state, is the same as that of nickel metal in the solution. Any known material can be used without particular restriction as long as it is higher than the electrode potential.

本発明の効果を一層高めるためには、水溶液のPH1温
度1、金属塩濃度等を制御する必要がある。
In order to further enhance the effects of the present invention, it is necessary to control the PH1 temperature 1, metal salt concentration, etc. of the aqueous solution.

本発明の処理機構として例えばCOCQ2を挙げて、説
明すると銅はCC共存溶液中でCLI / COC(l
a’−″(n :電子の数)のレドックス系を形成し、
その還元電位はNl/Nlより貴であるため、ニッケル
を酸化溶解する。
Taking COCQ2 as an example of the treatment mechanism of the present invention, copper is CLI/COC(l) in a CC coexistence solution.
form a redox system of a'-'' (n: number of electrons),
Since its reduction potential is nobler than Nl/Nl, it oxidizes and dissolves nickel.

即ち、本発明においては、金属塩水溶液のレドックス電
位と該溶液中におけるニッケルの酸化電位において金属
塩水のレドックス電位の方が負であればよい。このとき
初めてニッケル表面の金属結晶の不均一層を保ったまま
、ニッケルを部分的に溶解するため電極に適する優れた
粗面化をもたらすことになる。
That is, in the present invention, it is sufficient that the redox potential of the metal salt water is more negative than the redox potential of the metal salt aqueous solution and the oxidation potential of nickel in the solution. At this time, the nickel is partially dissolved while maintaining the non-uniform layer of metal crystals on the nickel surface, resulting in an excellent surface roughening suitable for electrodes.

本発明の処理方法は、一般に上記に示した金属塩水溶液
中に電極基体を浸漬することによって達成される。この
際の溶液のPH,温度は用いる金属塩の種類、濃度によ
って異なるが、一般には金属塩濃度5〜100(]/ 
(1、好5− ましくは20〜Sou/(lでPHが4以下、好ましく
は2以下である金属塩水水溶液を用い、常温以上特に3
0〜60”Cにて数分乃至数十分間、基体を浸漬処理す
ればよい。
The treatment method of the present invention is generally achieved by immersing the electrode substrate in the metal salt aqueous solution shown above. The pH and temperature of the solution at this time vary depending on the type and concentration of the metal salt used, but generally the metal salt concentration is 5 to 100 (]/
(1, preferably 5 - Sou/(l) using a metal salt aqueous solution with a pH of 4 or less, preferably 2 or less, at room temperature or above, especially 3
The substrate may be immersed at 0 to 60''C for several minutes to several tens of minutes.

上記方法によって得られたニッケル基体表面の和楽さは
8〜15μ−程度であるが、これは単に機械的手段等で
形成させた粗面とは、その後の活性物質被覆処理による
電極の性能及び耐久性が著しく異なり、本発明の効果は
単に表面粗度の影響以外に何らかの作用があるものと考
えられる。尚、本発明にあっては、従来公知のメッキ等
金属被覆を行う場合の前処理手段、例えば酸洗或いは金
属洗浄処理、場合によってはサンドブラスト、ショツト
ブラスト等のエツチング処理を行うことは妨げない。例
えば塩酸で予め基体表面を活性化することは好ましい。
The roughness of the surface of the nickel substrate obtained by the above method is about 8 to 15 μ-, but this is different from the rough surface formed simply by mechanical means. It is thought that the effect of the present invention is due to some effect other than simply the effect of surface roughness. Note that the present invention does not preclude the use of conventionally known pretreatment means for metal coating such as plating, such as pickling or metal cleaning treatment, and in some cases, etching treatment such as sandblasting or shotblasting. For example, it is preferable to activate the surface of the substrate in advance with hydrochloric acid.

本発明において前記方法で処理した基体上に電極活性物
質を被覆、させる手段は、特に限定されず、従来公知の
手段が任意に適用し得る。例えば特開昭54−1282
@公報に示す如き、ロダンニッケル水溶液を直接、或い
は銅メッキ層等の中間メッキ層上にメッキする方法、特
開昭56−133484号公報に示す如き、電導性微粒
子を含むニツ6一 ケルメッキ浴、例えば硫酸ニッケルー塩化ニッケルーホ
ウ酸−タングステンカーバイト或いは硫酸ニッケルータ
ングステン酸ソーダークエン酸−場安−アンモニア水−
タングステンカーバイド中で電気メッキする方法、特開
昭56−142883月公報に示す如ぎ前述の電導性微
粒子を含むニッケルメッキ浴でメッキし金属メッキ層を
形成させた後、陰極活性物質を溶媒に溶解し、これをメ
ッキされた電極基体上にコーディングし、次いで熱分解
する方法、例えば硫酸−ニッケルー塩化ニッケルーホウ
酸−タングステンカーバイト浴を用いメッキ層を形成さ
せた後、該基体上に塩化白金酸のブタノール溶液を塗布
し、乾燥後、50〜350℃の温度で加熱する方法、ま
た特開昭55−24970号公報の如きメッキ浴として
錯化剤(例えばくえん酸)と、アンモニウムイオンを含
む含硫黄浴を用いてニッケルメッキを施す方法、或いは
特開昭57’−19388@公報に示す如き、チオシア
ン酸にアンモニウムイオンを加えたニッケル浴を用いて
メ、ツキを施す方法等がある。その中でも硫酸根以外の
少なくとも一種の含硫黄化合物を含有するメッキ浴、例
えばロダンニッケル浴等を用いて処理を施した陰極は、
水の電解或いはアルカリ金属ハロゲン化物水溶液の電解
等における陰極として用いた場合、水素過電圧が低いた
め好ましい。
In the present invention, the means for coating the electrode active material on the substrate treated by the above method is not particularly limited, and any conventionally known means can be applied. For example, JP-A-54-1282
A method of plating a Rodan nickel aqueous solution directly or on an intermediate plating layer such as a copper plating layer, as shown in @ publication, a Ni6-Kel plating bath containing conductive fine particles, as shown in JP-A-56-133484, For example, nickel sulfate - nickel chloride - boric acid - tungsten carbide or nickel sulfate - soda tungstate citric acid - nickel chloride - ammonia water -
A method of electroplating in tungsten carbide, as shown in Japanese Patent Application Laid-Open No. 142883/1983, after plating with a nickel plating bath containing the above-mentioned conductive particles to form a metal plating layer, the cathode active material is dissolved in a solvent. This is coated on a plated electrode substrate, and then a plating layer is formed using a method of thermal decomposition, for example, a sulfuric acid-nickel-nickel chloride-boric acid-tungsten carbide bath, and then coated with chloroplatinic acid on the substrate. A method in which a butanol solution is applied, dried and then heated at a temperature of 50 to 350°C, or a plating bath using a complexing agent (e.g. citric acid) and a sulfur-containing ammonium ion as described in JP-A-55-24970. There is a method of applying nickel plating using a bath, or a method of applying nickel plating using a nickel bath containing ammonium ions added to thiocyanic acid as shown in Japanese Patent Application Laid-open No. 57'-19388@. Among these, cathodes treated using a plating bath containing at least one sulfur-containing compound other than sulfuric acid radicals, such as a Rodan nickel bath, are
When used as a cathode in water electrolysis or alkali metal halide aqueous solution electrolysis, it is preferable because the hydrogen overvoltage is low.

従ってアルカリ金属ハロゲン化物水溶液、例えば塩化ナ
トリウム、塩化カリウム等の工業的規模の電解に使用す
る陰極として適する。とりわけイオン交換膜をwAlと
して用いた所謂イオン交換膜法電解においては、陰極の
寿命が長く、好適に使用される。
Therefore, it is suitable as a cathode for use in industrial-scale electrolysis of aqueous solutions of alkali metal halides, such as sodium chloride and potassium chloride. In particular, in so-called ion-exchange membrane electrolysis using an ion-exchange membrane as wAl, the cathode has a long life and is preferably used.

以下、本発明を具体的実施例に基づいて説明するが本発
明は以下の実施例に限定されるものではない。
The present invention will be described below based on specific examples, but the present invention is not limited to the following examples.

実施例1 第1表に示す組成を有する溶液中にニッケルのマイクロ
エクスパンドメタル(短径1.5+u+、長径3.0I
R110,5dm2)を浸漬した。その時の重−減少速
喧と浸漬当初の溶液の酸化還元電位及びニッケルラス材
の浸漬電位史に表面粗さ計(東京精密機智サーフコム2
00A )にて表面の粗度を測定した。その結果を第表
1に示した。
Example 1 A nickel micro-expanded metal (breadth axis 1.5+u+, long axis 3.0I) was placed in a solution having the composition shown in Table 1.
R110,5dm2) was immersed. The surface roughness meter (Tokyo Seimitsu Kichi Surfcom 2
The surface roughness was measured at 00A). The results are shown in Table 1.

尚、重量減少速度は次式によって求めたもので本実施例
においては、該値が大きい程、前処理効果が早く粗化が
迅速であることを示す。
The weight reduction rate was determined by the following formula, and in this example, the larger the value, the faster the pretreatment effect and the faster the roughening.

重量減少速度(%/Hr ) =  1時間浸漬後の型開減少量X 1009− 浸漬の後、該基体を第2表に示した組成を有する浴を用
いてロダンニッケルメッキした。これを陰極として対楡
に白金板を用い28wt%の苛性ソーダ溶液中85℃で
電解(30A/ dmil) したところ、第3表に示
す結果を得た。
Weight reduction rate (%/Hr) = mold opening reduction amount after immersion for 1 hour When this was electrolyzed (30 A/dmil) at 85° C. in a 28 wt % caustic soda solution using a platinum plate as a cathode and a counter electrode, the results shown in Table 3 were obtained.

第2表 実施例2 短径1.5I鶴で長径3.Ogi論のニッケル製マイク
ロラスIによる0、56Nの陰極基材を第1表のNo1
〜6に示す方法で粗面化処理を施した後、第4表に示し
た組成を有する浴を用いてニッケルータングステンカー
バイド複合メッキを施した。次いでメッキされた電極基
体上に塩化白金酸1g、製塩111mQ及びブタノール
10m12からなる溶液を塗布し、乾燥後窒素ガス雰囲
気下で350℃で1時間焼成した。これを5回繰り返し
た。
Table 2 Example 2 The short axis is 1.5I and the long axis is 3. The 0.56N cathode base material made of Ogi theory's nickel microlas I was used as No. 1 in Table 1.
After surface roughening treatment was performed by the method shown in 6 to 6, nickel-tungsten carbide composite plating was performed using a bath having the composition shown in Table 4. Next, a solution consisting of 1 g of chloroplatinic acid, 111 mQ of salt and 10 m12 of butanol was applied onto the plated electrode substrate, and after drying, it was baked at 350° C. for 1 hour in a nitrogen gas atmosphere. This was repeated 5 times.

これを陰極としてネAセプタF C−2000(4!山
曽達製、商品名)のパーフルオロ系陽イオン交換膜を用
いて陽極液として3.5N−精製食塩水を供給し、電流
密度30A/dml、85℃の条件で電解を実施して陰
極室からの28%の苛性ソーダ水溶液を得た。このとき
の電解結果を第5表に示した。
This was used as a cathode, and a perfluorinated cation exchange membrane of NeAcepta FC-2000 (manufactured by Tatsu Yamaso, trade name) was used, and 3.5N-purified saline was supplied as an anolyte, and the current density was 30A. /dml and 85° C. to obtain a 28% caustic soda aqueous solution from the cathode chamber. The electrolysis results at this time are shown in Table 5.

第4表 13− 第5表 実施例3 短径3Illl、長径6II1mの鉄(SPCC)製エ
キスバンドメタルによる0、5 dmffiの陰極基体
を除錆後、40W【%、60℃の過塩素酸溶液中に20
分間浸漬し、エツチング処理を行った。次いで、第6表
に示した組成を有する浴でニッケルメッキを施した。そ
の後、実施例1の第1表のNO1〜6に示す溶液を用い
て処理した後、実施例2の第4表に示したものと同一の
条件でニッケルータングステンカーバイド複合メッキを
施し、次いでメッキされた電極基14− 体上に塩化白金酸1g、濃塩酸1−〇、及びブタノール
40mからなる溶液を塗布し、乾燥後、窒素ガス雰囲気
下で1時間焼成し、これを5回繰り返した。これを陰極
として実施例2と同条件下で電解して第7表に示す結果
を得た。
Table 4 13 - Table 5 Example 3 After removing rust from a 0.5 dmffi cathode substrate made of expanded metal made of iron (SPCC) with a minor axis of 3 Illll and a major axis of 6 II 1 m, a perchloric acid solution of 40 W [%, 60 ° C. 20 inside
It was immersed for a minute and then etched. Next, nickel plating was performed using a bath having the composition shown in Table 6. Thereafter, after treatment with solutions shown in Nos. 1 to 6 in Table 1 of Example 1, nickel-tungsten carbide composite plating was applied under the same conditions as shown in Table 4 of Example 2, and then plating A solution consisting of 1 g of chloroplatinic acid, 1-0 concentrated hydrochloric acid, and 40 m of butanol was applied onto the prepared electrode base 14, and after drying, it was baked in a nitrogen gas atmosphere for 1 hour, and this process was repeated 5 times. Using this as a cathode, electrolysis was performed under the same conditions as in Example 2 to obtain the results shown in Table 7.

第6表 4Table 6 4

Claims (1)

【特許請求の範囲】[Claims] 1)ニッケル又はニッケルを主成分とする合金よりなる
表面を有する電極基体を2以上の原子価を持ち、その高
原子価状態から低原子価状態に至る溶液の酸化還元電位
が該溶液中におけるニッケル金属の電極電位よりも員で
ある金属の塩水溶液中に浸漬し、その後該基体に電極活
性物質を被覆することを特徴とする電極の製造方法。
1) An electrode substrate having a surface made of nickel or an alloy mainly composed of nickel has a valence of 2 or more, and the redox potential of the solution from the high valence state to the low valence state is the nickel in the solution. 1. A method for producing an electrode, which comprises immersing a substrate in an aqueous salt solution of a metal whose potential is lower than the electrode potential of the metal, and then coating the substrate with an electrode active material.
JP57068611A 1982-04-26 1982-04-26 Manufacture of electrode Granted JPS58185788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57068611A JPS58185788A (en) 1982-04-26 1982-04-26 Manufacture of electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57068611A JPS58185788A (en) 1982-04-26 1982-04-26 Manufacture of electrode

Publications (2)

Publication Number Publication Date
JPS58185788A true JPS58185788A (en) 1983-10-29
JPH0245718B2 JPH0245718B2 (en) 1990-10-11

Family

ID=13378730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57068611A Granted JPS58185788A (en) 1982-04-26 1982-04-26 Manufacture of electrode

Country Status (1)

Country Link
JP (1) JPS58185788A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123886A (en) * 1982-01-18 1983-07-23 Hodogaya Chem Co Ltd Corrosion resistant activated cathode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123886A (en) * 1982-01-18 1983-07-23 Hodogaya Chem Co Ltd Corrosion resistant activated cathode

Also Published As

Publication number Publication date
JPH0245718B2 (en) 1990-10-11

Similar Documents

Publication Publication Date Title
US5035779A (en) Process for producing cathode and process for electrolysis using said cathode
JP3188361B2 (en) Chrome plating method
Barker Electroless deposition of metals
US3682796A (en) Method for treating chromium-containing baths
JP2004502871A (en) Electroless silver plating
US3309292A (en) Method for obtaining thick adherent coatings of platinum metals on refractory metals
GB2342099A (en) Electrode for chromium plating
JP2004502872A (en) Electroless self-catalytic platinum plating
US3274022A (en) Palladium deposition
US4067783A (en) Gold electroplating process
JPH10130878A (en) Electrolytic nickel plating method
JP2004502873A (en) Electroless platinum-rhodium alloy plating
US3412000A (en) Cathodic protection of titanium surfaces
US3497426A (en) Manufacture of electrode
US3467584A (en) Plating platinum metals on chromium
US5380696A (en) Oxidation catalyst and process of preparing same
JPS58185788A (en) Manufacture of electrode
JP3507278B2 (en) Electroplating method
JPS63507B2 (en)
JPS6341994B2 (en)
JPS647153B2 (en)
US4450187A (en) Immersion deposited cathodes
JPS589988A (en) Electrolytic cell
JPS5830956B2 (en) Cathode manufacturing method
JPS6211075B2 (en)