JPS58184443A - Circulating system using temperature difference pump - Google Patents

Circulating system using temperature difference pump

Info

Publication number
JPS58184443A
JPS58184443A JP57034403A JP3440382A JPS58184443A JP S58184443 A JPS58184443 A JP S58184443A JP 57034403 A JP57034403 A JP 57034403A JP 3440382 A JP3440382 A JP 3440382A JP S58184443 A JPS58184443 A JP S58184443A
Authority
JP
Japan
Prior art keywords
expansion
fluid
contraction
heat
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57034403A
Other languages
Japanese (ja)
Inventor
Shigeki Sato
佐藤 重樹
Misako Tanaka
美佐子 田中
Katsuko Oka
岡 「かつ」子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57034403A priority Critical patent/JPS58184443A/en
Priority to GB08305827A priority patent/GB2119453A/en
Publication of JPS58184443A publication Critical patent/JPS58184443A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/02Hot gas positive-displacement engine plants of open-cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0045Special features with a number of independent working chambers which are actuated successively by one mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/30Heat inputs using solar radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2258/00Materials used
    • F02G2258/10Materials used ceramic

Abstract

PURPOSE:To enable heat conduction and transfer and utilization of pressure by using as a dynamic power source by obtaining a dynamic pressure of a fluid due to the expansion and contraction force of a thermal expansive body within a thermal expansion and contaction vessel generated by entrance and exit of fluids having different temperatures, and causing the fluid to flow through a circulating path or a reciprocating path. CONSTITUTION:A heated fluid collected in a first heat source 1 advances toward a direction changeover device 2 via an outgoing pipeline 8, and is introduced alternately into thermal expansion and contraction vessels 3 and 4. The heated fluid is expanded by carrying out a heat exchange by the expansive body 10 within the thermal expansion and contraction vessels 3 and 4. Then, the heated fluid returns again to the first heat source 1 via a return pipe 9 to force a circulating flow. On the other hand, operating fluids 11 and 12 transmitted with pressure due to expansion of the expansive body 10 are heat-exchanged in a second heat source 7 via an outgoing pipeline 13 provided at the intermediate with a direction changeover device 5 formed by combining a counterflow check valve and check valve and passes through a return pipeline 14, and then alternately introduced as a low temperature fluid into the thermal expansion and contraction vessels 3 and 4 through the direction changeover device 5.

Description

【発明の詳細な説明】 従来の太陽熱温水器は、自然対流を利用し、薬湯するた
め集熱体の−E部にタンクを置かなければならない。薬
湯タンクを地上及び地下に置く場合は、他動力を循環動
力として使用している0 本発明は、気体、液体、固体の温度膨張体を二個以上組
合せることVこより生じる膨張差を動電 力とし、流体の自然対流、毒力、浮力、比重及び対流止
弁を利用し、自然エネルギーを利用した興味深い循環シ
ステムである。
DETAILED DESCRIPTION OF THE INVENTION Conventional solar water heaters utilize natural convection and require a tank to be placed in the -E section of the heat collector in order to provide medicinal hot water. When the medicinal hot water tank is placed above ground or underground, external power is used as the circulation power.The present invention combines two or more temperature-expanding bodies of gas, liquid, and solid, and the difference in expansion caused by this is converted into a dynamic force. It is an interesting circulation system that utilizes natural energy by utilizing the natural convection of fluids, poisonous force, buoyancy, specific gravity, and convection stop valves.

これを図面について説明すれば、 ピ) 図1に示したのは、従来使用されている太陽熱温
水器の略図である。
This can be explained with reference to the drawings: 1) What is shown in FIG. 1 is a schematic diagram of a conventionally used solar water heater.

←l  1m2−1は本発明を屋根の両側を利用1.。←l 1m2-1 uses the present invention on both sides of the roof 1. .

使用した場合の想鍛図で、図2−2は、平面Pこ略した
図面である。
FIG. 2-2 is a drawing in which the plane P is omitted.

(→ 因3−1は本発明を屋根の素側に使用した場合の
想像図で、図3−2は、平面に略した図面である。
(→ Factor 3-1 is an imaginary diagram of the case where the present invention is used on the bare side of a roof, and Figure 3-2 is an abbreviated plan view.

←) 図4は、図2−2の詳細なシステムの略図である
←) FIG. 4 is a detailed system diagram of FIG. 2-2.

10 区5は、図3−2の詳細なシステムの略図である
10 Section 5 is a detailed system diagram of FIG. 3-2.

(へ) 図6は、本発明の温差ポンプの詳細図である。(f) FIG. 6 is a detailed diagram of the temperature difference pump of the present invention.

以下、図5のシステム、因6の温差ポツプについて説明
する。
Below, the system of FIG. 5 and the temperature difference pop of factor 6 will be explained.

0) 集熱体Hにより加熱された流体は、矢印A(実線
)の様に通り、膨張容器P内の膨張体2を加熱させなが
ら集熱体I4の下部に流れ、自然対流をさせ、膨張体2
を膨張させる。
0) The fluid heated by the heat collector H passes as shown by arrow A (solid line), flows to the lower part of the heat collector I4 while heating the expander 2 in the expansion container P, causes natural convection, and expands. body 2
expand.

Q) 膨張容器P内の膨張体2が膨張することにより、
膨張容器P内の圧力が上列する。この時、逆止弁P2・
・C3が作動し、流体は。
Q) When the expansion body 2 inside the expansion container P expands,
The pressure inside the expansion container P increases. At this time, check valve P2
・C3 is activated and the fluid is.

矢印D(二点鎖線)の様に、逆止弁Pl・対流止弁Fを
通り、タンクT内に入る。タンクT内部において、対流
による熱の位置交換が行なわれ、上部と下部の温度差が
生じる。
As shown by arrow D (two-dot chain line), it passes through check valve Pl and convection check valve F and enters tank T. Inside the tank T, heat is exchanged by convection, creating a temperature difference between the upper and lower parts.

(3)  タンクT内の圧力上昇分の流体は、下部(冷
水)より逆止弁C2を通り、膨張容器C内の膨張体2を
冷水で加圧する。加圧されることにより膨張体2は収縮
する。収縮されることにより冷水が入り、膨張体2を冷
却し、” 膨張体2はより収縮する。
(3) The fluid corresponding to the pressure increase in the tank T passes through the check valve C2 from the lower part (cold water), and pressurizes the expansion body 2 in the expansion container C with cold water. The expansion body 2 contracts by being pressurized. As the expansion body 2 is contracted, cold water enters and cools the expansion body 2, causing the expansion body 2 to contract further.

(4)  ここで膨張容器P−0を比較すると、イ 内
部圧力  P=O・) p 流体量   P<0 ・・ 膨張体体積 P)Oとなり、全体の魚のバランス
を取り合うが口・ハにより、膨張容器Pと0間には重量
の差が生じる。
(4) Comparing the expansion container P-0 here, A Internal pressure P = O・) p Fluid volume P < 0 ... Expanded body volume P) O, and the balance of the whole fish is maintained, but due to the mouth and Ha, There is a difference in weight between the expansion containers P and 0.

(5)  膨張体4・5の差を利用し、ピストン3を移
動させ、流体方向切換弁1を作動し、流体方向切換弁l
は破線の位置となる。
(5) Utilizing the difference between the expansion bodies 4 and 5, move the piston 3 and operate the fluid direction switching valve 1.
is the position of the broken line.

(6)  集熱体1−1により加熱された流体は、矢印
B(破線)の様に通り、膨張容器C内の収縮された膨張
体2を加熱させながら集熱体+1の下部に流わ、自然対
流させ膨張体2を膨張させる。
(6) The fluid heated by the heat collector 1-1 passes as shown by arrow B (broken line) and flows to the lower part of the heat collector +1 while heating the contracted expansion body 2 in the expansion container C. , the expansion body 2 is expanded by natural convection.

(7)  膨張容11!! O内の膨張体2が膨張する
ことにより、膨張容器C内の圧力が上昇する。このとき
逆止弁02・P3が作動し、流体は矢印C(一点鎖線)
の様に流れ、逆止弁01.対流止弁Fを通りタンクTに
入る。タックT内部において対流による熱の位置交換が
行なわれ、上部と下部Vこ温度差が生じる。
(7) Expansion capacity 11! ! As the expansion body 2 inside O expands, the pressure inside the expansion container C increases. At this time, check valves 02 and P3 operate, and the fluid flows as indicated by arrow C (dotted chain line).
Flows like check valve 01. It passes through the convection stop valve F and enters the tank T. Inside the tuck T, heat is exchanged by convection, and a temperature difference occurs between the upper and lower parts.

、1:1 (8)#7/T内。圧1′1カ上昇分。流体。1、下部
(冷水)より逆止弁P2を通り、膨張容器C内の膨張体
2を冷水で加圧する。加圧される3− ことにより膨張体2は収縮する。収縮されることにより
冷水が入り、加熱されていた膨張体2は冷却し、収縮す
る。
, 1:1 (8) #7/T inside. Pressure increases by 1'1. fluid. 1. Pressurize the expansion body 2 in the expansion container C with cold water from the lower part (cold water) through the check valve P2. By being pressurized 3-, the inflatable body 2 contracts. By being contracted, cold water enters, and the heated expansion body 2 is cooled and contracted.

(9)  ここで膨張容器PとCを比較すると、二 内
部圧力   p=Q ホ 流体量    P>0 へ 膨張体体積  P<Cとなり、全体の量のバランス
を取り合うがホ・へ1こより、膨張容器Pと0間には重
量の差が生じる。
(9) Comparing the expansion containers P and C, we find that 2 Internal pressure p=Q E Fluid volume P>0 Expanded body volume P<C, and the overall volume is balanced, but E and H 1 more expand. There is a difference in weight between containers P and 0.

qO膨張体4・5の差を利用し、ピストン3を移動させ
、流体方向切換弁1は実線の位置となり、++)の動作
にはいる。
Using the difference between the qO expansion bodies 4 and 5, the piston 3 is moved, and the fluid direction switching valve 1 is in the position indicated by the solid line, and enters the operation of ++).

tlll  温差ポンプ循環ンステムのサイクルは1〜
10と続き、逆止弁・対止弁の組合せにより、薬湯タン
クを地上及び地下に置くことができる。
tllll Temperature pump circulation system cycle is 1~
Continuing with 10, the medicinal hot water tank can be placed above ground or underground by combining the check valve and check valve.

(ト〕  膨張容器P−0は、温度による伸縮率の小さ
いものの固定型、又は伸縮率の大きいものであれば流体
を通すだけでも良く、伸縮率の差の組み合せ1こより、
容量の変化を4− 利用すれば良い。(バイメタル等の組み合せ) (チ)膨張体2は、熱伝導の良いものの中に、膨張体(
気体・液体又混合体)を入れ、密封型(図7)、開放型
(図8)どちらでも良い。
(G) The expansion container P-0 may be a fixed type with a small expansion/contraction rate due to temperature, or may be a fixed type with a large expansion/contraction rate that allows fluid to pass through.
It is sufficient to take advantage of the change in capacitance. (Combination of bimetals, etc.) (h) Expanding body 2 is made of an expanding body (
Either a sealed type (Figure 7) or an open type (Figure 8) may be used.

(す」  流体方向切換弁lは、膨張体2に生じる。(S) The fluid direction switching valve l occurs in the expansion body 2.

流体量、膨張体体積による差及び重力・浮力等を流体方
向切換弁作動動力として常に一方向に流れる様に設定し
なければならな(ヌλ 温差ポンプ、管路は断熱材等で
保温しなければならない。
It must be set so that the flow always flows in one direction using the fluid volume, the difference due to the volume of the expanding body, gravity, buoyancy, etc. as the driving force for the fluid direction switching valve. Must be.

(ルI逆11:弁はスイング型・リフ)型等、対流力に
作動するものであれば良い。
(Reverse 11: The valve may be of the swing type or riff type, as long as it is operated by convection force.

(オl対itl:弁は、ンステムの重要なものである。(Ol vs. itl: Valves are important in the system.

管路の長い場合に管路に区切りをとり、管路内における
温度差の対流なふせぐものである。
When the pipe is long, it is divided into sections to prevent convection of temperature differences within the pipe.

対流止弁(図10)について次に説明する。The convection stop valve (FIG. 10) will be explained next.

(1)  弁に使用する球(弁)lは、浮力のあるもの
を示、す。流体が矢印Aが逆になった場合は、流体より
比重力を大きくすれば良い。
(1) The ball (valve) l used in the valve is buoyant. If the arrow A is reversed for the fluid, it is sufficient to make the specific gravity larger than that of the fluid.

球(弁)1に弾性があるもの、気体及 を び液体を入換により、比重1変ることができるもの。Ball (valve) 1 has elasticity, gas and of The specific gravity can be changed by 1 by replacing the water and liquid.

(2)  球座(弁座)2は、弾性体又は鋼性体でも良
い。矢印Aより流体が流れない場合は浮力により常tこ
球(弁)1は破線の位置になり逆市及び対流止の働ぎす
る様球(弁)1と球座(弁座)2にすきまがなければよ
い。
(2) The spherical seat (valve seat) 2 may be made of an elastic body or a steel body. If the fluid does not flow in the direction of arrow A, the buoyant force will always cause the ball (valve) 1 to be in the position shown by the broken line, creating a gap between the ball (valve) 1 and the ball seat (valve seat) 2, where the reverse valve and convection stop function. It's fine if there isn't one.

(3)  受座3は、Aの流れが急速に流れた場合の管
路な球(弁)■がさまたげない様な構造体のものである
(3) The catch seat 3 is of such a structure that the conduit ball (valve) 2 will not be obstructed when the flow A flows rapidly.

f4.、+1−オ、4.1、nsc嵐よ、つよ、ア)l
、球座(弁座)2の選定のために取付けた。なおユニオ
ノ型、ネジ造型等考えられる。
f4. ,+1-o,4.1,nsc Arashi, Tsuyo, a)l
, installed to select ball seat (valve seat) 2. In addition, union type, screw molding, etc. are possible.

(5)  図11は、スイング型の変型であり、図1O
と同じ働きをするものを示した。
(5) Figure 11 is a variation of the swing type, and Figure 1O
I showed something that works the same way.

以上、対流止弁(逆止弁)は浮力・重力を利用したもの
である。
As mentioned above, convection check valves (check valves) utilize buoyancy and gravity.

(ワJ  図1.1は、ピストンlがピストン2の様に
、動く力を利用して微温ポンプとしても考えられる。
(WaJ) In Figure 1.1, the piston 1, like the piston 2, can be considered as a low-temperature pump by utilizing the force of movement.

本発明は以上の様に、太陽熱・自然エネルギーを利用し
、管・弁の組合せにより、物体の膨張・浮力・比重等を
利用した温差ポンプ循環/地 ステムであり、薬湯タンクを地上及び4下、遠方に置く
ことができるツーラーンステムとなる。
As described above, the present invention is a temperature difference pump circulation/ground stem that utilizes solar heat and natural energy, and utilizes the expansion, buoyancy, specific gravity, etc. of objects through a combination of pipes and valves. , it becomes a two-run stem that can be placed far away.

父地上温度と、地下水温度の差を利用すれば。By using the difference between the ground temperature and the groundwater temperature.

地下水をくみあげる無動力ポンプとなる興味深い発明で
ある。
This is an interesting invention that serves as a non-powered pump for pumping underground water.

【図面の簡単な説明】[Brief explanation of the drawing]

:1・ 図1は、従来の太陽熱温水器。 図2−1は、本発明を屋根全体を利用して、使用した場
合の想像図。 7− 図2−2は、図2−1を平面的に略図したものである。 図3−1は、本発明を屋根の南側を利用して、使用した
場合の想像図。 丙3−2は、図3−1を平面的ンこ略図したものである
。 図4は、図2−2の詳細な略図。 図5は、図3−2の詳細な略図。 図6は、温差ポンプの詳細図。 Pは、膨張容器 Cは、仝 ■]は、集熱体 Pl・P2・P3・01・C2・C3は逆止弁。 Fは、対流止弁 Tは、薬湯タンク 線、A−B−0−Dは、流れ方向線 1は、流体方向切換弁 2は、膨張体 3は、ピストン =8− 4は、膨張体 5は、仝 図7は、膨張体の密封型 図8は、仝  の開放型 図9は、対流止弁 図1Oは、仝 lは、弁 2は、弁座 3は、受座 4は、締付ネジ 図11は、膨張体をピストン型にしてポンプ動カシこし
た場合の図面。 特許出願人   佐 藤 重 樹 仝     1)中 美佐子 ゛    仝           岡       
捷   子蘭11 手続補正書 特許庁長官 若杉和夫   殿 1、事件の表示 昭和57  年特 許  願第34403号2、%明の
名称   温差ポンプ循環システム3、 補正をする者 事件との関係      出願人 4、代理人 住 所宮城県仙台市錦町−丁目4番10号 橋本ビル6
、補正により増加する発明の数 7、補正の対象 明細書の図面の簡単な説明の欄 8、補正の内容 (1)明細瞥中第9頁11行「Cは、仝」を「Cは同じ
く膨張容器」と訂正する。 (2)同、第10頁2行「5は、仝」を「5け同じく膨
張体」と訂、正する。 (3)同、同頁4行「図8は仝の開放型」を「図8は膨
張体の開放型」と訂正する。 (4)同、同頁6行「図10は仝」を「図10は同じく
対流止弁」と訂正する。 以上 手続補正書 昭和58年6月3日 特許庁長官   若杉和夫    殿 1、 事件の表示 昭和57年 特 許 願第 34403  号2 発明
の名称  温度差循環方法 3、補正をする者 事件との関係           出願人住所 宮城
県宮城郡宮城町下愛子字勘太72氏名・名称    佐
 藤 重 樹 4、代理人 6、補正により増加する発明の数 □ ニア、補正の対
象 願書の発明の名称の欄、明細書及び図面8、補正の内容 ズン ド゛ アコ゛λンρン丁りオウ (1)願書の発明の名称を1温度差循環方法」と訂正す
る。 (2)  明細書を別紙の通り訂正する。 (3)図面中杭1図、第2図、第3図、第4図、第5図
及び第6図を別紙の通り訂正する。 (4)図面中杭9図、第10図及び第11図を削除する
。 以上 1:11 (2) 明  細  書(訂正) 発明の名称   温度差循環方法 特許請求の範囲 1 高温截の第1熱源より供給された加熱流体が、温度
変化により膨張収縮する膨張体が内蔵された第1及び第
2の膨張収縮容器内に導かれ、該第1及び第2の膨張収
縮容器の膨張体に熱伝達させると共に、上記第1及び第
2の膨張収縮容器内で押出された作動流体が対流止弁を
介して低温域の第2熱源で熱放出され、再び上記第1及
び第2の膨張収縮容器内に戻る循環又は往復流動する温
度差循環方法。 2、上記第1の膨張収縮容器に上記加熱流体が供給され
たとき上記作動流体を押し出し循環又は往復する圧力に
変換すると共に、該圧力によって=上記第2の膨張収縮
容器内に熱放出された一部記作動流体を供給して上記膨
張体を収縮させ、上記第1及び第2の膨張収縮容器内の
差を利用した方向切換装置により上記加熱流体を交互に
上記第1及び第2の膨張収縮容器内に供給制御するよう
にした特許請求の範囲第1項記載の温度差循環方法。 発明の詳細な説明 本発明は、例えば太陽熱による給湯システムに適用して
好適な熱膨張体を内蔵した熱膨張収縮容器を2個組合せ
ると共に流体の流れを規制することにより生ずる膨張収
縮力を動力源とする温度差循環方法に関する。 従来の循環ポンプ等の循環システムは、必ず他の動力(
電力)を要し、その動力で作動流体の循環による熱エネ
ルギの運搬を目的とした利用が多℃1゜ 本発明はかかる点に鑑み、他動力源を必要とするポンプ
原理及び空気機関の原理とも異なる温度差の異なる流体
の出入によって生ずる熱膨張収縮容器内の熱膨張体の膨
張・収縮力による流体の動圧を得て動力源とし1.循環
路又は往復路を流通せしめ、熱の運搬・圧力の伝達利用
が可能な温度差循環方法を提案することを主たる目的と
する。 本発明温度差循環方法の基本的構成は、第1図に示す如
く、第1熱源1で集熱された加熱流体が往管路8を通っ
て方向切換装置2に進み、熱膨張収縮容器3,4に交互
に導かれ、熱膨張収縮容器3.4内の膨張体10で熱交
換を行なって膨張体10を膨張させ、復管路9を通って
再び第1熱源1に戻り循環する流れと、熱膨張収縮容器
3,4内の膨張体10の膨張による圧力が伝達された作
動流体11.12が対流止弁・逆止弁を組合せた方向切
換装置5を途中に設けた往管路13を通って曳力m’t
i、kmlk%第2熱源7で熱交換して復管路14を通
り、再び方向切換装置5を介して熱膨張収縮容器3,4
に低温流体として交互に導入するように構成したもので
ある。 次に第1図に示す基本的動作について説明するに、第1
熱源1より熱が供給された集熱部によって高い温度とな
った加熱流体は、まず方向切換装置2を介して管路8を
通り、熱膨張収縮容器3内の膨張体10に熱交換すると
、膨^木10が膨張し、膨張量を伝達された作動流体1
1に動圧が形成される。作動流体11は往管路13を通
り、方向切換装置5に至る。そして第2熱源又は熱放出
部Tで熱交換を行ない低い温度となる。そして作動流体
は復管路14から方向切換装置5を通り、熱膨張収縮容
器4内に導かれ、熱交換した低い温度の作動流体で膨張
体10を加圧して収縮させる。 膨張体10の収縮により、作動流体11が更に吸引され
、これに起因して膨張体10が更に収縮する。このとき
熱膨張収縮容器3,4を比較すると、熱膨張収縮容器3
内の流体の量が少なく膨張体10の温度が高い。このよ
うな熱膨張収縮容器3゜4間の温度差及び異質量の差を
利用して制御軸と連動させ、最大必要量の作動流体の移
動時に方向切換装置2を作動させる。そのため、第1熱
源1によって高い温度となった加熱流体は、作動された
方向切換装置2を介して往管路8を通り、熱膨張収縮容
器4内の収縮した膨張体10に熱交換し、復管路9を通
り第1熱、、源1に戻される循環路に形成されているの
で、熱膨張収縮容器4内の収縮された膨張体10が膨張
し、膨張量を伝達された作動流体12に動圧が形成され
る。作動流体12は管路13を通って方向切換装置5を
通して第2熱源又は熱放出部7で熱交換が行なわれて低
い温度となる。そして管路14を通り方向切換装置5を
通り、熱膨張収縮容器3内に供給され、膨張していた膨
張体10を熱交換した低い温度の作動流体12で収縮さ
せ冷却させろことにより、更に収縮し吸引する。このと
き熱膨張収縮−器3,4間に生ずる差を利用し、制御軸
と連動させ、最大必要量の作動流体の移動時に方向切換
装置2を作動させ、上述1〜だ初期状態に戻り、再び繰
返し循環が行なわれることになる。 次に太陽熱を熱源とし、発熱部に太陽集熱器を用い、加
熱流体に水を用い、左右一対の膨張収縮容器を用い、方
向切換弁の作動を左右の膨張収縮容器内の温度差を利用
し、膨張収縮容器には気体を充填した膨張体を内蔵し、
対流止弁な作動流体路に設け、作動流体として水を用い
、熱放出部に貯湯タンクを用い、作動流体が循環する直
流方式及び作動流体と加熱流体とが混入する合流方式と
を組合せた温度差循環装置の一例について図面を参照し
ながら詳細に説明する。 第2図は温度差循環装置の一例を示す系統図である。1
8は太陽集熱器を示し、これは例えばパイプ内に水を循
環させて高温加熱流体を得る形式のものであり、太陽熱
を熱源とするものである。 集熱器18には方向切換弁19を介して第1及び第2の
膨張収縮容器21.22が接続されている。 第1及び第2の膨張収縮容器21.22は内蔵した各膨
張体の質・量を1=1に設定し、加熱冷却流体で膨張体
を加熱冷却するようにし、膨張体に生ずる膨張及び収縮
を圧力として流体に伝達し、膨張体の膨張時に外部へ流
体を流出せしめ、収縮時に外部から吸引せしめるように
構成したものである。各膨張収縮容器21.22の上部
には3つのホ′−トが設けられ、夫々第1のi−ト21
a。 22aと切換弁19との各2−トが接続されている。そ
のため集熱器18からの加熱流体は第1及び第2の膨張
収縮容器21.22に交互に供給される。各膨張収縮容
器21.22内に内蔵される膨張体23は、気体例えば
空気・アルゴンガス・水素ガス、又は液体例えばアセト
ン・アルコール又は固体例えハハイメタルとダイヤフラ
ムとの組合せで構成することができるが、具体的には、
設定する温度・温度差・用途目的に応じて選択される。 但し、実施の容易性から第2図に示す如く、例えば4つ
の仕切りを持つゴノ、膜24の中にフロンガス等30を
注入して上下に積層l〜だものを採用し得る。各膨張収
縮容器21.22の下部には集熱器18への循環流路を
形成するため各ボート21d、22dが設けられ、夫々
対流止弁止弁25.26を介して加熱管路27により集
熱器18と接続される。 そして方向切換弁19を自動的に切換えるため、各膨張
収縮容器21.22の間にはピストン28を収納したシ
リンダ29が連通して形成される。 すなわちピストン28には上部に延長した連結棒28a
が接続され、左右に膨張体35a、35bが挿入されて
いる。連結棒28aの先端には方向切換弁19のリーフ
弁19aに連続して形成した突子19bと連動される。 従って、第1の膨張収縮容器21側に加熱流体が供給さ
れることにより、膨張体35aが膨張すると共に、第2
の膨張収縮容器22側の膨1j艮体35bが収縮される
ので、ピストン28が右方・へ、移動するこ−とになり
、よってリーフ弁19aは第1の膨張収縮容器21側へ
の流路から第2の膨張収縮容器22側へ切換えられるこ
とになる。 各膨張収縮容器21.22のぜ一ト2i1)。 22bには対流正逆止弁31.32を通じて合流作動流
体配管40が接続され、例えば下側に設置した貯湯タン
ク41に複数の対流止弁42を介して接続されている。 尚、対流正逆止弁25,26゜31.32,33.34
はスイング型又はリフト型その他の型式を用い得る。従
って、作動流体は配管40を通じて熱交換器41により
熱交換され、□再び配管43を通じて合流される。その
ため各容器21.22の月ン艷:::、ト21C,22
Cには合流配管43が夫々対流止弁33.34を通じて
接続されている。そして対流止弁31,32は各容器2
1.22への流入を阻止するように配置され、弁33.
34は各容器21.22からの流出を阻止するように配
置されている。尚、各容器21゜22の外壁及び各配管
40.43は外部に熱が放出しないように断熱材で被覆
することができる。 第3図は各対流止弁31.32.33.34の接続関係
の配管状態を示している。各膨張収縮器21.22内で
は交互に膨張収縮作用が行なわれており、これに起因し
て各管路A、Bには往復する流体圧が常に加わることに
なる。 対流止弁42は、管路40が上下方向に亘るときに生ず
る管路内の温度差による対流を防ぐ目的で一定の間隔で
複数設けられる。第4図は供給管40aIIIIIの対
流IE弁42の一例を示す断面図である。上下2分割の
断熱性例えば合成樹脂製の筺体43a、431)がボル
ト44で一体化された内部に球弁45が装着されている
。球弁45は加熱冷却流体例えば温水の比重より小さく
なるように材質が選択され、更に弾性のある材質が選択
される。 筐体43aには球座46を設けることができ、弾性体又
は剛性体によるものでよ(、下方向からの流体流入があ
るとき及び上下の圧力が一様のとき球弁45が球座46
に密着して逆止作用及び対流上作用をすることになる。 また筐体43bには長脚の球座47が設けられ、上方向
からの流体圧が球弁45に加わっても流路を遮断するこ
とがないように働くものである。尚、筐体43a、43
bはセラミック製とすることもできる。 一方、戻り管40b側の対流IL弁48は、第5図に示
す如く、球弁49以外はほぼ同様の構造であるが、球弁
49の重さは作動流体より重くしたものが選択され、か
つ上下逆方向に取付けられる。 すなわち戻り管40bは作動流体が上方向に移送される
ので、常時流体動圧によって球弁49が上方向へ押上げ
られるが、流体動圧が作用しないときはその重量により
球弁49が球座50に接して対流正作用をするものであ
る。 第6図は対流止弁の他の例を示すスイング型弁の一例を
示す断面図である。基本的な構成は第4図例と同様であ
るが、大口径用としての逆止の際の反力に耐久性を考慮
したものである。すなわち、筺体51の内壁に半円法の
リーフ弁52a、521)が揺動可能に支持され、方向
性な設けるために固定1〜た弁座53が設けられたもの
である。尚、管路(筐体)内の対流を助士、するため、
数段のス・イング弁を設けろことができる。リーフ弁5
221゜521〕の比重は第4図例と同様に温水の比重
より小さくなるように材質が選択される。従って、流体
圧が加わっていないときは、各リーフ弁52a。 521〕は浮力により弁座53に接触している。 尚、弁25.26,31.32,33.34は全てその
筐体を断熱性材質例えば合成樹脂製とし、弁も同様の構
成とすることにより、作動流体の温度差による対流及び
熱伝導を防ぐことができる。 次に第2図例の動作について説明する。集熱器18によ
って加熱された加熱流体は、まず自然対流により方向切
換弁19を通じて第1の膨張収縮容器21に供給され、
膨張体23に熱を吸収させながら逆止弁25を通過して
集熱□器18に戻る。 この場合、逆Iト弁26の働きにより第1の容器21か
らの圧力で第2の容器22へ流入することがない。よっ
て、この加熱流体の閉ループサイクルにより第1の膨張
収縮容器21内の膨張体23が膨張するため、第1の容
器21内の圧力が上昇する。 このとき逆1ト弁32が作動し膨張収縮容器22内への
逆流が妨げられ、加熱流体は、逆止弁31を通じて逆止
弁32の作動により作動流体配管40へ流出することに
なる。そして加熱流体すなわち作動流体は圧力及び熱の
伝達を伴い対流止弁42を通って熱交換器41内で自然
対流又は強制対流によって熱交換が行なわれるため、熱
交換器41の一部部と下部とに温度差が生ずる。熱交換
器41で熱交換されて冷却された作動流体は、管路40
及び逆止弁33.34を通じて各膨張収縮容器21.2
2内に流入しようとするが逆止弁33が作動しでいるた
め、冷却された作動流体は第1の容器21内に流入せず
、第2の膨張収縮容器22内に流入する。そのかめ、冷
却された作動流体により膨張体23が加圧され、かつ温
度が下がり、収縮する。収縮すると、第2の容器22内
の圧力を維持すべく更に冷却された作動流体が膨張容器
22内に吸引される。このとき、第1及び第2の容器2
1.22は作動流体の移動により内部圧力が双方共同じ
状態にあるが、第1の容器21内の温度は第2の容器2
2内の温度より高いので、膨張体35aが膨張し、膨張
体35bが収縮する。 そのため各容器21.22に連通したピストン28は、
膨張体35a、35bの圧力の平衡を失い右方へ移動す
ることになり、よって、方向切換弁19の加熱流体方向
の切換えが皆なわれる。 この結果、集熱器18で加熱された加熱流体は第2の膨
張収縮容器22へ流入し、収縮した膨張体23を膨張さ
せながら第2の容器22の下部の逆止弁26を通じて集
熱器18に戻る。この加熱流体の閉ループサイクルによ
り、第2の容器22内の膨張体23が逐時膨張するため
、第2の容器22内のJ圧力が上昇する。このとき逆臣
#34が作動して余剰の加熱流体は逆止弁32を通じて
配管40に流出することになる。そして加熱流体は、再
び作動流体として対流止弁42を通って熱交換器41の
内部で対流効果によって熱交換が行なわれるため、熱交
換器41の上部と下部とに温度差が生ずる。熱交換器4
1で熱交換されて冷却された作動流体は管路40及び逆
止弁を通じて各膨張収縮容器21内に流入するが、第2
の容器22への流入は逆止弁34が作動しているため、
冷却された作動流体は流入しない。第1の容器21内に
流入した冷却作動流体により膨張体23が加圧されかつ
温度が下がり、よって収縮する。収縮すると、第1の容
器内の圧力を維持すべく更に冷却された作動流体が第1
の容器21内に流入する。このとき、第1及び第2の容
器21.22は作動流体の移動により内部圧力が双方同
じ状態にあるが、第2の容器22内の温度は第1の容器
21内の温度より高いので、膨張体35bが膨張し、膨
張体35aが収縮する。そのため各容器21.22に連
通したピストン28は、膨張体353.351)の平衡
を失なって左方へ移動することになり、よって方向切換
弁19の加熱流体の方向切換が行なわれ、上述した様に
作動流体が繰返し循環することになる。 次に、夜間時には集熱器18が急速に冷却され、熱交換
器41内の流体の温度が相対的に高くなるため、自然対
流及び伝導によって作動流体配管40及び作動流体を介
して熱交換器41内の温度の熱移動が行なわれる。この
とき、第3図に示す如く、供給管40a側に設けた対流
止弁42の球弁45は作動流体より軽(形成されており
、かつ管路40内の流れがないため、上方へ移動して球
座46に接するため、液体の対流及び温度の移動が遮断
される。勿論、筐体43a、43bは断熱体のため管路
からの熱伝導は妨げられる。戻り管40b側に設けた対
流IE弁48も同様に球弁49が球座50に接するため
、流体の熱移動が遮断される。 このようにして本発明は、上記のサイクルを繰返して加
熱流体及び作動流体が循環することにより、作動する。 そして第2図例に示す如く太陽熱を熱源として用いた場
合は、他のi力を不要とする温度差機関を得ることがで
きる。 尚、第2図に示した構成は、実施に好適な具体例を示し
たにすぎず、本発明をなんら限定するものでない。すな
わち、熱源についていえば、温度差を作ることができる
ように組合わせることが重要であるから、全ての熱源を
用い得る。 また膨張体も同様に上述例に限られるものではなく、上
述した各気体・液体・固体又は水溶液の如き混合体であ
ってもよい。また温度により膨張して蒸気を生成する液
化ガス等を採用することができる。すなわち本発明は、
基本的には温度差による循環であり、高温域100℃μ
上から低温域0°C以下の広い温度域の全てに適用し得
るものであるから、具体的には設定する温度・温度差・
用途目的に応じて適宜選択されることになる。 また膨張収縮容器は、第1熱源及び第2熱源より導く熱
を膨張体及び作動流体による伝達手段又は膨張体と作動
流体とが合流して伝達する手段とすることができる。木
なわち、例えば伸縮性柔軟性のある樹脂製の容器例えば
ゴム質の容器(第7図参照)又はピストン式の剛性容器
内に膨張体を封入した密封型容器(第8図参照)等種々
の構成を、膨張体及び作動流体、設定温度域の各要件に
よって適宜選択される。 以上述べた如く本発明によれば、他の動力を必要とせず
」二記作動流体による熱エネルギの運搬が可能となる。 従って、従来のように循環ポンプを設置することなく大
量の太陽熱温水を地下タンクに埋蔵しておき、本発明方
法によって必要に応じて適宜高温水を利用することがで
きる。そして本発明は高温域又は低温域に拘らず温度の
差があれば稼動するため、設置環境に制約がなく、いが
なる場所にも設置ができる。 図面の簡単な説明 第1図は本発明方法の構成を示す系統図、第2図は本発
明を実施する循環装置の一例を示す系統図、第3図は対
流止弁の接続配管の説明に供する図、第4図及び第5図
は対流止弁の一例を示す断面図、第6図は対流止弁の他
の例を示す断面図、第7図及び第8図は膨張収縮容器の
例を示す図である。 1・・・第1熱源、2・・・方向切換装置、3.4・・
・熱膨張収縮容器、7・・・第2熱源、10・・・膨張
体、31.32,33.34・・・対流止弁。 出願人代理人 弁理士 秋 山   高第3図 第4図       第5図 第6図 232−
:1・ Figure 1 shows a conventional solar water heater. FIG. 2-1 is an imaginary diagram of the case where the present invention is used using the entire roof. 7- FIG. 2-2 is a schematic plan view of FIG. 2-1. FIG. 3-1 is an imaginary diagram of the present invention when used on the south side of the roof. 3-2 is a schematic plan view of FIG. 3-1. FIG. 4 is a detailed schematic diagram of FIG. 2-2. FIG. 5 is a detailed schematic diagram of FIG. 3-2. FIG. 6 is a detailed diagram of the temperature difference pump. P is an expansion container C, 廝■] is a heat collector Pl, P2, P3, 01, C2, and C3 are check valves. F is the convection stop valve T is the medicinal water tank line, A-B-0-D is the flow direction line 1, is the fluid direction switching valve 2, is the expansion body 3, is the piston = 8-4 is the expansion body 5 Figure 7 shows the sealed expansion body type. Figure 8 shows the open type. Figure 9 shows the convection stop valve. Figure 1O shows the valve 2, valve seat 3, seat 4, and Figure 11 shows a case where the expansion body is of a piston type and the pump is operated. Patent applicant Shigeki Sato 1) Misako Naka
Jie Ziran 11 Procedural Amendment Commissioner Kazuo Wakasugi 1, Indication of the case 1982 Patent Application No. 34403 2, Name of % Ming Temperature Difference Pump Circulation System 3, Relationship with the person making the amendment Applicant 4 , Agent Address: Hashimoto Building 6, 4-10 Nishikicho, Sendai City, Miyagi Prefecture
, the number of inventions increased by the amendment 7, column 8 for a brief explanation of the drawings of the specification subject to the amendment, contents of the amendment (1) Change "C is this" to "C is the same" on page 9, line 11 in the specification. "Expansion container" is corrected. (2) Same, page 10, line 2, “5 is for you” is corrected to read “5 is also an expansion body.” (3) On the same page, line 4, ``Figure 8 is your open type'' is corrected to ``Figure 8 is the open type of the expander''. (4) On the same page, in line 6, "FIG. 10 is the same" is corrected to "FIG. 10 is also the convection stop valve." Written amendment to the above procedure June 3, 1980 Kazuo Wakasugi, Commissioner of the Patent Office 1. Indication of the case 1981 Patent Application No. 34403 2. Title of the invention Temperature difference circulation method 3. Relationship with the person making the amendment Application. Address: Kanta 72, Shimoaiko, Miyagi-machi, Miyagi-gun, Miyagi Prefecture Name: Shigeki Sato 4, Agent 6, Number of inventions to be increased by amendment □ Near, column for the name of the invention in the application subject to amendment, description and Drawing 8, contents of amendment (1) The name of the invention in the application is corrected to 1. Temperature difference circulation method. (2) Amend the specification as shown in the attached sheet. (3) Correct the piles in Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, and Figure 6 in the drawings as shown in the attached sheet. (4) Deletion of stakes 9, 10, and 11 from the drawing. Above 1:11 (2) Description (correction) Title of the invention Temperature difference circulation method Claim 1 A heating fluid supplied from a high-temperature first heat source has a built-in expansion body that expands and contracts due to temperature changes. The actuator is guided into the first and second expansion/contraction containers, and is transferred to the expanding bodies of the first and second expansion/contraction containers, and is pushed out within the first and second expansion/contraction containers. A temperature difference circulation method in which the fluid is circulated or reciprocated, in which heat is released from a second heat source in a low temperature range through a convection stop valve, and the fluid returns to the first and second expansion and contraction containers. 2. When the heating fluid is supplied to the first expansion/contraction container, the working fluid is pushed out and converted into circulating or reciprocating pressure, and due to this pressure, heat is released into the second expansion/contraction container. Part of the working fluid is supplied to contract the expansion body, and the heating fluid is alternately used to expand the first and second expansion bodies using a direction switching device that utilizes a difference between the first and second expansion and contraction containers. 2. A temperature difference circulation method according to claim 1, wherein the supply is controlled into a shrink container. DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to, for example, a solar hot water supply system, by combining two thermal expansion/contraction containers each having a built-in thermal expansion body, and regulating the flow of fluid to generate expansion/contraction force as a power source. The present invention relates to a temperature difference circulation method using a temperature difference source. Circulation systems such as conventional circulation pumps always rely on other power sources (
In view of this, the present invention is based on the principles of pumps and air engines that require other power sources. The dynamic pressure of the fluid is obtained from the expansion/contraction force of the thermal expansion body in the thermal expansion/contraction container, which is generated by the input and output of different fluids with different temperature differences, and is used as a power source.1. The main objective is to propose a temperature difference circulation method that allows circulation through a circulation path or a reciprocating path and can be used to transport heat and transmit pressure. The basic structure of the temperature difference circulation method of the present invention is as shown in FIG. . And, the working fluid 11,12 to which the pressure due to the expansion of the expansion body 10 in the thermal expansion/contraction containers 3, 4 is transmitted is transferred to an outgoing pipe line with a direction switching device 5 having a combination of a convection check valve and a check valve in the middle. Traction force m't through 13
i, kmlk% After exchanging heat with the second heat source 7, it passes through the return pipe line 14, and then passes through the direction switching device 5 again to the thermal expansion and contraction containers 3, 4.
The structure is such that the low-temperature fluid is introduced alternately into the Next, to explain the basic operation shown in FIG.
The heated fluid, which has reached a high temperature due to the heat collecting section supplied with heat from the heat source 1, first passes through the pipe line 8 via the direction switching device 2 and exchanges heat with the expansion body 10 in the thermal expansion/contraction container 3. The expanding tree 10 expands, and the working fluid 1 receives the expansion amount.
Dynamic pressure is formed at 1. The working fluid 11 passes through the outgoing line 13 and reaches the direction switching device 5 . Then, heat exchange is performed at the second heat source or the heat release part T, and the temperature becomes low. Then, the working fluid passes through the direction switching device 5 from the return pipe line 14 and is led into the thermal expansion/contraction container 4, where the expansion body 10 is pressurized and contracted by the low temperature working fluid that has undergone heat exchange. Due to the contraction of the expandable body 10, the working fluid 11 is further sucked, which causes the expandable body 10 to further contract. At this time, when comparing thermal expansion and contraction containers 3 and 4, thermal expansion and contraction containers 3 and 4 are compared.
The amount of fluid inside is small and the temperature of the expansion body 10 is high. The temperature difference and the difference in mass between the thermal expansion and contraction vessels 3 and 4 are used in conjunction with the control shaft to operate the direction switching device 2 when the maximum required amount of working fluid is transferred. Therefore, the heated fluid heated to a high temperature by the first heat source 1 passes through the outgoing pipe line 8 via the activated direction switching device 2, and exchanges heat with the contracted expansion body 10 in the thermal expansion/contraction container 4. Since the first heat is returned to the source 1 through the return pipe 9, the contracted expansion body 10 in the thermal expansion/contraction container 4 expands, and the working fluid to which the expansion amount is transferred is formed. A dynamic pressure is created at 12. The working fluid 12 passes through the conduit 13, passes through the directional switching device 5, and undergoes heat exchange at the second heat source or heat emitting section 7, resulting in a lower temperature. Then, it passes through the pipe line 14, passes through the direction switching device 5, and is supplied into the thermal expansion/contraction container 3, where the expanding body 10 is contracted and cooled by the low-temperature working fluid 12 with which it has been heat exchanged, thereby causing further contraction. and aspirate. At this time, by utilizing the difference generated between the thermal expansion/contraction units 3 and 4, in conjunction with the control shaft, the direction switching device 2 is operated when the maximum required amount of working fluid is moved, and the above-mentioned 1 to 1 return to the initial state. The cycle will be repeated again. Next, solar heat is used as the heat source, a solar collector is used as the heat generating part, water is used as the heating fluid, a pair of left and right expansion/contraction containers is used, and the directional control valve is operated using the temperature difference between the left and right expansion/contraction containers. The expansion/contraction container contains an expansion body filled with gas,
A convection stop valve is installed in the working fluid path, water is used as the working fluid, a hot water storage tank is used as the heat release part, and the temperature is a combination of a direct current method in which the working fluid circulates and a confluence method in which the working fluid and heated fluid are mixed. An example of a differential circulation device will be described in detail with reference to the drawings. FIG. 2 is a system diagram showing an example of a temperature difference circulation device. 1
Reference numeral 8 denotes a solar collector, which is of a type in which, for example, water is circulated in a pipe to obtain a high-temperature heating fluid, and uses solar heat as its heat source. First and second expansion and contraction containers 21 and 22 are connected to the heat collector 18 via a directional valve 19. The first and second expansion/contraction containers 21 and 22 are configured such that the quality and quantity of each built-in expansion body are set to 1=1, and the expansion bodies are heated and cooled with heating and cooling fluid, thereby causing expansion and contraction of the expansion bodies. is transmitted to the fluid as pressure, and when the inflatable body expands, the fluid flows out to the outside, and when the inflatable body contracts, the fluid is sucked from the outside. Three ports are provided in the upper part of each expansion/contraction container 21, 22, each of which has a first port 21.
a. 22a and the switching valve 19 are connected to each other. Heating fluid from the heat collector 18 is therefore supplied alternately to the first and second expansion and contraction vessels 21,22. The expansion body 23 contained in each expansion/contraction container 21, 22 can be composed of a gas such as air, argon gas, hydrogen gas, a liquid such as acetone or alcohol, or a combination of a solid such as a metal and a diaphragm. in particular,
It is selected depending on the temperature to be set, temperature difference, and purpose of use. However, for ease of implementation, as shown in FIG. 2, for example, a gonograph having four partitions, in which a fluorocarbon gas or the like 30 is injected into the membrane 24, and laminated vertically can be adopted. Each boat 21d, 22d is provided at the bottom of each expansion/contraction container 21, 22 to form a circulation flow path to the heat collector 18, and is connected to a heating pipe 27 via a convection stop valve 25, 26, respectively. It is connected to the heat collector 18 . In order to automatically switch the directional control valve 19, a cylinder 29 containing a piston 28 is formed in communication between the expansion and contraction containers 21, 22. That is, the piston 28 has a connecting rod 28a extending upward.
are connected, and expansion bodies 35a and 35b are inserted on the left and right sides. The tip of the connecting rod 28a is interlocked with a protrusion 19b formed continuously with the leaf valve 19a of the directional control valve 19. Therefore, by supplying the heating fluid to the first expansion/contraction container 21 side, the expansion body 35a expands and the second expansion/contraction container 21 expands.
Since the expansion member 35b on the side of the first expansion/contraction container 22 is contracted, the piston 28 moves to the right, so that the leaf valve 19a prevents the flow toward the first expansion/contraction container 21. The air is switched from the path to the second expansion/contraction container 22 side. The mesh 2i1) of each expansion-deflation container 21.22. 22b is connected to a confluence working fluid pipe 40 through convection check valves 31 and 32, and is connected to, for example, a hot water storage tank 41 installed on the lower side through a plurality of convection check valves 42. In addition, convection normal check valve 25, 26° 31.32, 33.34
may be of the swing type, lift type or other types. Therefore, the working fluid is heat exchanged by the heat exchanger 41 through the piping 40, and □ is merged again through the piping 43. Therefore, the month of each container 21.22:::, 21C, 22
A confluence pipe 43 is connected to C through convection stop valves 33 and 34, respectively. The convection stop valves 31 and 32 are connected to each container 2.
1.22, and the valve 33.
34 is arranged to prevent outflow from each container 21,22. Incidentally, the outer walls of each container 21 and 22 and each pipe 40 and 43 can be covered with a heat insulating material to prevent heat from being released to the outside. FIG. 3 shows the state of the piping in connection with each of the convection stop valves 31, 32, 33, and 34. Expansion and contraction are carried out alternately in each of the expansion and contraction units 21 and 22, and due to this, reciprocating fluid pressure is constantly applied to each of the conduits A and B. A plurality of convection stop valves 42 are provided at regular intervals for the purpose of preventing convection due to a temperature difference within the pipe line that occurs when the pipe line 40 extends in the vertical direction. FIG. 4 is a sectional view showing an example of the convection IE valve 42 of the supply pipe 40aIII. A ball valve 45 is mounted inside a heat-insulating housing 43a, 431) made of, for example, synthetic resin, which is divided into upper and lower halves and integrated with bolts 44. The material of the ball valve 45 is selected so that its specific gravity is smaller than the specific gravity of the heating and cooling fluid, such as hot water, and the material is also selected to have elasticity. The housing 43a can be provided with a ball seat 46, which may be made of an elastic body or a rigid body.
In close contact with the air, it acts as a check and a convective action. Further, the housing 43b is provided with a ball seat 47 with long legs, which functions so that the flow path will not be blocked even if fluid pressure is applied to the ball valve 45 from above. In addition, the housings 43a, 43
b can also be made of ceramic. On the other hand, as shown in FIG. 5, the convection IL valve 48 on the return pipe 40b side has almost the same structure except for the ball valve 49, but the weight of the ball valve 49 is selected to be heavier than the working fluid. And it can be installed upside down. That is, since the working fluid is transferred upward through the return pipe 40b, the ball valve 49 is always pushed upward by the fluid dynamic pressure, but when no fluid dynamic pressure is applied, the ball valve 49 is pushed up against the ball seat due to its weight. 50 and has a positive convection effect. FIG. 6 is a sectional view showing an example of a swing type valve showing another example of the convection stop valve. The basic structure is the same as the example shown in FIG. 4, but durability is taken into account in response to the reaction force during back-checking for large diameter applications. That is, semicircular leaf valves 52a, 521) are swingably supported on the inner wall of the housing 51, and a fixed valve seat 53 is provided for directional installation. In addition, in order to improve convection within the pipe (housing),
Several stages of swing valves can be provided. leaf valve 5
The material is selected so that the specific gravity of 221°521] is smaller than the specific gravity of hot water, as in the example shown in FIG. Therefore, when no fluid pressure is applied, each leaf valve 52a. 521] is in contact with the valve seat 53 due to buoyancy. The casings of the valves 25, 26, 31, 32, and 33, 34 are all made of a heat insulating material, such as synthetic resin, and the valves are also constructed in the same way to prevent convection and heat conduction due to temperature differences in the working fluid. It can be prevented. Next, the operation of the example shown in FIG. 2 will be explained. The heating fluid heated by the heat collector 18 is first supplied to the first expansion/contraction container 21 through the directional control valve 19 by natural convection.
The heat is absorbed by the expanding body 23 while passing through the check valve 25 and returning to the heat collector 18. In this case, the pressure from the first container 21 does not flow into the second container 22 due to the function of the inverted I-to valve 26. Therefore, the expansion body 23 in the first expansion/contraction container 21 expands due to this closed loop cycle of the heating fluid, so that the pressure in the first container 21 increases. At this time, the one-way valve 32 is operated to prevent the backflow into the expansion/contraction container 22, and the heated fluid flows out through the check valve 31 and into the working fluid piping 40 by the operation of the check valve 32. The heated fluid, that is, the working fluid passes through the convection stop valve 42 with the transfer of pressure and heat, and heat exchange is performed within the heat exchanger 41 by natural convection or forced convection. There will be a temperature difference between the two. The working fluid that has been heat exchanged and cooled by the heat exchanger 41 is transferred to the pipe line 40
and each expansion-deflation container 21.2 through a check valve 33.34.
However, since the check valve 33 is not activated, the cooled working fluid does not flow into the first container 21 but flows into the second expansion/contraction container 22. The expansion body 23 is pressurized by the cooled working fluid, the temperature decreases, and the expansion body 23 contracts. Upon deflation, further cooled working fluid is drawn into expansion vessel 22 to maintain the pressure within second vessel 22 . At this time, the first and second containers 2
1.22, both internal pressures are the same due to the movement of the working fluid, but the temperature inside the first container 21 is lower than that of the second container 2.
Since the temperature is higher than the temperature inside 2, the expansion body 35a expands and the expansion body 35b contracts. The piston 28 communicating with each container 21, 22 is therefore
The pressures of the expansion bodies 35a and 35b lose their balance and move to the right, so that the directional control valve 19 no longer switches the heating fluid direction. As a result, the heated fluid heated in the heat collector 18 flows into the second expansion/contraction container 22 , and while expanding the contracted expansion body 23 , it passes through the check valve 26 at the bottom of the second container 22 and enters the heat collector. Return to 18. Due to this closed-loop cycle of the heated fluid, the expansion body 23 in the second container 22 expands from time to time, so that the J pressure in the second container 22 increases. At this time, the reversal valve #34 is activated, and the excess heated fluid flows out into the pipe 40 through the check valve 32. Then, the heating fluid passes through the convection stop valve 42 again as a working fluid, and heat exchange is performed inside the heat exchanger 41 by the convection effect, so that a temperature difference occurs between the upper and lower parts of the heat exchanger 41. heat exchanger 4
The working fluid that has been heat exchanged and cooled in the first section flows into each expansion/contraction container 21 through the pipe line 40 and the check valve.
Since the check valve 34 is operating, the flow into the container 22 is
No cooled working fluid flows in. The cooling working fluid flowing into the first container 21 pressurizes the expansion body 23 and lowers its temperature, thereby causing it to contract. Upon contraction, further cooled working fluid flows into the first container to maintain pressure within the first container.
into the container 21. At this time, the internal pressures of the first and second containers 21 and 22 are the same due to the movement of the working fluid, but the temperature inside the second container 22 is higher than the temperature inside the first container 21. The expansion body 35b expands, and the expansion body 35a contracts. Therefore, the piston 28 communicating with each container 21, 22 loses the balance of the expansion body 353, 351) and moves to the left, so that the direction of the heated fluid of the directional control valve 19 is changed, and as described above, the piston 28 is moved to the left. The working fluid will be circulated repeatedly. Next, at night, the heat collector 18 is rapidly cooled and the temperature of the fluid in the heat exchanger 41 becomes relatively high. A heat transfer of temperature within 41 takes place. At this time, as shown in FIG. 3, the ball valve 45 of the convection stop valve 42 provided on the supply pipe 40a side moves upward because it is lighter than the working fluid and there is no flow in the pipe 40. Since the casings 43a and 43b contact the bulb seat 46, convection of the liquid and movement of temperature are blocked.Of course, since the casings 43a and 43b are insulators, heat conduction from the pipe line is prevented. Similarly, in the convection IE valve 48, since the ball valve 49 is in contact with the ball seat 50, heat transfer of the fluid is blocked.In this way, the present invention allows the heating fluid and the working fluid to circulate by repeating the above cycle. When solar heat is used as a heat source as shown in the example in Fig. 2, a temperature difference engine that does not require any other i-power can be obtained.The configuration shown in Fig. 2 is as follows: These are merely specific examples suitable for implementation, and are not intended to limit the present invention in any way.In other words, as for heat sources, it is important to combine them in such a way that a temperature difference can be created. Similarly, the expanding body is not limited to the above-mentioned examples, and may be a mixture of the above-mentioned gases, liquids, solids, or aqueous solutions.Furthermore, liquefaction that expands depending on temperature and generates vapor can be used. Gas etc. can be adopted. That is, the present invention
Basically, it is a circulation due to temperature difference, and the high temperature range is 100℃ μ
Since it can be applied to a wide temperature range from above to low temperatures below 0°C, it specifically depends on the temperature to be set, the temperature difference,
It will be selected as appropriate depending on the purpose of use. Further, the expansion/contraction container can be used as a means for transmitting heat led from the first heat source and the second heat source by an expansion body and a working fluid, or a means for transmitting heat by a combination of an expansion body and a working fluid. For example, a container made of stretchable and flexible resin, such as a rubber container (see Fig. 7), or a sealed container in which an expanding body is enclosed in a piston-type rigid container (see Fig. 8), etc. The configuration is appropriately selected depending on the requirements of the expansion body, working fluid, and set temperature range. As described above, according to the present invention, thermal energy can be transported by the working fluid without requiring any other power. Therefore, a large amount of solar hot water can be stored in an underground tank without installing a circulation pump as in the past, and the high temperature water can be used as needed by the method of the present invention. Since the present invention operates as long as there is a difference in temperature regardless of whether it is in a high temperature range or a low temperature range, there are no restrictions on the installation environment and it can be installed in locations where there may be heat. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a system diagram showing the configuration of the method of the present invention, Figure 2 is a system diagram showing an example of a circulation system implementing the invention, and Figure 3 is an explanation of the connecting piping of the convection stop valve. Figures 4 and 5 are cross-sectional views showing an example of a convection stop valve, Figure 6 is a cross-sectional view showing another example of a convection stop valve, and Figures 7 and 8 are examples of an expansion/contraction container. FIG. 1... First heat source, 2... Direction switching device, 3.4...
- Thermal expansion/contraction container, 7... Second heat source, 10... Expansion body, 31.32, 33.34... Convection stop valve. Applicant's agent Patent attorney Takashi Akiyama Figure 3 Figure 4 Figure 5 Figure 6 232-

Claims (1)

【特許請求の範囲】 脹 せることにより、生じる膨蕃差を動力とし、流体の自然
対流、重力、浮力、比重、自然エネルギーを利用した温
差ポンプ。 (ロ) 対流止弁を利用した温差ポンプ循環システム0
[Claims] A temperature difference pump that is powered by the difference in expansion caused by inflating, and uses natural convection of fluid, gravity, buoyancy, specific gravity, and natural energy. (b) Temperature difference pump circulation system using a convection stop valve 0
JP57034403A 1982-03-03 1982-03-03 Circulating system using temperature difference pump Pending JPS58184443A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57034403A JPS58184443A (en) 1982-03-03 1982-03-03 Circulating system using temperature difference pump
GB08305827A GB2119453A (en) 1982-03-03 1983-03-03 Fluid circulating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57034403A JPS58184443A (en) 1982-03-03 1982-03-03 Circulating system using temperature difference pump

Publications (1)

Publication Number Publication Date
JPS58184443A true JPS58184443A (en) 1983-10-27

Family

ID=12413216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57034403A Pending JPS58184443A (en) 1982-03-03 1982-03-03 Circulating system using temperature difference pump

Country Status (1)

Country Link
JP (1) JPS58184443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047330U (en) * 1990-05-08 1992-01-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047330U (en) * 1990-05-08 1992-01-23

Similar Documents

Publication Publication Date Title
KR100857486B1 (en) Heat engines and associated methods of producing mechanical energy and their application to vehicles
US4530208A (en) Fluid circulating system
US9267489B2 (en) Engine for conversion of thermal energy to kinetic energy
CN107476839A (en) Using can the hot storage medium of conveying solid substance pumping thermal energy storage system
US20120297761A1 (en) Method of conversion of heat into fluid power and device for its implementation
OA11343A (en) Apparatus and method for transferring entropy withthe aid of a thermodynamic cycle.
US20120055661A1 (en) High temperature thermal energy storage system
US20120036851A1 (en) Fluid circulation in energy storage and recovery systems
US8453443B2 (en) Engine for energy conversion
WO2018120439A1 (en) Gas-liquid dual-phase combined energy storage and power generation system, and energy storage and power generation method for same
ES2757548T3 (en) Supercritical carbon dioxide power generation system
JPS5987281A (en) Rotary type motor
JPS60111893A (en) Storage tank device
JP2009545718A (en) Heat exchanger
WO2014028743A1 (en) Engine for energy conversion
CN103742213B (en) Water plug
JPS58184443A (en) Circulating system using temperature difference pump
US6453686B1 (en) Deep cycle heating and cooling apparatus and process
US4429540A (en) Multiple-stage pump compressor
CA1141971A (en) Thermodynamic energy conversion system and method, utilizing a thermodynamic working fluid of encased expandites
JPS61500272A (en) Stirling cycle engines and heat pumps
JPWO2020039416A5 (en)
WO2008041862A2 (en) Heat exchanger
RU2276746C1 (en) Device to change gas pressure in chamber of pneumatic drive with accumulating reservoir
US20240068751A1 (en) Device for Transferring Heat from a Gaseous Working Medium