JPS58184091A - Arc welding method with covered electrode of dead soft steel - Google Patents

Arc welding method with covered electrode of dead soft steel

Info

Publication number
JPS58184091A
JPS58184091A JP6710082A JP6710082A JPS58184091A JP S58184091 A JPS58184091 A JP S58184091A JP 6710082 A JP6710082 A JP 6710082A JP 6710082 A JP6710082 A JP 6710082A JP S58184091 A JPS58184091 A JP S58184091A
Authority
JP
Japan
Prior art keywords
welding
nickel
steel
amount
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6710082A
Other languages
Japanese (ja)
Inventor
Shoji Saito
斎藤 昭治
Nobutaka Yurioka
百合岡 信孝
Shigeru Oshita
大下 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6710082A priority Critical patent/JPS58184091A/en
Priority to US06/486,239 priority patent/US4593174A/en
Priority to NO831400A priority patent/NO831400L/en
Priority to GB08310800A priority patent/GB2122123B/en
Priority to DE19833314707 priority patent/DE3314707A1/en
Priority to CA000426476A priority patent/CA1211509A/en
Publication of JPS58184091A publication Critical patent/JPS58184091A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To prevent solidification cracking by welding thoroughly even in welding at >=30cm/min welding speed, by using a welding rod wherein the content of Ni in the metallic powder in the core wire and covering material in the electrode has the specific relation with the contents of C and org. material in the steel material to be welded and a welding material. CONSTITUTION:An Ni-contg. covered electrode satisfying the equation I where the contents of Ni and C of the core wire of th electrode are designated as Niw%, Cw%, and the contents of the Ni, C and org. material of the metallic powder in the covering material are designated as Nif%, Ca%, Co% is used in the stage of arc welding of a steel material contg. 0.005-0.06% C with a covered electrode at >=30cm/min welding speed. At least the 1st layer is welded. An Ni-contg. covered electrode satisfying the equation II where the content of Ni in the Ni-contg. steel material contg. the above-described content of C is designated as Nip is used in the case of said steel material, and the steel material is welded similarly.

Description

【発明の詳細な説明】 本発明は極低炭素鋼の被覆アーク溶接方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for coated arc welding of ultra-low carbon steel.

近年、鋼材は制御圧延の進歩I:伴い、その溶接性の向
上あるいはコスト低減を計るため、ラインパイプ材を含
め低炭素化の傾向にある。従来、これら低炭素鋼材の溶
接金属の高温割れ感受性、とくにその溶接凝固割れ感受
性は一般に低いと考えられてきた。
In recent years, with advances in controlled rolling of steel materials, there has been a trend toward lower carbon steel materials, including line pipe materials, in order to improve weldability or reduce costs. Conventionally, it has been thought that the hot cracking susceptibility of weld metals of these low carbon steel materials, particularly their weld solidification cracking susceptibility, is generally low.

ところで本発明者らの検討によると、従来の認識に反し
て、使用する鋼材の炭素含有量が0.06以下のような
極低炭素鋼を、既存の溶接材料を用いて30傭/−以上
の溶接速度で被覆アーク溶接を行った場合に、溶接金属
の炭素含有量が十分低い(二もかかわらず、溶接凝固割
れが発生しやすいという知見をえた。ところでこのよう
な極低炭素鋼の溶接金属の溶接凝固割れを解決する方法
として溶接棒の心線と被覆剤中の炭素含有量を調整して
、溶接金属中の炭素含有量が低くなり過ぎないように、
適正範囲に制御する被覆アーク溶接法が先に提案されて
いる(特願昭56−141756号)。
However, according to studies conducted by the present inventors, contrary to conventional wisdom, ultra-low carbon steel with a carbon content of 0.06 or less can be used for 30 min/- or more using existing welding materials. We have found that when coated arc welding is performed at a welding speed of As a way to solve welding solidification cracking in metals, the carbon content in the welding rod core wire and coating material is adjusted so that the carbon content in the weld metal does not become too low.
A covered arc welding method that controls the temperature within an appropriate range has previously been proposed (Japanese Patent Application No. 141756/1982).

一方、本発明者らは、C0,06%以下の極低炭素鋼材
を30crn/Illjm以上めi接速度で被覆アーク
溶接した場合に形成される低炭素化した溶接金属の溶接
凝固割れに影響を及ぼす諸因子について鋭意検討を重ね
た結果、低炭素溶接金属の溶接凝固割れの防止(二対し
てニッケルが著効を有することを見出した。
On the other hand, the present inventors have investigated the effect on weld solidification cracking of low-carbon weld metal that is formed when ultra-low carbon steel materials with C0.06% or less are coated arc welded at a welding speed of 30 crn/Illjm or more. As a result of extensive research into the various factors that affect this process, it was discovered that nickel has a significant effect on preventing weld solidification cracking in low-carbon weld metals.

すなわち、低炭素溶接金属中の炭素含有量に対応して決
定される所要ニッケル含有量以上の適量のニッケルを溶
接金属に含有せしめることによって、3 Q crn/
rain以上の溶接速度で溶接しても、低炭素溶接金属
の溶接凝固割れを完全:二防止できることを見出した。
That is, by making the weld metal contain an appropriate amount of nickel that is equal to or higher than the required nickel content determined in accordance with the carbon content in the low carbon weld metal, 3 Q crn/
It has been found that welding solidification cracking of low carbon weld metals can be completely prevented even when welding is performed at a welding speed of 100% or more.

本発明は以上の知見に基づいてなされたものであって、
その要旨とするところは、(1)炭素0.005X0.
06%を含有する鋼材を30cb上の溶接速度で被覆ア
ーク溶接するに際して、溶接棒の心線中に含まれるニッ
ケル量k N i jw)チ、被覆剤中に含まれる金−
粉のニッケル量をN1(11% 、鋼材の炭素量” C
1p+ ”溶接棒の心線に含まれる炭素量1kC1w1
9b 、被覆剤中に含まれる金属粉の炭素量□をc  
alb、有機物量をC(。)チ(al と表示するとき 0.32Ni (W)+ 0.14Ni 1f)上2゜
3(13,80(p)+ 11.3C(司+ 2.26
C(割+0.015C(ol )なる式を満足する含ニ
ツケル被覆アーク溶接棒を用し、旭て、少くとも第一層
目を溶接することを特徴とする極低炭素鋼の被覆アーク
溶接方法および(2)炭素0.005〜0.06%を含
有する含ニツケル鋼材f、30cm/−以上の溶接速度
で被覆アーク溶接するに際して、鋼材中に含まれるニッ
ケル量を”(pl”溶接棒の心線中に含まれるニッケル
量t−Ni(w) % 、被覆剤中に含まれる金属粉の
ニッケル量をN1(1)チ、鋼材の炭素量をCf1))
チ、溶接棒の心線に含まれる炭素量をC(w)%。
The present invention was made based on the above findings, and
The gist is (1) Carbon 0.005X0.
When carrying out coated arc welding of steel containing 0.6% at a welding speed of 30 cb or higher, the amount of nickel contained in the core wire of the welding rod kN i jw) h, the amount of gold contained in the coating material
The amount of nickel in the powder is N1 (11%, the amount of carbon in the steel material is “C”)
1p+ ”Amount of carbon contained in the core wire of the welding rod 1kC1w1
9b, the carbon content □ of the metal powder contained in the coating material is c
alb, when the amount of organic matter is expressed as C(.)chi(al), 0.32Ni (W) + 0.14Ni 1f) 2°3 (13,80(p) + 11.3C(2.26)
A method for coated arc welding of ultra-low carbon steel, characterized in that at least the first layer is welded at dawn using a nickel-containing coated arc welding rod that satisfies the formula: C (%+0.015C(ol)). and (2) When nickel-containing steel f containing 0.005 to 0.06% carbon is subjected to covered arc welding at a welding speed of 30 cm/- or more, the amount of nickel contained in the steel is ``(pl'') of the welding rod. The amount of nickel contained in the core wire is t-Ni(w)%, the amount of nickel in the metal powder contained in the coating is N1(1)chi, and the amount of carbon in the steel is Cf1)).
H. The amount of carbon contained in the core wire of the welding rod is C(w)%.

被覆剤中に含まれる金属粉の炭素量をC(a1%。The amount of carbon in the metal powder contained in the coating material is C (a1%.

有機物量をC(01%と表示するとき 0.55Ni(pH+ 0.32N i (w) + 
0.14N 1(f)上2゜3(13,8C(,1+1
1.3 C(旬+ 2.26C(a) +0.015 
C(ol )なる式を満足する含ニツケル被覆アーク溶
接棒を用いて、少(とも第一層目を溶接することを特徴
とする極低炭素鋼の被覆アーク溶接方法にある。
When the amount of organic matter is expressed as C (01%), 0.55Ni (pH + 0.32N i (w) +
0.14N 1(f) upper 2°3(13,8C(,1+1
1.3 C (season + 2.26 C(a) +0.015
The present invention is directed to a coated arc welding method for ultra-low carbon steel, characterized in that at least the first layer is welded using a nickel-containing coated arc welding rod that satisfies the formula C(ol).

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

溶接金属の高温、低温域の耐割れ感受性と靭性の向上の
ため、溶接金属の炭素量は母材と同程度もしくは低い値
に設定することが従来の定説であり、例えば構造用高張
力鋼、低温用鋼が、0.08チくC≦0.18%のとき
、溶接金属は0.07≦C<0.15%を目標値とされ
るのが通常であり、さらに炭素量が低下しても凝固割れ
は発生しないものと考えられていた。
In order to improve the cracking resistance and toughness of the weld metal in high and low temperature ranges, it is conventional wisdom that the carbon content of the weld metal should be set to a value similar to or lower than that of the base metal. When low-temperature steel has 0.08% C≦0.18%, the target value for weld metal is usually 0.07≦C<0.15%, and the carbon content further decreases. It was thought that solidification cracking would not occur even if

ところが、本発明者らの検討によると、極低炭素鋼を、
従来常用されている被覆アーク溶接棒を用いて溶接を行
ってえられる低炭素溶接金属の溶接凝固割れ感受性は、
むしろ増大することを知見し、第1図をえた。すなわち
、第1図は溶接金属の炭素量(ts)と溶接速度(cm
/=)と溶接凝固割れの関係を示すもので、炭素量0.
01〜0.1’lの鋼材を用いて、第2図の開先形状を
した寸法形状(t、(単位能):19.t。
However, according to the inventors' study, ultra-low carbon steel
The susceptibility to weld solidification cracking of low carbon weld metal obtained by welding using conventionally used coated arc welding rods is as follows:
On the contrary, we found that it actually increased, and obtained Figure 1. In other words, Figure 1 shows the relationship between the carbon content (ts) of the weld metal and the welding speed (cm
/=) and weld solidification cracking, and shows the relationship between carbon content 0.
Using a steel material of 0.01 to 0.1'l, the dimensions and shape (t, (unit capacity): 19.t.

: 1.5. l : 1.5.θ:300)と拘束溶
接Rを有する第3図に示す溶接試験体(l、(単位I1
m):400.J2 :300− Is ニア5.J4
 :250゜15 ニア5.t:l9)t−作製し、溶
接棒の心線の炭素量を0.04〜0.12%1.被覆剤
中の有機物量を20〜40%まで変化させたセルローズ
系溶接棒を用いて、第1表の溶接条件でルート溶接した
際はえられたもので、溶接金属にニッケルは含まれてい
ない。
: 1.5. l: 1.5. θ: 300) and the welding test specimen (l, (unit I1
m): 400. J2: 300- Is near 5. J4
:250°15 Near 5. t: l9) T- is prepared, and the carbon content of the core wire of the welding rod is set to 0.04 to 0.12%1. This is obtained when root welding is performed under the welding conditions shown in Table 1 using cellulose welding rods with varying amounts of organic matter in the coating material ranging from 20 to 40%, and the weld metal does not contain nickel. .

第1表 第1図に示されるように炭素量0.09%未満、溶接速
度30cy++/−以上の領域Aにおいては溶接凝固割
れが発生し、領域Bで5.は発生しないことを確認した
。即ち、溶接金属の凝固割れ感受、性は、従来の常識と
は真なシ、限界炭素量以下になった場合、限界溶接速度
以上で、かえって溶接凝固割れ感受性が高くなった。こ
の理由としては溶接金属が低炭素化されるほどδ相凝固
が増加することが考えられ、溶接凝固割れを低0.06
%以下で鋼としての強度を有するとみられる炭素量0.
005%以上を含んだ一般構造用鋼、低温用低合金鋼な
どの極低炭素鋼とする。
As shown in Table 1 and Figure 1, weld solidification cracking occurs in region A where the carbon content is less than 0.09% and welding speed is 30 cy++/- or more, and in region B, weld solidification cracking occurs. We confirmed that this does not occur. That is, the susceptibility to solidification cracking of weld metal is contrary to conventional wisdom, but when the carbon content is below the limit, the susceptibility to solidification cracking of weld metal increases when the welding speed exceeds the limit. The reason for this is thought to be that the lower the carbon content of the weld metal, the more δ phase solidification occurs, which reduces the weld solidification cracking by 0.06.
If the carbon content is less than 0.0%, it is considered to have the strength of steel.
0.005% or more, such as general structural steel and low-alloy steel for low temperature use.

低炭素溶接金属におけるδ相生成を抑制するため、γ相
形成元素であるニッケルの効果を検討するため、被覆剤
にのみニッケルを配合した溶接棒および心線と被覆剤の
両方にニッケルを含有させた溶接棒を使って、第1図と
同じ溶接試験方法を用いて、一層溶接を行いルート溶接
金属の溶接凝固割れを詳細に調査して第4図を得た。第
2表に第4図の試料側Ni%を示す。
In order to suppress the formation of δ phase in low carbon weld metal, we investigated the effect of nickel, which is a γ phase forming element, by using a welding rod containing nickel only in the coating material and a welding rod containing nickel in both the core wire and coating material. Using the same welding test method as shown in Fig. 1, welding was carried out using a welding rod that had been prepared in the same manner as in Fig. 1, and welding solidification cracking in the root weld metal was investigated in detail, and Fig. 4 was obtained. Table 2 shows the Ni% on the sample side in FIG. 4.

1)・ 第2表 溶接棒j二ニッケルを含有、させることによって、溶接
゛凝固割れ発生域の炭素量上限値が低炭素側に移行した
。これによって、低炭素溶接金属の溶接凝固割れ感受性
の低下に対してニッケルの効果が極めて顕著であること
が判明した。また30tyn/−未満の溶接速度で溶接
する場合には、溶接金属の最終凝固部へ溶鋼が継続的(
二供給されるため、ニッケルを含有しない低炭素溶接金
属であっても、溶接凝固割れは発生しなかった。
1) By adding nickel to the welding rod shown in Table 2, the upper limit of the carbon content in the weld solidification cracking region shifted to the lower carbon side. This revealed that nickel has a very significant effect on reducing the weld solidification cracking susceptibility of low carbon weld metals. In addition, when welding at a welding speed of less than 30 tyn/-, molten steel continues to flow into the final solidified part of the weld metal (
Since the welding material was supplied with nickel, no weld solidification cracking occurred even with low carbon weld metal that does not contain nickel.

すなわち、低炭素溶接金属の溶接凝固割れは、30cr
n/#1以上の溶接速度で溶接した場合に起る現象であ
った。
In other words, the weld solidification cracking of low carbon weld metal is 30 cr.
This phenomenon occurred when welding was performed at a welding speed of n/#1 or higher.

冶金的条件および力学的条件から、溶接凝固割れは、ル
ート溶接金属に最も発生し易いので、ルート溶接金属の
凝固割れを防止できさえすれば、後続溶接に:よる低炭
素溶接金属の凝固割れの懸念はなくなる。このルート溶
接金属の溶接凝固割れを防止するためには、使用する鋼
材、溶接棒、溶接条件できまるルート溶接金属の炭素量
C(R)’に対して、このC(R)チが溶接凝固割れの
上限値となるようなニッケル量以上のニッケルを含有す
る溶接棒を使用すればよいことを第4図は示唆している
。第4図をもとはして、溶接凝固割れ不発生域における
c(R)と溶接棒中のニッケル量の関係式として次式ケ
得ることができた。
Due to metallurgical and mechanical conditions, weld solidification cracking is most likely to occur in the root weld metal. Therefore, if solidification cracking in the root weld metal can be prevented, solidification cracking in low carbon weld metal can be prevented in subsequent welds. Concerns disappear. In order to prevent this welding solidification cracking of the root weld metal, it is necessary to FIG. 4 suggests that it is sufficient to use a welding rod containing more nickel than the upper limit of cracking. Based on FIG. 4, the following equation could be obtained as a relation between c(R) in the welding solidification crack-free region and the amount of nickel in the welding rod.

0.32Ni(w) +0.14Ni (1)≧2.3
 25 C(R)     (1)一方本発明者らは3
0儒/馴以上の溶接速度で多数の高速被覆アーク溶接試
験を実施し、ルート溶接金属の炭素量c(R)征討する
鋼材と溶接棒の炭素源の関係を詳細に検討を加えた。そ
の結果、ルート溶接金属は鋼材側が55%、溶接棒側が
45−の寄与率で形成されていることが分った。また鋼
材の炭素源は鋼材中の炭素量C(p)であり、溶接棒の
炭素源は、主として心線の炭素含有量C(wlおよび被
覆剤の金属粉中の炭素量C(al %と有機物量c(0
1である。この他に、炭素塩の分解で発生するcotが
解離してCとなって溶接金属に入る場合もあるが、その
量は極めて少なく無視できる。ルート溶接金属の炭素に
対する心線の寄与率は被覆剤の5倍であり、被覆剤中の
有機物による炭素の寄与率は金属粉に比べて1/150
であった。このような諸知見からC(R)の精度より予
測式として次式をえた。
0.32Ni(w) +0.14Ni (1)≧2.3
25 C(R) (1) On the other hand, the present inventors 3
A number of high-speed covered arc welding tests were carried out at welding speeds of 0 F/N or higher, and the relationship between the carbon content c(R) of the root weld metal and the carbon source of the welding rod was investigated in detail. As a result, it was found that the root weld metal was formed with a contribution rate of 55% on the steel side and 45% on the welding rod side. The carbon source of steel is the carbon content C(p) in the steel, and the carbon source of the welding rod is mainly the carbon content C(wl) of the core wire and the carbon content C(al%) in the metal powder of the coating material. Organic matter amount c(0
It is 1. In addition to this, cot generated by the decomposition of carbon salts may dissociate and become carbon and enter the weld metal, but the amount thereof is extremely small and can be ignored. The contribution rate of the core wire to carbon in the root weld metal is 5 times that of the coating material, and the contribution rate of carbon due to organic matter in the coating material is 1/150 compared to that of metal powder.
Met. Based on these findings, the following formula was obtained as a prediction formula from the accuracy of C(R).

C(R)= 0.55 C(p)+ 0.45 C(、
、)+0.09 C(a)+0.0006 C(o)・
・(2) (1)式と(2)式から、低炭素溶接金属の溶接凝固割
れを防止するためには、溶接棒の心線と被覆剤中のラッ
ケル量が次式を満足°すればよいことがわかった。
C(R)=0.55 C(p)+0.45 C(,
,)+0.09 C(a)+0.0006 C(o)・
・(2) From equations (1) and (2), in order to prevent weld solidification cracking of low carbon weld metal, if the core wire of the welding rod and the amount of rackel in the coating material satisfy the following equation: It turned out to be good.

0.32Ni (w)+ 0.14Ni (f)≧2.
3(13,8C(1)+ 11.3 C(w)+ 2.
260(a1+ 0.015 C(ol )・・・(3
) 次に、極低炭素鋼材は、良好な溶接部靭性を確保する目
的でニッケルを含有している場合がある。このような含
ニツケル極低炭素鋼材を溶接すると、当然のことながら
鋼材中のニッケルが溶接金属に移行するので、溶接凝固
割れの防止に必要な溶接棒中の全ニッケル量は、鋼材参
りから移行してきたニッケル量に相−当する量だけ減少
させることができる。ただし溶接棒中の全ニッケル量と
は次式で表示される。
0.32Ni (w)+0.14Ni (f)≧2.
3(13,8C(1)+11.3C(w)+2.
260(a1+ 0.015 C(ol)...(3
) Next, ultra-low carbon steel materials may contain nickel for the purpose of ensuring good weld zone toughness. When such nickel-containing ultra-low carbon steel materials are welded, the nickel in the steel material naturally transfers to the weld metal, so the total amount of nickel in the welding rod required to prevent welding solidification cracking must be transferred from the steel material. It is possible to reduce the amount of nickel by an amount corresponding to the amount of nickel that has been used. However, the total amount of nickel in the welding rod is expressed by the following formula.

溶接棒の全ニッケル量= 、′N 30α/#I#1以上の高速度で、被覆アーク溶mした
場合のルート溶接金属形成への寄与率は、前述したよう
に鋼材が55チ、溶接棒が45チであったこと、および
溶接時にニッケルは酸先損失がほとんどなく、鋼材と溶
接棒から溶接金属へ移行することから、0.55 N 
+ (p) ’%のニッケルが溶接棒に含有されていた
と見なすことができる。したがって、含ニツケル極低炭
素鋼を、高速被覆アーク溶接したときのルート溶接金属
の溶接凝固割れを完全に防止するためには、上述の理由
と(3)式から溶接棒の心線と被覆剤中のニッケル量が
次式を満足すればよいのである。
The total amount of nickel in the welding rod = ,'N 30α/#I The contribution rate to the root weld metal formation when coated arc melting is carried out at a high speed of 30α/#1 or more is, as mentioned above, when the steel material is 55 nickel and the welding rod was 45 N, and since nickel has almost no acid tip loss during welding and transfers from the steel material and welding rod to the weld metal, it is 0.55 N.
It can be considered that + (p) '% of nickel was contained in the welding rod. Therefore, in order to completely prevent weld solidification cracking of the root weld metal when nickel-containing ultra-low carbon steel is subjected to high-speed coated arc welding, it is necessary to It is sufficient that the amount of nickel in it satisfies the following formula.

0.55Ni (p)+ 0.32Ni (匍+ 0.
14Ni(f)≧2.3CI3.8 C(p)+ 11
.3 C(w)+ 2.26 C(1)+ 0.015
 C(ol )溶接棒の全ニッケル量として、ICf%
程度のニッケルを含有させるには、金属ニッケルまたは
フェロニッケルなどのニッケル金属粉の形で被覆剤に配
合し、心線には軟鋼を用いるのがもつとも経済的である
。しかし被覆剤中のニッケル金属粉が15%を超えると
、溶接に際して被覆剤が欠落しやすくなること、および
溶接金属り二移行した被覆剤中のニッケル金属粉が、溶
融池内で均一混合されずに一部偏在する危険が生じる。
0.55Ni (p) + 0.32Ni (匍+0.
14Ni(f)≧2.3CI3.8 C(p)+ 11
.. 3 C(w)+ 2.26 C(1)+ 0.015
ICf% as the total nickel content of C(ol) welding rod
In order to contain a certain amount of nickel, it is economical to mix it into the coating material in the form of metallic nickel or nickel metal powder such as ferronickel, and to use mild steel for the core wire. However, if the nickel metal powder in the coating material exceeds 15%, the coating material is likely to be chipped during welding, and the nickel metal powder in the coating material that has migrated to the weld metal may not be uniformly mixed in the molten pool. There is a risk that some parts will be unevenly distributed.

したがって被覆剤に15%超のニアケル金属粉を配合す
る必要がある場合は、被覆剤中のニッケル金属粉は15
%までとし、不足のニッケル分は心線に含有させること
が望ましい。
Therefore, if it is necessary to incorporate more than 15% nickel metal powder into the coating, the amount of nickel metal powder in the coating must be 15%.
%, and it is desirable to include the insufficient nickel content in the core wire.

一方、溶接棒中に全ニッケル量としてios程度程度ノ
ニルケル線に含有させることは勿論可能である。しかし
、軟鋼心線にニッケルが含有されると、心線の比電気抵
抗が著しく増加するので、心線中のニッケルが5%以上
になると、溶接中(二溶接棒の棒焼は現象を起すように
なり、溶接作業が損われると、および心線の製造コスト
が大となる。このため含ニツケル心線としては、ニッケ
ル量として5%までに制限することが望ましく、心線か
ら供給するニッケル量だけではニッケルが不足する場合
には、その不足ニッケル分は被覆剤へニッケル金属粉と
して配合するのがよい。
On the other hand, it is of course possible to make the nonylkel wire contain approximately ios of nickel as the total amount of nickel in the welding rod. However, when nickel is contained in the mild steel core wire, the specific electrical resistance of the core wire increases significantly, so if nickel in the core wire exceeds 5%, during welding (stick burning of two welding rods will cause a phenomenon). This will impair welding work and increase the manufacturing cost of the core wire.For this reason, it is desirable to limit the amount of nickel to 5% for nickel-containing core wires, and the amount of nickel supplied from the core wire should be limited to 5%. If the amount of nickel is insufficient, it is preferable to add the missing nickel to the coating material as nickel metal powder.

以下実施例により本発明の効果をさらに具体的に示す。The effects of the present invention will be illustrated in more detail with reference to Examples below.

実施例1 第3表に示す化学成分の厚板材を用いて、第2図に示す
開先形状をもった第3図に示す溶接試験体を作製し、第
4表に示す被覆アーク溶接棒を用いて、第5表(二示す
溶接条件で1パス溶接を行い、溶接金属の凝固割れ調査
した。試験結果を第6表C二示す。
Example 1 A welding test specimen shown in FIG. 3 having the groove shape shown in FIG. 2 was prepared using a plate material having the chemical composition shown in Table 3, and a coated arc welding rod shown in Table 4 was used. One-pass welding was performed under the welding conditions shown in Table 5 (2), and solidification cracking of the weld metal was investigated. The test results are shown in Table 6 (C-2).

本発明の範囲l二あるものにはX線透過試験および溶接
ビード断面検査で凝固割れは皆無である。
Within the scope of the present invention, there is no solidification cracking in X-ray transmission tests and weld bead cross-sectional inspections.

実施例2 第2図に示す開先形状をした第7表に示す化学成分の鋼
管(外径1.219絽Xl000關)を、第4表の被覆
アーク溶接棒を用い、第8表に示す溶接条件でルート溶
接を行った。試験結果を第9表に示す。
Example 2 A steel pipe with the groove shape shown in Fig. 2 and the chemical composition shown in Table 7 (outer diameter 1.219 x 1000 mm) was welded using the coated arc welding rod shown in Table 4 as shown in Table 8. Root welding was performed under the welding conditions. The test results are shown in Table 9.

本発明の範囲にあるものには、X線透過試験および溶接
ビード断面検査で凝固割れは皆無である。
Those within the scope of the present invention have no solidification cracking in X-ray transmission tests and weld bead cross-sectional inspections.

11111111

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は極低炭素鋼の被覆アーク溶接に際し、ルート溶
接金属に発生する凝固割れ領域と溶接金属炭素量と溶接
速度との関係を示す図表、第2図は開先形状を、第3図
は溶接試験体の寸法。 形状をそれぞれ示す模式図、第4図は極低炭素鋼の被覆
アーク溶接におけるルート溶接金属に発生する凝固割れ
感受性(二及ぼすニッケルの効果を示す図表である。 s3@      扇2名 扇4 目 シ容堵企JIC量(7,) 手続補正書(自発) 昭和67年5J1124  日 特許庁長官島田春樹 殿 1事件の表示 昭和57年特許願第 67100  号
3、補正をする者 事件との関係 特許出願人性 所 
 東京都千代田区大3手町2丁目6番3号名 称  (
665)  新日本製鐵株式貴社代表者  武 1) 
  豐 4、代 理 人 住 所  東京都中央区日本橋3丁目3番3号5、補正
命令の日付 昭和  年  月  日(発送日)6補正
により増加する発明の数 (1)明細書第9頁第2行目rO,005X O,06
%」をro、oos〜0.06チ」 に改める。 (2)同  第13頁1行目「酸先損」を「酸化損」に
改める。 :; 手続補正書(自発) 昭和57年9月 10日 特許庁長官若杉和夫殿 1、事件の表示 昭和57年特許願第67100  号
2、発明の名称 極低炭素鋼の被覆アーク溶接方法3、
補正をする者 事件との関係 特許出願人住 所  東
京都千代田区大手町2丁目6番3号名 称  (665
)  新日本製鐵株式食紅代表者  武 1)  豊 4代 理 人 住 所  東京都中央区日本橋3丁目3番3号5補正命
令の日付 昭和  年  月  日(発送日)6、補正
によシ増加する発明の数 7補正の対象 明細書の発明の詳細ρ週間の欄8、補正
の内容 1、 明細書第9頁第2表を次のように改める。 第2表
Figure 1 is a chart showing the relationship between the solidification crack area that occurs in the root weld metal, the carbon content of the weld metal, and the welding speed during shielded arc welding of ultra-low carbon steel, Figure 2 shows the groove shape, and Figure 3 is the dimension of the welded specimen. Figure 4 is a diagram showing the effect of nickel on the solidification cracking susceptibility (2) that occurs in the root weld metal during coated arc welding of ultra-low carbon steel. Yongtou JIC amount (7,) Procedural amendment (spontaneous) 5J1124/1988 Haruki Shimada, Director General of the Japan Patent Office 1 Indication of case 1988 Patent Application No. 67100 3, Person making the amendment Relationship to the case Patent application humanity place
2-6-3 Omitatecho, Chiyoda-ku, Tokyo Name (
665) Nippon Steel Corporation Representative Takeshi 1)
4, Agent Address: 3-3-3-5, Nihonbashi, Chuo-ku, Tokyo Date of amendment order: 1925 Month, day (shipment date) 6. Number of inventions increased by amendment (1) Specification, page 9 2nd line rO,005X O,06
Change "%" to "ro, oos~0.06chi". (2) On page 13, line 1, "acid tip loss" has been changed to "oxidation loss.":; Procedural amendment (voluntary) September 10, 1980 Kazuo Wakasugi, Commissioner of the Japan Patent Office1, Indication of the case Patent Application No. 67100 of 19822, Title of the invention Method for coated arc welding of ultra-low carbon steel3,
Person making the amendment Relationship to the case Patent applicant address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (665)
) Nippon Steel Stock Food Coloring Representative Takeshi 1) Yutaka 4th generation Masaru Address 3-3-3-5 Nihonbashi, Chuo-ku, Tokyo Date of amendment order Showa 1999 Month, day (shipment date) 6, increase due to amendment Number of inventions to be amended 7 Subject of amendment Column 8 of details of the invention in the specification ρ week, contents of amendment 1, Table 2 on page 9 of the specification are amended as follows. Table 2

Claims (1)

【特許請求の範囲】 1、炭素0.005〜0.06チを含有する鋼材を、3
0d/馴以上の溶接速度で被覆アーク溶接するに際して
、溶接棒の心線中に含まれるニッケル量をN1(1)チ
、被覆−剤中に含まれる金属粉のニッケル量をN1(f
)チ、鋼材の炭素量をCfpl’溶接棒の心線に含まれ
る炭素量をC(w)チ、被覆剤中に含まれる金属粉の炭
素量をCfat % 。 有機物量k C(81%と表示するとき、0.32Ni
  + 0.14Ni(f1≧2.3(Wl (13,8C(p)+ 11.3C(wl+ 2.26
 C(a)+0.015C(。) )なる式を満足する
含ニツケル被覆アーク溶接棒を用いて、少くとも第1層
目を溶接することを特徴とする極低炭素鋼の被覆アーク
溶接方法。 2、炭素0.005〜0.06%を含有する含ニツケル
鋼材を、30 cm/−以上の溶接速度で被覆ア−り溶
接するに際して、鋼材中に含まれるニッケル量をNi(
,1% 、溶接棒の心線中に含まれるニッケル量をNi
(桐% 、被覆剤中に含まれる金属粉のニッケル量をN
1(f)%、鋼材の炭素量をC(pl ’ 、溶接棒の
心線に含まれる炭素量をC(w)%、被覆剤中に含まれ
る金属粉の炭素量をC(a)%、有機物tic(。)%
と表示するとき0.55N 1(p)+ 0.32N 
i (w)+ 0.14N i (1)≧2.3(13
,8C(1)+ 11.30(司+ 2.26C(a)
+ 0.015C(o) )なる式を満足する含ニツケ
ル被覆アーク溶接棒を用いて、少くとも第1層目を溶接
することを特徴とする極低炭素鋼の被覆アーク溶接方法
[Scope of Claims] 1. A steel material containing 0.005 to 0.06 carbon, 3
When performing coated arc welding at a welding speed of 0d/f or higher, the amount of nickel contained in the core wire of the welding rod is N1(1)chi, and the amount of nickel in the metal powder contained in the coating material is N1(f).
) The carbon content of the steel material is Cfpl' The carbon content contained in the core wire of the welding rod is C(w). The carbon content of the metal powder contained in the coating material is Cfat %. Organic matter amount k C (when expressed as 81%, 0.32Ni
+ 0.14Ni(f1≧2.3(Wl (13,8C(p)+ 11.3C(wl+ 2.26
A coated arc welding method for ultra-low carbon steel, characterized in that at least the first layer is welded using a nickel-containing coated arc welding rod that satisfies the formula: C(a)+0.015C(.)). 2. When welding a nickel-containing steel material containing 0.005 to 0.06% carbon at a welding speed of 30 cm/- or more, the amount of nickel contained in the steel material is
,1%, the amount of nickel contained in the core wire of the welding rod is Ni
(Paulownia%, the amount of nickel in the metal powder contained in the coating material is N
1(f)%, the carbon content of the steel material is C(pl'), the carbon content contained in the core wire of the welding rod is C(w)%, the carbon content of the metal powder contained in the coating material is C(a)%. , organic matter tic(.)%
When displayed as 0.55N 1(p) + 0.32N
i (w) + 0.14N i (1)≧2.3(13
,8C(1)+11.30(Tsukasa+2.26C(a)
+0.015C(o)) A coated arc welding method for ultra-low carbon steel, characterized in that at least the first layer is welded using a nickel-containing coated arc welding rod that satisfies the formula: +0.015C(o)).
JP6710082A 1982-04-23 1982-04-23 Arc welding method with covered electrode of dead soft steel Pending JPS58184091A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6710082A JPS58184091A (en) 1982-04-23 1982-04-23 Arc welding method with covered electrode of dead soft steel
US06/486,239 US4593174A (en) 1982-04-23 1983-04-18 Method for welding very low carbon steel
NO831400A NO831400L (en) 1982-04-23 1983-04-21 PROCEDURE FOR LOW CARBON STEEL WELDING
GB08310800A GB2122123B (en) 1982-04-23 1983-04-21 Method for arc welding of very-low carbon steel
DE19833314707 DE3314707A1 (en) 1982-04-23 1983-04-22 METHOD FOR ARC WELDING STEEL WITH A VERY LOW CARBON CONTENT
CA000426476A CA1211509A (en) 1982-04-23 1983-04-22 Method for arc welding of very low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6710082A JPS58184091A (en) 1982-04-23 1982-04-23 Arc welding method with covered electrode of dead soft steel

Publications (1)

Publication Number Publication Date
JPS58184091A true JPS58184091A (en) 1983-10-27

Family

ID=13335124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6710082A Pending JPS58184091A (en) 1982-04-23 1982-04-23 Arc welding method with covered electrode of dead soft steel

Country Status (1)

Country Link
JP (1) JPS58184091A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337554A (en) * 1976-09-21 1978-04-06 Nippon Steel Corp Electrode covered with nitrogen rich* crrni austenite steel
JPS564398A (en) * 1979-06-26 1981-01-17 Nippon Steel Corp Arc welding method for obtaining weld zone of superior cracking resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337554A (en) * 1976-09-21 1978-04-06 Nippon Steel Corp Electrode covered with nitrogen rich* crrni austenite steel
JPS564398A (en) * 1979-06-26 1981-01-17 Nippon Steel Corp Arc welding method for obtaining weld zone of superior cracking resistance

Similar Documents

Publication Publication Date Title
CA2540955A1 (en) High carbon welding electrode and method of welding with high carbon welding electrode
EP0502390A1 (en) Filler metal for welding sintered materials
CN110253173A (en) A kind of austenitic stainless steel self-shielded arc welding increasing material manufacturing flux cored wire
JP6690786B1 (en) Method for manufacturing solid wire and welded joint
NO831400L (en) PROCEDURE FOR LOW CARBON STEEL WELDING
DE4228678A1 (en) BELT WELDING METHOD FOR A TUBE AND ELECTRODE COATED WITH HIGH CELLULOSE CONTENT
US20070251934A1 (en) High Carbon Welding Electrode and Method of Welding with High Carbon Welding Electrode
DE1483452A1 (en) Welding material for low temperatures
US3466422A (en) Welding material for austenitic ductile iron
JPS58184091A (en) Arc welding method with covered electrode of dead soft steel
US20240207981A1 (en) Titanium deposition wire of the powder-in-tube type
KR102302988B1 (en) Flux cored wire
CN115008065A (en) Flux-cored wire for high entropy of titanium-steel welding seam and preparation method thereof
JPS5811311B2 (en) High-efficiency multi-electrode automatic arc welding method for low-temperature, high-toughness steel
JPH0481291A (en) Submerged arc welding wire
EP3995251B1 (en) Method for depositing an overlay material onto a metal surface by means of electroslag strip cladding
EP3782765A1 (en) Higher toughness steel alloy weld deposits and flux-cored welding electrodes for producing higher toughness steel alloy weld deposits
JPS58184092A (en) Gas shielded metal arc welding method of dead soft steel
JPS617090A (en) Composite wire for hard facing welding
JPS6246276B2 (en)
CN114850627A (en) Flux-cored wire, weld metal, gas-shielded arc welding method, and method for manufacturing welded joint
JPS63115696A (en) Flux-cored wire for hard overlay
RU1605451C (en) Flux-cored wire composition
JPH0451275B2 (en)
DE2157905C3 (en) Use of an additive for a weld metal from arc welding processes