JPS58183940A - Photochemical reaction using solar rays - Google Patents

Photochemical reaction using solar rays

Info

Publication number
JPS58183940A
JPS58183940A JP57065511A JP6551182A JPS58183940A JP S58183940 A JPS58183940 A JP S58183940A JP 57065511 A JP57065511 A JP 57065511A JP 6551182 A JP6551182 A JP 6551182A JP S58183940 A JPS58183940 A JP S58183940A
Authority
JP
Japan
Prior art keywords
reaction
photocatalyst
reaction system
solar rays
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57065511A
Other languages
Japanese (ja)
Other versions
JPS6230814B2 (en
Inventor
Hiroshi Nakanishi
博 中西
Toshio Nakayama
中山 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57065511A priority Critical patent/JPS58183940A/en
Publication of JPS58183940A publication Critical patent/JPS58183940A/en
Publication of JPS6230814B2 publication Critical patent/JPS6230814B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To enhance the reaction efficiency of a reaction system, by irradiating solar rays to the reaction system containing reactant components and a photocatalyst in such a state that a coloring matter having special capacity is added to said reaction system to availably utilize light energy of solar rays. CONSTITUTION:In a method wherein solar rays are irradiated to a reaction system containing reactant components and a photocatalyst to carry out photochemical reaction, a coloring matter wherein the position of a light absorbing band is shifted to a high energy side form the position of the light absorbing band of the photocatalyst and the position of a light emitting band is same or near to the position of the light absorbing band of the photocatalyst is further added to said reaction system. As the coloring matter, for example, a combination of trisruthenium pyridyl complex [Ru(bpy)<2+>3] and 7-diethylamino-4-methyl cumarine (DAMC) is used. As the result, because the light energy of solar rays capable of being not utilized conventionally can be utilized in photochemical reaction, the reaction efficiency of the reaction system is enhanced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は太陽光を用い九光化学反応方法に関し。[Detailed description of the invention] [Technical field of invention] The present invention relates to a nine-light chemical reaction method using sunlight.

更に詳しくは、太陽光のエネルギーを効率よく利用する
光化学反応方法に関する。
More specifically, the present invention relates to a photochemical reaction method that efficiently utilizes sunlight energy.

〔発明の技術的背景とその間電点〕[Technical background of the invention and electric point between them]

太陽光の元エネルギーを光触媒によって化学エネルギー
に変換して化学反応を行なわせる光化学反応方法は、新
しいエネルイー源の利用システムとして近年注目を集め
ている。
The photochemical reaction method, which converts the original energy of sunlight into chemical energy using a photocatalyst and performs a chemical reaction, has been attracting attention in recent years as a new energy source utilization system.

例えば、水と光触媒とを共存せしめた反応系に、太陽光
を照射して、次式冨 で示される水の光分解を起生せしめる光化学反応が知ら
れている〔化学、l4m)、1m号、989ハ、(19
79年)参照〕。
For example, a photochemical reaction is known in which a reaction system in which water and a photocatalyst coexist is irradiated with sunlight to cause photolysis of water as shown by the following formula [Chemistry, l4m), No. 1m] ,989ha,(19
1979)].

このような反応に用いる光触媒としては、’rto1゜
8rT10g + laTiom @ l1mへ、Wo
lなどの牛導体又はルテニウムビピリジル錯体、テトラ
7工エルIルフイリンO金属錯体表どが知られている。
As photocatalysts used for such reactions, 'rto1゜8rT10g + laTiom @l1m, Wo
Oxide conductors such as ruthenium bipyridyl complexes such as ruthenium bipyridyl complexes, and metal complexes such as ruthenium ruphyrin O metal complexes are known.

一方、反応系KlI#される太陽光は第1図に示すよう
なエネルギー分布を有する11から明らかなように、そ
れは可視域を中心として極めて広い波長域に1って分布
している。ま九、光触媒は第2図に例示したように、あ
る単一波長域を中心とした比較的狭いエネルギー領域の
光吸収帯をもっている、したがって、上述したような光
化学反応にあっては、用いられる先触#&汰こO光吸収
帯の波長域に相姦する太陽光の光エネルゼーのみを吸収
してそれを化学エネルギーに変換していることになる。
On the other hand, as is clear from the energy distribution 11 shown in FIG. 1, the sunlight generated by the reaction system KlI# is distributed over an extremely wide wavelength range centered on the visible range. 9. As illustrated in Figure 2, photocatalysts have a light absorption band in a relatively narrow energy range centered around a single wavelength range, so they can be used in photochemical reactions such as those described above. This means that it absorbs only the light energy of sunlight that falls within the wavelength range of the light absorption band and converts it into chemical energy.

それゆえ、従来の光化学反応においては、照射される太
陽光の光エネルギーのうち極(一部分しか有効に利用さ
れないため、光化学反応0反応効率がかなや低くなると
いう閥題を避けえなかった。
Therefore, in conventional photochemical reactions, only a small portion of the light energy of the irradiated sunlight is effectively utilized, so the problem that the photochemical reaction efficiency becomes rather low cannot be avoided.

〔発明の目的〕[Purpose of the invention]

本発明は、太陽光の光エネルイーを有効に利用しそのこ
とによって反応系の反応効率を向上せしめる光化学反応
方法の提供を目的とする。
An object of the present invention is to provide a photochemical reaction method that effectively utilizes the optical energy of sunlight and thereby improves the reaction efficiency of a reaction system.

〔発明の概要〕[Summary of the invention]

不発明は、反応成分と光触媒とを含む反応系に太陽光を
照射して光化学反応を行なわせる方法であって、該反応
系に、尤a収11C)位置が線光触媒の光吸怪帝の位置
よりも高エネルギー側に魯襲。
The invention is a method of irradiating a reaction system containing a reaction component and a photocatalyst with sunlight to carry out a photochemical reaction, and in which the reaction system is exposed to a light-absorbing monster whose position is a line photocatalyst. Attack on the higher energy side than the position.

かつ、発光帯の位置が諒光触媒Ojt歇収帝O位置と同
じか若しく線近似している色素を更に添加して太陽光を
照射することを特徴とするものである。
In addition, it is characterized in that a dye whose emission band is at the same position or linearly similar to the position of the photocatalyst is further added and irradiated with sunlight.

本発明方法にあっては、上記し九党特性を有する色素を
反応系に添加して太陽光を照射することを最大の特徴と
する。
The main feature of the method of the present invention is that the dye having the above-mentioned characteristics is added to the reaction system and the reaction system is irradiated with sunlight.

本発明Kかかみ色素は、第311i1に例示したように
、第2図に例示し九党触媒の光吸収帯の高エネルギー側
(煙波長域側)に光吸収帯を有しく第3図の吸収強[1
)かつ、発光帯が大音なストークスシフトをもって低エ
ネルゼー側(長線長側)に位置し、しかもそれが鋏党触
謀O党lk釈蕾と同じ位置か若しくは極めて近似し大位
置([3図の発光強度2)であるような色素である。
As illustrated in No. 311i1, the K-shape pigment of the present invention has a light absorption band on the high energy side (smoke wavelength region side) of the light absorption band of the nine-part catalyst shown in FIG. Absorption strength [1
), and the emission band is located on the low energy side (long line length side) with a loud Stokes shift, and it is at the same position as the scissors party attack O party lk interpretation, or at a very close position ([Fig. 3 It is a dye whose emission intensity is 2).

かかる色素が反応系に光触媒と共存す為場合、ここに太
陽光が照射されあと、光触媒はまず第2図に示し九波長
域の党エネルギーを吸収する。同時に1色素はmsgo
吸収強度1で示し丸液長域Q光エネルイーを徴収し、1
1:1図の発光強度2でンj< した波・長城(第Z@
(D@長域と赤1ぼ同じ)の光エネルギーを放射する。
When such a dye coexists with a photocatalyst in the reaction system, after being irradiated with sunlight, the photocatalyst first absorbs energy in the nine wavelength range shown in Figure 2. One dye at the same time is msgo
The absorption intensity is expressed as 1, and the long range Q light energy is collected as 1.
1:1 wave with luminous intensity 2 and the Great Wall (No. Z@
(D @ long range and red 1 are the same) light energy is emitted.

し九がって、光触媒は第2図の光エネルギーに加えて、
#I3図の発光強に20光エネルイーをも吸収するtと
ができる。
Therefore, in addition to the light energy shown in Figure 2, the photocatalyst generates
t which absorbs as much as 20 optical energies can be generated at the intensity of the light emission shown in Figure #I3.

このように、色素自体は照射されえ太陽光の光エネルギ
ーを長波長側にストークスシフトする単なる変換媒体で
あって、直接反応系O*、化学反応に関与するものでは
なく、この点で、従来から知られている光電極反応にお
ける色素増感方法〔科学、47巻、11号、679頁、
(1977年)参照〕とは全く異質な作用効果を有する
In this way, the dye itself is simply a conversion medium that Stokes-shifts the light energy of sunlight toward longer wavelengths, and does not directly participate in the chemical reaction. Dye sensitization method in photoelectrode reaction known from [Science, Vol. 47, No. 11, p. 679,
(1977)] has completely different effects.

本発明にかかる色素の介在によって1反応系における光
触媒は従来変換不可能であつ丸太陽光の光エネルギーを
4ha収可能とするので、反応系の反応効率が向上する
こととなる。
Due to the presence of the dye according to the present invention, the photocatalyst in one reaction system can collect 4 hectares of the light energy of sunlight, which could not be converted conventionally, and therefore the reaction efficiency of the reaction system is improved.

このような色素は1反応系に用いている光触媒に対応さ
せて選定される。
Such a dye is selected depending on the photocatalyst used in one reaction system.

例えば、水の光分解反応に用いられる光触媒であるトリ
スルテニウムビーリジル錨体(mu(bpy)”)烏 は第4図に示し九吸収スペクトルから嘴らかなように、
波長450 nm付近に強い光吸収帯を有し。
For example, the photocatalyst used in the photolysis reaction of water, trisruthenium bilysyl anchor (mu(bpy)''), is shown in Figure 4 and has a beak as shown in the nine absorption spectra.
It has a strong optical absorption band around a wavelength of 450 nm.

波長400 nm付近では七0光吸収が減退する。At around a wavelength of 400 nm, the optical absorption decreases.

一方、クマリン族の色素の一種である7−ジエチルアミ
ノ−4−メテルクオリン(DAMC)は。
On the other hand, 7-diethylamino-4-metelquorin (DAMC) is a type of coumarin group pigment.

第5図に示したように波長370mm付近に極大値會有
する比較的強い敷収膏1(七ル吸光係数1a −il 
X 1 ()’ )をもち、液長4!ionm付近に極
大値を有する比較的強い発光帯(螢光)2をもっている
As shown in FIG.
X 1 ()') and liquid length 4! It has a relatively strong emission band (fluorescence) 2 with a maximum value near ionm.

し九がって1両者が共存する水に太陽光を照射し友場合
S Rm(bPF)”自体にIIi徴収されにくかつ九
波長35 Omwa付近O光エネルーーをDAMCが吸
収しストークスシフトして液長4B6am付近の光エネ
ルギーを放射するので、Ru(bpy)” カ畠 その光エネルギーをも徴収し得ることになって全体の反
応効率は向上する。
Therefore, if sunlight is irradiated onto water where both of them coexist, SRm (bPF) is difficult to be collected by itself and DAMC absorbs the light energy near wavelength 35 Omwa and undergoes a Stokes shift. Since light energy with a liquid length of around 4B6 am is emitted, the light energy of Ru(bpy)" can also be collected, improving the overall reaction efficiency.

このように、める光触媒に対してはある色素が対応する
。このよう表組会せとしては、上記し九Ru(bP)’
)” −DAMC(D他に鉄フタロシアニン−7$ ルオレツセインナトリウム、fロ7ツrンー4−メチル
ウンペリフエーンなどの組合せをあげることがで龜る。
In this way, a certain dye corresponds to a photocatalyst. As for such a table assembly, the above-mentioned 9Ru(bP)'
)” -DAMC (In addition to D, combinations such as iron phthalocyanine-7$ fluorescein sodium and fro7trone-4-methylumperifene can be mentioned.

〔発明の冥施例〕[Example of invention]

実施例1 以下の各成分を含む水溶液100−を反応系として水の
光分解を行なった。
Example 1 Water was photolyzed using an aqueous solution 100- containing the following components as a reaction system.

光触媒としてRu(bPF)a g S X 1 G”
″” mol/l 。
Ru(bPF) a g S X 1 G” as a photocatalyst
″”mol/l.

色票としてDAMC: 5 X 10″″′鳳・I/I
 、他に光分解反応の補助系として以下の成分が含まれ
る。酸化用触媒として二酸化ルテニウム Ru01  
寡2X10−’mol/1.還元用電子伝達体としてメ
チルビオtxfン(MV) ! 2.5 X 1 G−
” mol/1.還元用触媒として白金 Pt :1g
イド!1.5X1G″″’mol/jaこの反応系に太
陽光t−3時間(午$11時から午後2時まで)照射し
た。照射平均強度は80mW/cd であみ。
DAMC as color chart: 5 x 10'''''Otori/I/I
In addition, the following components are included as auxiliary systems for photolysis reactions. Ruthenium dioxide Ru01 as an oxidation catalyst
Less than 2X10-'mol/1. Methylbiotxfn (MV) as a reducing electron carrier! 2.5 X 1 G-
” mol/1. Platinum (Pt) as reduction catalyst: 1g
Ido! This reaction system was irradiated with sunlight for t-3 hours (from $11:00 p.m. to 2:00 p.m.) at 1.5×1 G″″’mol/ja. The average irradiation intensity was 80 mW/cd.

この系にあっては次の光化学反応が進行して水素が発生
する。
In this system, the following photochemical reaction proceeds and hydrogen is generated.

水素の発生量は12 smolであった。The amount of hydrogen generated was 12 smol.

比較のため、DAMCを添加しない系にあっては同一の
条件でO水素発生量は0.7μmlで6つ九。
For comparison, in a system without DAMC, the amount of O hydrogen generated was 0.7 μml under the same conditions.

したがって、本発明方法は、i米よシもその反応効率1
iP1.7倍向上せしめた。
Therefore, the method of the present invention has a reaction efficiency of 1
The iP was improved by 1.7 times.

実施例2 以下の各成分を含む水溶液ls〇−を反応系として水の
光分解を行なつえ。
Example 2 Photolysis of water was carried out using an aqueous solution ls〇- containing each of the following components as a reaction system.

光触媒として1口7ラビン(PF):2 X 1 G″
″6mol/l 、色素として4−メチkflンペリ7
エロノ(4MU)冨2×10″″・mol/jt用いた
。なお、p y o@収ス(タトルを第6図に、4MU
の吸収および発光スペクトルを第7図1.2にそれぞれ
示した。他に反応O補助系として白金コロイド!5WI
g%エチレンシア々ン4酢酸(EDTム);1×10−
”m@I/Iを加え良。
As a photocatalyst, one mouthful of 7 Rabin (PF): 2 X 1 G''
″6 mol/l, 4-methykflemperi7 as a dye
Elono (4MU) was used at a concentration of 2×10″·mol/jt. In addition, p y o @ collection (Tuttle is shown in Figure 6, 4MU
The absorption and emission spectra of the compound are shown in Fig. 7, 1.2, respectively. In addition, platinum colloid is used as a reaction O support system! 5WI
g% ethylenecyanetetraacetic acid (EDTM); 1 x 10-
“Good to add m@I/I.

この反応系に、太陽光t3時間(午前l1時から午後2
時まで)照射した。照射平均強度は80rnW/−であ
る。
This reaction system was exposed to sunlight for t3 hours (from 11:00 a.m. to 2:00 p.m.).
irradiated. The average irradiation intensity is 80rnW/-.

この系にあっては、EDTAO駿化反応および水の還元
反応が起こることKよシ水素が発生する。
In this system, hydrogen is generated due to the EDTAO conversion reaction and water reduction reaction.

水素の発生量は110^mojであつ九。The amount of hydrogen generated is 110^moj.

比較の丸め4MUt添加しない系に弗っては。Rounding off the comparison, let's look at the system without adding 4MUt.

同一の条件での水素発生量は80μgamlであった。The amount of hydrogen generated under the same conditions was 80 μgaml.

したがって、本発明方法祉、、従来よ〕もそO反応効率
を1.4倍向上せしめ九。
Therefore, the method of the present invention improves the O reaction efficiency by 1.4 times compared to the conventional method.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように1本発明方法社。 As is clear from the above explanation, the present invention method company.

従来利用できなかつ丸太陽光の光エネルギーも光化学反
応に利用できるので反応系の反応効率が向上する。また
、水の光分解による水素の製造の他に、バイオマスから
の燃料合成、二酸化嶽素の固足による燃料合成など光を
利用し九種々のエネルギー変換反応にも適用可能でTo
)、更に、 a m身の化学物質を利用した光化学合成
への適用も可能であることを示唆しており、その工業的
価値は大である。
The light energy of whole sunlight, which could not be used conventionally, can also be used for photochemical reactions, improving the reaction efficiency of the reaction system. In addition to the production of hydrogen through photolysis of water, it can also be applied to various energy conversion reactions using light, such as fuel synthesis from biomass and fuel synthesis using solid bases of carbon dioxide.
), furthermore, it suggests that it can be applied to photochemical synthesis using chemical substances in the form of am, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は太陽光のエネルギー分有、1Illt2WJは
光触媒の光吸収帯管例示するもの、jI3図は本発明に
かかる色素の吸収強IIIL1と発光強度2を例示する
もノーt’あル、 M 4 #AId Ru (’bp
y)@+の吸収スペクトル、JIIs図UDAMCの吸
収スペクトルlと発光ス′くクトル1m16図はPFC
)吸収ス(クトル、第7図は4 MUC)徴収スペクト
ル1と発光ス、ベクトル3である。 第1図 第2図 200  600  1000 1400 18003
L表 (nm)−一争 第3図 沃久C8m)− 第4図 汰L  (nm)− 200300400500600 3L  表 +nm1−− 第6図 1長−Tnm)−→ 第7図 丁
Figure 1 shows the energy distribution of sunlight, 1Illt2WJ shows an example of the light absorption band tube of a photocatalyst, and Figure 3 shows an example of the absorption intensity IIIL1 and emission intensity 2 of the dye according to the present invention. 4 #AId Ru ('bp
y) Absorption spectrum of @+, JIIs diagram Absorption spectrum l of UDAMC and emission spectrum 1m16 diagram is PFC
) Absorption vector (Fig. 7 is 4 MUC) collection spectrum 1 and emission vector 3. Figure 1 Figure 2 200 600 1000 1400 18003
L table (nm) - Figure 3 C8m) - Figure 4 L (nm) - 200300400500600 3L table +nm1-- Figure 6 1 length - Tnm) -→ Figure 7

Claims (1)

【特許請求の範囲】 反応成分と光触媒とを含む反応系に太陽光を照射して光
化学反応を行なわせ為方法であって。 該反応系k。 光吸収帯の位置が該光触sO光暇収膏の位置よりも高エ
ネルギー側にあ)、か、つ、発光帯O位置が該光触媒の
光吸収帯0泣置と同じか若しくは近似している色素を更
に添加することを特徴とする太陽光を用い九光化学反応
方法。
[Claims] A method for causing a photochemical reaction to occur by irradiating sunlight onto a reaction system containing a reaction component and a photocatalyst. The reaction system k. The position of the light absorption band is on the higher energy side than the position of the photocatalyst, or the position of the emission band is the same as or close to the position of the light absorption band 0 of the photocatalyst. A nine-light chemical reaction method using sunlight, which is characterized by further adding a pigment.
JP57065511A 1982-04-21 1982-04-21 Photochemical reaction using solar rays Granted JPS58183940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57065511A JPS58183940A (en) 1982-04-21 1982-04-21 Photochemical reaction using solar rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57065511A JPS58183940A (en) 1982-04-21 1982-04-21 Photochemical reaction using solar rays

Publications (2)

Publication Number Publication Date
JPS58183940A true JPS58183940A (en) 1983-10-27
JPS6230814B2 JPS6230814B2 (en) 1987-07-04

Family

ID=13289144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57065511A Granted JPS58183940A (en) 1982-04-21 1982-04-21 Photochemical reaction using solar rays

Country Status (1)

Country Link
JP (1) JPS58183940A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003037510A1 (en) * 2001-10-29 2003-05-08 Japan Science And Technology Agency Photocatalyst
DE102009043378A1 (en) * 2009-08-13 2011-03-03 Technische Universität Braunschweig Method and use of luminescent compounds for measuring a photocatalytic surface activity
JP2011518650A (en) * 2008-03-11 2011-06-30 イミュノライト・エルエルシー Plasmonics support system and method for internal energy activation from external radiation sources
JP2013530834A (en) * 2010-07-16 2013-08-01 ユニヴァシティート トウェンテ Water splitting using photocatalyst

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003037510A1 (en) * 2001-10-29 2003-05-08 Japan Science And Technology Agency Photocatalyst
US7166554B2 (en) 2001-10-29 2007-01-23 Japan Science And Technology Agency Photocatalyst
US9682250B2 (en) 2007-04-08 2017-06-20 Immunolight, Llc Systems and methods for interior energy-activation from an exterior source
US10201796B2 (en) 2007-04-08 2019-02-12 Immunolight, Llc. Plasmonic assisted systems and methods for interior energy-activation from an exterior source
US10029117B2 (en) 2007-04-08 2018-07-24 Immunolight, Llc Systems and methods for interior energy-activation from an exterior source
US10213763B2 (en) 2007-04-08 2019-02-26 Immunolight, Llc. Plasmonic assisted systems and methods for interior energy-activation from an exterior source
US9278331B2 (en) 2007-04-08 2016-03-08 Immunolight, Llc Systems and methods for interior energy-activation from an exterior source
US9630022B2 (en) 2007-04-08 2017-04-25 Immunolight, Llc. Plasmonic assisted systems and methods for interior energy-activation from an exterior source
US9579523B2 (en) 2007-04-08 2017-02-28 Immunolight, Llc Plasmonic assisted systems and methods for interior energy-activation from an exterior source
US9005406B2 (en) 2007-04-08 2015-04-14 Immunolight, Llc Systems and methods for interior energy-activation from an exterior source
US9004131B2 (en) 2007-04-08 2015-04-14 Duke University Plasmonic assisted systems and methods for interior energy-activation from an exterior source
US9498643B2 (en) 2007-04-08 2016-11-22 Immunolight, Llc Systems and methods for interior energy-activation from an exterior source
US9174190B2 (en) 2007-04-08 2015-11-03 Immunolight, Llc Plasmonic assisted systems and methods for interior energy-activation from an exterior source
JP2017221946A (en) * 2008-03-11 2017-12-21 イミュノライト・エルエルシー Plasmonic assisted systems and methods for interior energy-activation from exterior radiation source
JP2015134346A (en) * 2008-03-11 2015-07-27 イミュノライト・エルエルシー Plasmonic assisted system and method for interior energy-activation from exterior source
US8927615B2 (en) 2008-03-11 2015-01-06 Immunolight, Llc Plasmonic assisted systems and methods for interior energy-activation from an exterior source
US8658086B2 (en) 2008-03-11 2014-02-25 Immunolight, Llc. Systems and methods for interior energy-activation from an exterior source
US8376013B2 (en) 2008-03-11 2013-02-19 Duke University Plasmonic assisted systems and methods for interior energy-activation from an exterior source
JP2011518650A (en) * 2008-03-11 2011-06-30 イミュノライト・エルエルシー Plasmonics support system and method for internal energy activation from external radiation sources
US10363541B2 (en) 2008-03-11 2019-07-30 Immunolight, Llc. Systems and methods for interior energy-activation from an exterior source
US11173467B2 (en) 2008-03-11 2021-11-16 Immunolight, Llc Systems and methods for interior energy-activation from an exterior source
DE102009043378B4 (en) * 2009-08-13 2011-04-07 Technische Universität Braunschweig Method and use of luminescent compounds for measuring a photocatalytic surface activity
DE102009043378A1 (en) * 2009-08-13 2011-03-03 Technische Universität Braunschweig Method and use of luminescent compounds for measuring a photocatalytic surface activity
JP2013530834A (en) * 2010-07-16 2013-08-01 ユニヴァシティート トウェンテ Water splitting using photocatalyst

Also Published As

Publication number Publication date
JPS6230814B2 (en) 1987-07-04

Similar Documents

Publication Publication Date Title
Puntoriero et al. Photo-induced water oxidation with tetra-nuclear ruthenium sensitizer and catalyst: A unique 4× 4 ruthenium interplay triggering high efficiency with low-energy visible light
Sahara et al. Photoelectrochemical CO 2 reduction using a Ru (ii)–Re (i) multinuclear metal complex on a p-type semiconducting NiO electrode
US4394293A (en) Catalyst for the photolytic production of hydrogen from water
Mills et al. Photobleaching of methylene blue sensitised by TiO2: an ambiguous system?
CN107744824B (en) A kind of g-C of modification3N4Base visible-light photocatalyst, preparation method and application
Kudo et al. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst
Harriman et al. Photo-oxidation of water to oxygen sensitised by tris (2, 2′-bipyridyl) ruthenium (II)
JP2005199187A (en) Novel z-scheme type visible light active photocatalyst system for perfectly decomposing water and water perfectly decomposing method using the same
Balzani et al. Electron transfer reactions involving light
Bai et al. Visible-light-driven selective oxidation of benzyl alcohol and thioanisole by molecular ruthenium catalyst modified hematite
Turro et al. Thermolysis of anthracene endoperoxides. Concerted vs. diradical mechanisms. Microscopic reversibility in endothermic chemiluminescent reactions
CN102188984A (en) Composite photochemical catalyst BiOCl/BiOI and preparation method thereof
Lin et al. Insight into a hexanuclear cobalt complex: Strategy to construct efficient catalysts for visible light-driven water oxidation
CN104340957B (en) Photosynthetical system two and the method for semiconductor hybrid system photocatalytic hydrogen production by water decomposition gas
JP4915719B2 (en) ZnS-CuX solid solution photocatalyst exhibiting high activity in hydrogen production from aqueous solution containing sulfur compound under sunlight irradiation
Darwent Photocatalytic hydrogen evolution from alcohols using dodecawolframosilicic acid colloidal platinum
Shylin et al. Photoinduced hole transfer from tris (bipyridine) ruthenium dye to a high-valent iron-based water oxidation catalyst
EP1113876A1 (en) MANUFACTURING METHOD OF CdS PHOTOCATALYST FOR HYDROGEN PRODUCTION
JPS58183940A (en) Photochemical reaction using solar rays
CN103041865A (en) Organic anthraquinone dye sensitized and precious metal supported inorganic semiconductor visible-light photocatalyst, and preparation method and application of photocatalyst
GB2079170A (en) Catalysts for the photolytic production of hydrogen from water
Khan et al. Photocatalytic reduction of N2 to NH 3 sensitized by the [RuIII-ethylenediaminetetraacetate-2, 2′-bipyridyl]− complex in a Pt-TiO2 semiconductor particulate system
La Ganga et al. Photoinduced water oxidation sensitized by a tetranuclear Ru (II) dendrimer
Ramaraj et al. Electrochemistry and stability studies of oxo-bridged dinuclear ruthenium (III) complexes for water oxidation
David et al. Photoredox chemistry of chloro and bromo complexes of copper (II) in methanolic medium.