JPS58183903A - Method for controlling permeation speed of water and organic liquid through regenerated cellulose membrane - Google Patents

Method for controlling permeation speed of water and organic liquid through regenerated cellulose membrane

Info

Publication number
JPS58183903A
JPS58183903A JP6540682A JP6540682A JPS58183903A JP S58183903 A JPS58183903 A JP S58183903A JP 6540682 A JP6540682 A JP 6540682A JP 6540682 A JP6540682 A JP 6540682A JP S58183903 A JPS58183903 A JP S58183903A
Authority
JP
Japan
Prior art keywords
water
regenerated cellulose
membrane
organic solvent
cellulose membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6540682A
Other languages
Japanese (ja)
Inventor
Hideki Iijima
秀樹 飯島
Seiichi Manabe
征一 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6540682A priority Critical patent/JPS58183903A/en
Priority to DE8282110792T priority patent/DE3265896D1/en
Priority to EP82110792A priority patent/EP0080684B1/en
Priority to CA000416253A priority patent/CA1195254A/en
Priority to DK523182A priority patent/DK158706C/en
Publication of JPS58183903A publication Critical patent/JPS58183903A/en
Priority to US06/712,491 priority patent/US4770786A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the membrane permeation speed of water and an org. solvent, in separating a water-org. solvent mixed system, by subjecting the water- org. solvent mixed system to ultrafiltration by using a regenerated cellulose membrane preliminarily subjected to swelling treatment. CONSTITUTION:A regenerated cellulose membrane obtained by a cuprammonium method is dried at 105 deg.C for 2hr. At first, an aqueous ethanol solution ( I ) is poured in the upper part of the membrane to swell the same while permeated therethrough, and after the aqueous ethanol solution is removed, an aqueous ethanol solution (II) with ethanol content higher than that of the solution ( I ) is poured in the upper part of the membrane to be passed therethrough under reduced pressure. When the concn. of the aqueous ethanol solution ( I ) is lower than 70%, the permeation speed of the aqueous ethanol solution (II) is increased. When the concn. of the aqueous ethanol solution ( I ) is 90% or less and the concn. of the aqueous solution (II) is 30% or more higher than that of the aqueous solution ( I ), the increment of the permeation speed is especially remarkable.

Description

【発明の詳細な説明】 本発明は、再生セルロース膜を用い、有徐彪媒を少なく
とも1種以上含む均一水溶液から親水性有機溶媒と水と
を除去する7際に、舟生セルロース膜の前記均一水溶液
に対する透過速度の制御方法に関する。さらに詳しくは
、再生セルロースミt用い、有機溶媒を少なくとも1種
以上含む均−水喀液から親水性有機溶媒とを除去する際
に、前記均一水溶液の水分率以上の水分を含む親水性有
機・溶媒であらかじめ該再生セルロース膜を膨潤させ友
後に、目的とする親水性有機溶媒と水とを透過させる再
生セルロース膜中での透過速度制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a regenerated cellulose membrane to remove a hydrophilic organic solvent and water from a homogeneous aqueous solution containing at least one kind of aqueous media. This invention relates to a method for controlling the permeation rate of an aqueous solution. More specifically, when removing a hydrophilic organic solvent from a homogeneous aqueous solution containing at least one type of organic solvent using regenerated cellulose mitt, a hydrophilic organic solvent containing a water content higher than the water content of the homogeneous aqueous solution is removed. The present invention relates to a method for controlling the permeation rate in a regenerated cellulose membrane, in which the regenerated cellulose membrane is swollen in advance with a solvent, and then a target hydrophilic organic solvent and water are permeated therethrough.

一般に1再生セルロース膜はその親水性のため、水によ
り非常に良く膨潤するが、脂肪族膨化水素、芳香族炭化
水素などばかシでなく、メタノール、エタノール、グロ
パノール、ブタノール等のアルコール類や、アセトンな
どのケトン類によっては′、はとんど膨潤しない。その
ため、これら有機溶媒分子が孔径100X以下の非多孔
性再生1ルロース膜中管透過する速[は非常に遅い。し
たがって、従来、再生セルロース膜を有機溶媒の分離に
利用しようとすることはあまシ試みられておらず、有機
溶媒の分離には、主KII水性膜の利用が中心でめった
。ここで言う孔径100X以下の非多孔性書生セルロー
ス膜とは、走査型電子顕微鏡等で孔を観察することがで
きず、また、他の飼定手段で傅られた平均孔径が1oa
X以下である再生セルロース膜を意味する。
In general, 1 regenerated cellulose membrane swells very well with water due to its hydrophilic nature, but it can also be swelled with water such as aliphatic swelling hydrogen, aromatic hydrocarbons, alcohols such as methanol, ethanol, gropanol, butanol, and acetone. Some ketones, such as ′, hardly swell. Therefore, the rate at which these organic solvent molecules permeate through a non-porous regenerated lulose membrane with a pore size of 100X or less is very slow. Therefore, in the past, no attempts have been made to utilize regenerated cellulose membranes for the separation of organic solvents, and the main use of KII aqueous membranes has been unsuccessful for the separation of organic solvents. The non-porous cellulose membrane with a pore diameter of 100X or less means that the pores cannot be observed with a scanning electron microscope, etc., and the average pore diameter determined by other feeding methods is 1 oa.
It means a regenerated cellulose membrane that is X or less.

ところが、再生セルロース膜の製法については従来より
充分に研究され、製品の安定性も良く、平膜状、中空来
秋なとあらゆる形状への加工も容易である。さらに1成
分として全く無害なセルロースを素材としていることか
ら、血液透析用、食品および医薬品fII製用と利用範
囲はますます拡がる傾向にある。
However, the manufacturing method for regenerated cellulose membranes has been thoroughly researched, and the products have good stability and can be easily processed into any shape, including flat membranes and hollow membranes. Furthermore, since it is made from cellulose, which is completely harmless as a component, its range of use is increasingly expanding to include hemodialysis, food, and pharmaceutical products.

本発明者らは、再生セルロース膜の種々の利点を生かし
ながら、水−有機溶媒混合系の分離への再生セルロース
膜の利用を目的として鋭意検討した結果、水と親水性有
機溶媒との混合液であらかじめ再生セルロース膜を膨潤
処理すると、水−有機温媒混合液の透過速度が飛躍的に
増大する場合があることを見出し、本発明を完成するに
至った。
The inventors of the present invention have conducted extensive studies aimed at utilizing regenerated cellulose membranes for the separation of water-organic solvent mixture systems while taking advantage of various advantages of regenerated cellulose membranes. The present inventors have discovered that if a regenerated cellulose membrane is previously subjected to a swelling treatment, the permeation rate of a water-organic hot medium mixture can be dramatically increased, and the present invention has been completed.

すなわち、本発明は、有機溶媒を少なくとも1種以上官
む均一水溶液から親水性有機溶媒と水とを除去するに当
り、再生セルロース分子鎖中いル11a外FA法を適用
し、前記均一水溶液の水分率以上の水分を含む親水性有
機溶媒であらかじめ該再生セルロース膜を膨潤処理する
こと’を特徴ζする水および有@溶媒の再生セルロース
膜中での透過速度制御方法である。ここで、限外濾過法
とは、膜に負荷きれる圧力差を駆動力とした液体の膜透
過法を意味する。
That is, in the present invention, when removing a hydrophilic organic solvent and water from a homogeneous aqueous solution containing at least one organic solvent, the FA method outside the regenerated cellulose molecular chain is applied to remove the homogeneous aqueous solution. This is a method for controlling the permeation rate of water and a solvent in a regenerated cellulose membrane, which is characterized by subjecting the regenerated cellulose membrane to a swelling treatment in advance with a hydrophilic organic solvent containing a water content higher than the water content. Here, the ultrafiltration method refers to a method of permeating a liquid through a membrane using a pressure difference capable of discharging the load on the membrane as a driving force.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

非多孔性の再生セルロース膜を105℃、2時間以上の
乾燥を行い絶乾状態とすると、メタノール、エタノール
、アセトンのような親水性有機溶媒の膜中への透過係数
は10’″l(d/累、+uag)以下であ夛、こOI
Iを工業的に膜分離技術として利用することはhとんど
不可能である。これは再生セルロース膜が、これら有機
溶媒によシ、はとんど膨潤しないためであり、セルロー
ス分子鎖中に、溶媒分子が拡散してゆくことができない
ことに起因している一〇と推定される。非多孔性再生セ
ルロース膜における有機溶媒の非透過性は、膜の孔径が
大きくなると失表われるが、平均孔径が1001以下で
社一様に有機溶媒に対しては非透過性である。換言すれ
に、平均孔径が100X(水の存在下で約zoaX)以
上になると、加圧下または減圧下Kかける水と親水性有
機溶媒の選択的膜透過が困難となる。
When a non-porous regenerated cellulose membrane is dried at 105°C for 2 hours or more to an absolutely dry state, the permeation coefficient of hydrophilic organic solvents such as methanol, ethanol, and acetone into the membrane is 10'''l (d /cum, +uag) below, this OI
It is almost impossible to utilize I as a membrane separation technology industrially. This is because the regenerated cellulose membrane rarely swells when exposed to these organic solvents, and is thought to be due to the inability of solvent molecules to diffuse into the cellulose molecular chains10. be done. The impermeability of a non-porous regenerated cellulose membrane to organic solvents disappears as the pore size of the membrane increases, but when the average pore size is 1001 or less, it is uniformly impermeable to organic solvents. In other words, when the average pore size exceeds 100X (approximately zoaX in the presence of water), it becomes difficult to selectively permeate water and a hydrophilic organic solvent through the membrane under pressure or reduced pressure.

メタノール、エタノール、アセトンについて、膜面積1
0mのキュプロアンモニタ五法で得うれた再生セルロー
ス膜で本発明のaSJ6環をしない場合、減圧(1■m
Hg )下(ΔP−759ml1g)ではI X 1 
G” at / hr以下の透過速度であった。
For methanol, ethanol, acetone, membrane area 1
When the aSJ6 ring of the present invention is not applied to the regenerated cellulose membrane obtained by the five methods of cuproammonitoring at 0 m, the membrane is heated under reduced pressure (1 m
Hg) under (ΔP-759ml1g) I
The permeation rate was less than G''at/hr.

ところが、本発明処理により透過速ttlOQ倍以上に
することも可能である。
However, by the process of the present invention, it is also possible to increase the transmission rate by more than twice ttlOQ.

有機溶媒に水を混合し、種々の割合てIL)合つ九本と
有機溶媒との混合液を用いて、減圧または加圧状態ての
混合液の透過速度を調べると、水の混合割合が増大する
Kつれ、該混合液の透過速度は増大し、水712妙の場
合が最も高い透過速[を示すことがわかった。これは、
セルロース分子鎖中への水分子の拡散によ6−セルロー
スがJI#L、その膨潤fは溶液中に含まれる水の量と
共に増大する九めと思われる。
By mixing water with an organic solvent and examining the permeation rate of the mixture under reduced pressure or pressurization using a mixture of IL) and organic solvent at various ratios, it is found that the mixing ratio of water is It was found that as K increases, the permeation rate of the mixed liquid increases, and the case of water 712% exhibits the highest permeation rate. this is,
It is believed that 6-cellulose is JI#L due to the diffusion of water molecules into the cellulose molecular chains, and its swelling f increases with the amount of water contained in the solution.

このように一度、ある組成の水と有機溶媒との混合液t
I)を透過させるか、あるいはそのような混合液に膜を
浸漬するかして、膜をある一定の水分を含んだ状11&
c11Mさせた後、膨潤させるために用いた水と有機溶
媒との混合液(I)よりも水分率が低く、同種の有機溶
媒を含む水と有機溶媒との混合液(至)を加圧的あるい
は減圧的に膜中を透過させると、該膨潤処理を行なわす
に、直ちに乾燥状態の再生セルロース膜に水と有機溶媒
との混合液(2)を加圧的あるいは減圧的に透過させた
場合と比較し、飛躍的に透過速度が増大する。
In this way, once a mixture of water and an organic solvent with a certain composition t
I) or by immersing the membrane in such a mixture, the membrane is made to contain a certain amount of moisture.
After c11M, a mixed solution (I) of water and organic solvent containing the same type of organic solvent and having a lower moisture content than the mixed solution (I) of water and organic solvent used for swelling was heated under pressure. Alternatively, when the mixture liquid (2) of water and an organic solvent is permeated through the membrane under reduced pressure, immediately after the swelling treatment is performed, the mixture of water and an organic solvent (2) is permeated through the regenerated cellulose membrane under pressure or under reduced pressure. The permeation rate increases dramatically.

この場合、混合液(I)と混合液■との水分含量の差が
大きいはど、透過速to増大も著しい。また、最初の膨
潤のために用いる混合液(I)の水分率は5嘔以上であ
ることが好ましい、5チ以下では膨潤処理前後での透過
速度の増加は認められない。また、水分率1009Gで
の処理でFiFl[側への水分F出が起シ好ましくなく
、通常、水分率は98−以下の方が操作性が優れる。
In this case, the greater the difference in water content between the mixed liquid (I) and the mixed liquid (2), the greater the increase in the permeation rate to. Further, it is preferable that the moisture content of the liquid mixture (I) used for the initial swelling is 5% or more; if it is 5% or less, no increase in the permeation rate is observed before and after the swelling treatment. In addition, treatment at a moisture content of 1009 G causes moisture F to flow out to the FiFl side, which is not desirable, and operability is usually better when the moisture content is 98 or less.

なお、膨潤処理け20〜100℃の範囲で通常なされる
が、該処理温度が高ければ処理時間は短縮できる。処理
時間は再現性を高める丸めには、通fi1時間以上必要
である。
Note that the swelling treatment is usually carried out at a temperature in the range of 20 to 100°C, but the treatment time can be shortened if the treatment temperature is higher. The processing time required for rounding to improve reproducibility is one hour or more.

このよう1に膨潤処理により、水と有機溶媒との混合液
の再生セルロース膜に対する透過速度が一義的に定めら
れる原因にりいては、詳細には明らかでないが、本発明
者らは、次のように考えている。すなわち、1)再生セ
ルp−ス膜は水により膨潤し、その膨artは水と有機
溶媒との混合溶液中の水分含量が高いほど大きい、2)
一度セルロース分子鎖中に拡散し吸着した水分子は、膜
中を透過する溶液組成が変化してもセルロース分子から
脱着しない。3)水で膨潤し九再生セルロース膜中は、
親水性な成分はど、1+吸着水分子の量が多い#1ど、
該有機溶媒は透過しやすい、といった理由によるものと
考えている。
Although it is not clear in detail why the permeation rate of the mixture of water and organic solvent through the regenerated cellulose membrane is uniquely determined by the swelling treatment in 1., the present inventors have determined the following. That's what I'm thinking. That is, 1) the regenerated cell p-su membrane swells with water, and the swelling increases as the water content in the mixed solution of water and organic solvent increases; 2)
Once diffused and adsorbed into the cellulose molecular chains, water molecules do not desorb from the cellulose molecules even if the composition of the solution passing through the membrane changes. 3) In the nine-regenerated cellulose membrane swollen with water,
Hydrophilic components are 1+ #1 with a large amount of adsorbed water molecules, etc.
We believe this is due to the fact that the organic solvent is easily permeable.

ここで言う再生セルロース膜とは、竜ルロース■型また
は[−2型の結晶型を示し、平均重合縦DP=100以
上の範囲に入るセルロースよりなる膜のことであり、親
水性有機溶媒とは、水との全体的な液−液混和性を示す
有機溶媒であって、20℃における水への溶解度が通常
5avI(体積比)以上のものである。例えは、メタノ
ール、エタノール、インプロパツール、グロパノール、
第2ブタノール、イソブタノール、アセトンなどが挙げ
られる。
The regenerated cellulose membrane referred to here is a membrane made of cellulose that exhibits the Rulose ■ type or [-2 type crystal type and has an average polymerization longitudinal DP of 100 or more, and the hydrophilic organic solvent is , an organic solvent that exhibits overall liquid-liquid miscibility with water, and whose solubility in water at 20° C. is usually 5avI (volume ratio) or higher. For example, methanol, ethanol, impropatol, glopanol,
Examples include sec-butanol, isobutanol, acetone, and the like.

以上述べた如く、再生セルロース膜tIl水性有機溶媒
と水との混合液を透過させる場合、透過させようとする
水と有機溶媒との混合液■よりも水分率が高く、分離除
去すべき有機溶媒を含む水と有機溶媒との混合液(I)
により、再生セルロース膜4r11ず膨潤させ、しかる
俵に目的とする水と有機溶媒との混合液(2)を該層を
透過させると、該膨潤処理しない場合よ〕も水と有機溶
媒との混合液の該再生−にルロース膜に対する透過速度
を著しく増大させることができ、まえ、膨潤処理KJ!
1める水と有機溶媒との混合液(I) 0水分率を調整
することで、水と有機溶媒とOS合液■の透過速度を一
義的に定めることがてきる。
As mentioned above, when a mixed liquid of an aqueous organic solvent and water is passed through the regenerated cellulose membrane tIl, the water content is higher than that of the mixed liquid of water and an organic solvent to be permeated, and the organic solvent to be separated and removed. (I) A mixture of water and an organic solvent containing
When the regenerated cellulose membrane 4r11 is swollen and the target mixture (2) of water and an organic solvent is passed through the bale, the mixture of water and organic solvent (2) is made to swell even when the swelling treatment is not performed. This regeneration of the liquid can significantly increase the permeation rate through the reulose membrane, and the swelling treatment KJ!
1 Mixed solution of water and organic solvent (I) 0 By adjusting the moisture content, the permeation rate of water, organic solvent, and OS mixture (1) can be uniquely determined.

本発明に用いる腹としては、竜ルロース■型の結晶l1
t−持ち、平均重合度DP、100以上の再生セルロー
スよりなる膜状物であれば、充分にその効果が期待でき
るが、膜強度、再現性および本発明の効果発現性などか
らキュプラアンモニウム法による膜が最も望ましい、ま
た、膜の形態として、平面状、チューブ状、スパイラル
状、中空糸状のいずれでもかまわない。tた、親木性有
橋溶媒としては、本発明の効果が大きいものは特にメタ
ノール、エタノール、アセトンである。イソプロパツー
ル、プ四パノール、第2ブタノール、イソブタノールな
どにおいても、本発明のll潤処理により透過速度の増
大がみられるが、前三者t1どではない。
As the belly used in the present invention, dragon lurose ■ type crystal l1
If it is a film made of regenerated cellulose with a T-resistance and an average degree of polymerization DP of 100 or more, the effect can be fully expected, but from the viewpoint of film strength, reproducibility, and the ability to express the effects of the present invention, the cuprammonium method is not suitable. A membrane is most desirable, and the shape of the membrane may be planar, tubular, spiral, or hollow fiber. Furthermore, among the wood-philic bridged solvents, methanol, ethanol, and acetone are particularly effective in the present invention. The permeation rate of isopropanol, tetrapanol, sec-butanol, isobutanol, etc. is also increased by the 11 wet treatment of the present invention, but not for the former three, such as t1.

本発明の作用効果を列挙すると、次のとおりである。The effects of the present invention are listed below.

1)親水性有機溶媒あるいは該有機溶媒と水との混合液
の、非多孔性再生セルロース膜に対する透過速度を自在
に制御できる。
1) The permeation rate of a hydrophilic organic solvent or a mixture of the organic solvent and water through a non-porous regenerated cellulose membrane can be freely controlled.

2)2種以上の有機溶媒と水との3成分以上から構成さ
れる混合系において、親水性有機溶媒と水とを選択的に
分離することが可能である。
2) In a mixed system composed of three or more components of two or more types of organic solvents and water, it is possible to selectively separate the hydrophilic organic solvent and water.

3)医薬用エタノール水溶液など超精密濾過における濾
過速度の増大がはかれる。
3) The filtration rate can be increased in ultra-precise filtration of pharmaceutical ethanol aqueous solutions.

なお、200λ以下の孔径の測定は、ポリマーサイエン
ス アンド チクノロシイ、第15巻。
For the measurement of pore diameters of 200λ or less, refer to Polymer Science and Technology, Vol. 15.

ウルトラフィルトレージ1ン・メンプレンズ・アンド・
アプリケージw ン(Polymer 5cience
 andTechnology、 Vol、131 、
 UltrafiltrationMenbrens 
and Application (Plenum P
ress ))017s頁に記載されている、K、 K
amide、 8.Manabeの方法に準じ、乾燥状
l!における平均孔径の2倍の値を水中における平均孔
径と定義した。
ULTRA FILTRAGE 1 MEMPLENS AND.
App Cage (Polymer 5science)
andTechnology, Vol. 131,
Ultrafiltration Membranes
and Application (Plenum P
ress )) K, K described on page 017s
amide, 8. According to Manabe's method, dry l! The value twice the average pore diameter in water was defined as the average pore diameter in water.

以下に、本発明金実施例により具体的に説明するが、#
I媒の膜透過性は、ミリボア社製の4711φプレツシ
ヤーフイルターホルダーを用い、蒸気透過法(Perv
aporation法)によシ奸価した。すなわち、膜
の上部に水と有機溶媒との混合液を入れ、減圧下、膜を
透過する混合溶液の透過速度を測定した。
The invention will be specifically explained below using examples of the present invention, but #
The membrane permeability of medium I was determined using a vapor permeation method (Perv) using a 4711φ pressure filter holder manufactured by Millibore.
It was evaluated by the aporation method). That is, a mixed solution of water and an organic solvent was placed on top of the membrane, and the permeation rate of the mixed solution passing through the membrane was measured under reduced pressure.

実施例1 1機溶媒としてはエタノールを用い、公知の方法で得ら
れたキュプラアンモニウム法による再生セルロース膜(
厚さ17坤、平均孔径72X、−DP=450)を10
5℃で2時間乾燥を行った後、本実験装置(膜面積?j
c11)に装着した。
Example 1 Using ethanol as a solvent, a regenerated cellulose membrane (
Thickness: 17K, average pore diameter: 72X, -DP=450) 10
After drying at 5℃ for 2 hours, this experimental device (membrane area?
c11).

まず、膜上部に線膜を膨潤させるためにエタノール水溶
液(Il を入れ、膜に該溶液を透過させる。
First, an aqueous ethanol solution (Il 2 ) is added to the top of the membrane to swell the membrane, and the solution is allowed to permeate through the membrane.

次いで、エタノール水溶液(I)を除き、それよりもエ
タノール含量の嵩いエタノール水溶液01膜上部に注入
し、減圧下、膜を透過させる。エタノール水溶液(I)
 、 [1)の組成およびそのときの透過速度を第1表
に示した。
Next, the ethanol aqueous solution (I) is removed, and the ethanol aqueous solution (I) is injected onto the membrane upper part of the ethanol aqueous solution 01, which has a higher ethanol content, and is allowed to permeate through the membrane under reduced pressure. Ethanol aqueous solution (I)
, [1) The composition and the permeation rate at that time are shown in Table 1.

第1表   膨潤処理による透過速度の変化2)濃度−
は重量% 以上の結果より、70%エタノール水溶液を透過賂せ石
場合、エタノール水溶液(I)の濃度が70−よりもエ
タノール濃度が低い場合に1エタノール水溶液0(この
場合、70%)の透過速度が増大している。
Table 1 Change in permeation rate due to swelling treatment 2) Concentration -
is % by weight From the results above, it can be seen that when a 70% ethanol aqueous solution is permeated, when the ethanol concentration of the ethanol aqueous solution (I) is lower than 70-, the permeation of 1 ethanol aqueous solution 0 (in this case, 70%) is Speed is increasing.

%に透過速度の増大が著しいのは、再生セルロース膜の
膨潤処理に使用したエタノール水溶液(I)の濃度が!
〇−以下であって、透過するエタノール水溶液0の濃度
がエタノール水溶液(I)の濃度より^く、かつ、30
−以上の場合である。100債エタノール金透過する場
合、まず、水で膨潤させてから100チエタノールを透
過させると、膨潤処理をしなかった場合の約180倍も
の透過速度となる。透過溶媒として水/エタノール/メ
チレンクロライドの3成分系についても、第1表と同様
の水/エタノールの透過速度が得られた。
%, the reason why the permeation rate increases significantly is because of the concentration of the ethanol aqueous solution (I) used for the swelling treatment of the regenerated cellulose membrane!
〇- or less, and the concentration of the permeated aqueous ethanol solution 0 is higher than the concentration of the aqueous ethanol solution (I), and 30
-This is the case above. When passing 100% ethanol gold, if you first swell it with water and then allow 100% ethanol to pass through it, the permeation rate will be about 180 times that of the case without swelling treatment. Regarding the three-component system of water/ethanol/methylene chloride as the permeation solvent, water/ethanol permeation rates similar to those shown in Table 1 were obtained.

実施例2 実施例1と同様の実験装置で、減圧下、アセトン水溶液
について透過速度を測定した。膜は公知のビスコース法
で得られた再生セルロース膜(厚さ20μm、平均孔径
s 6X、 op =29 o)を採用した。この膜t
105℃で2時間乾燥処理した後、70チアセトン水溶
液を透過させる場合、膨潤処理なしでは4.5wl/h
rであったが、50チアセトン水溶液を一度透過してか
らシ0嘔アセトン水溶液を透過きせると、10.Od 
/ hr K透過速度が増大した。さらに膨潤処理を2
−のアセトン水溶液で行なった後、20−アセトン水溶
液を透過させると、その透過速&は14.5 d/ h
rと増大した。
Example 2 Using the same experimental apparatus as in Example 1, the permeation rate of an acetone aqueous solution was measured under reduced pressure. The membrane used was a regenerated cellulose membrane (thickness 20 μm, average pore size s 6X, op = 29 o) obtained by a known viscose method. This film t
When a 70% thiacetone aqueous solution is permeated after drying at 105°C for 2 hours, the flow rate is 4.5 wl/h without swelling treatment.
However, if you pass through the 50% thiacetone aqueous solution once and then pass through the 00% acetone aqueous solution, the result will be 10. Od
/hr K permeation rate increased. Further swelling treatment 2
- When the acetone aqueous solution is passed through the 20-acetone aqueous solution, the permeation rate & is 14.5 d/h.
It increased to r.

同様に100チアセトンを透過させる場合、膨潤処理な
しではo、o t sd/ hrの透過速度であったが
、50チアセトン水溶液をよび2哄のアセトン水溶液で
の膨潤処理後は、それぞれ17.Oml/hr。
Similarly, when transmitting 100 thiacetone, the permeation rate was 0 and 0 t sd/hr without swelling treatment, but after swelling treatment with 50 thiacetone aqueous solution and 2 liters of acetone aqueous solution, the permeation rate was 17.0 sd/hr, respectively. Oml/hr.

25.6 d/ hrと飛躍的に増大した。This dramatically increased to 25.6 d/hr.

実施例3 実施例1と同様の実験装置で、2.Oky/csfの加
圧下に、アセトン/トルエン/水の5成分混合液を用い
、水とアセトン相を選択的に透過させ友。
Example 3 Using the same experimental equipment as in Example 1, 2. Using a five-component mixture of acetone/toluene/water under the pressure of Oky/csf, the water and acetone phases were selectively permeated.

水とアセトン相しトルエン/アセトン相の下部におる。The water and acetone phase is located at the bottom of the toluene/acetone phase.

アセトン2チの水溶液で膨潤させた実施例1で採用した
キュプロアンモニウム再生セルロース膜は、減圧下で、
膜に接している水/アセトン相をzoo/hrの透過速
度で濾過したが、トルエン/アセトン相は全く透過させ
なかった。
The cuproammonium regenerated cellulose membrane employed in Example 1, which was swollen with an aqueous solution of 2 g of acetone, was swollen under reduced pressure.
The water/acetone phase in contact with the membrane was filtered at a permeation rate of zoo/hr, but the toluene/acetone phase did not pass through at all.

Claims (1)

【特許請求の範囲】 1、有機溶媒を少なくとも1穫以上含む均−水溶液から
親水性有機溶媒と水とを除去するに当り、両生命ルロー
ス展を用いる限外p適法を適用し、前記均一水溶液の水
分率以上の水分を含む親水性有機溶媒てあらかじめ該再
生セルロース膜をw洞処理することを特徴とする水およ
び有機溶媒の再生セルロース膜中での透過速度制御方法
。 2、再生セルロース膜としてキュプロアンモニア法で得
られた膜を使用する特許請求の範囲第1項記載の水およ
び有機溶媒の再生セルロース膜中での透過速度制御方法
。 3、キュプロアンモニア法で得られ九再生セルロース膜
の平均孔径が200λ以下である特許請求の範囲第2項
記載の水および有機溶媒の再生セルロース膜中での透過
速度制御方法。 4、親水性有機溶媒がメタノール、エタノールあるいは
アセトンである特許請求の範囲第1項記載の水および有
機溶媒の再生セルロー順中での透過速度制御方法。 5、再生セルロース膜を膨潤処理する親水性有機溶媒の
水溶液の水分率が10g1以上である特許請求の範囲第
1項記載の水および有機溶媒の再生セルロース膜中での
透過速度制御方法。
[Scope of Claims] 1. In removing a hydrophilic organic solvent and water from a homogeneous aqueous solution containing at least one organic solvent, an ultrap-optimal method using a double-liquid lurose expansion is applied to remove the homogeneous aqueous solution. 1. A method for controlling the permeation rate of water and an organic solvent in a regenerated cellulose membrane, the method comprising preliminarily treating the regenerated cellulose membrane with a hydrophilic organic solvent containing a moisture content of at least . 2. A method for controlling the permeation rate of water and organic solvents in a regenerated cellulose membrane according to claim 1, which uses a membrane obtained by the cuproammonia method as the regenerated cellulose membrane. 3. The method for controlling the permeation rate of water and organic solvents in a regenerated cellulose membrane according to claim 2, wherein the average pore diameter of the regenerated cellulose membrane obtained by the cuproammonia method is 200λ or less. 4. A method for controlling the permeation rate of water and an organic solvent in a regenerated cellulose system according to claim 1, wherein the hydrophilic organic solvent is methanol, ethanol or acetone. 5. The method for controlling the permeation rate of water and an organic solvent in a regenerated cellulose membrane according to claim 1, wherein the water content of the aqueous solution of the hydrophilic organic solvent used to swell the regenerated cellulose membrane is 10g1 or more.
JP6540682A 1981-11-30 1982-04-21 Method for controlling permeation speed of water and organic liquid through regenerated cellulose membrane Pending JPS58183903A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6540682A JPS58183903A (en) 1982-04-21 1982-04-21 Method for controlling permeation speed of water and organic liquid through regenerated cellulose membrane
DE8282110792T DE3265896D1 (en) 1981-11-30 1982-11-23 Membrane filtration using ultrafiltration membrane
EP82110792A EP0080684B1 (en) 1981-11-30 1982-11-23 Membrane filtration using ultrafiltration membrane
CA000416253A CA1195254A (en) 1981-11-30 1982-11-24 Membrane filtration using ultrafiltration membrane
DK523182A DK158706C (en) 1981-11-30 1982-11-24 PROCEDURE FOR FILTERING USING AN ULTRAFILTRATION MEMBRANE
US06/712,491 US4770786A (en) 1981-11-30 1985-03-15 Separation of organic liquid from mixture employing porous polymeric ultrafiltration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6540682A JPS58183903A (en) 1982-04-21 1982-04-21 Method for controlling permeation speed of water and organic liquid through regenerated cellulose membrane

Publications (1)

Publication Number Publication Date
JPS58183903A true JPS58183903A (en) 1983-10-27

Family

ID=13286107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6540682A Pending JPS58183903A (en) 1981-11-30 1982-04-21 Method for controlling permeation speed of water and organic liquid through regenerated cellulose membrane

Country Status (1)

Country Link
JP (1) JPS58183903A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592105A (en) * 1978-12-28 1980-07-12 Exxon Research Engineering Co Denaturation of regenerated cellulose film for transmitting organic liquid and recovery of organic liquid selected by using said film
JPS5681106A (en) * 1979-11-15 1981-07-02 Merck Patent Gmbh Method of denaturing condition of diffusing membrane* diffusing membrane denatured in this manner and its use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592105A (en) * 1978-12-28 1980-07-12 Exxon Research Engineering Co Denaturation of regenerated cellulose film for transmitting organic liquid and recovery of organic liquid selected by using said film
JPS5681106A (en) * 1979-11-15 1981-07-02 Merck Patent Gmbh Method of denaturing condition of diffusing membrane* diffusing membrane denatured in this manner and its use

Similar Documents

Publication Publication Date Title
US6432309B1 (en) Polysulfone-base hollow-fiber hemocathartic membrane and processes for the production thereof
Li et al. Development and characterization of anti-fouling cellulose hollow fiber UF membranes for oil–water separation
US5009824A (en) Process for preparing an asymmetrical macroporous membrane polymer
US20080214687A1 (en) Cross Linking Treatment of Polymer Membranes
Wang et al. Fabrication of non-woven composite membrane by chitosan coating for resisting the adsorption of proteins and the adhesion of bacteria
JPH02135134A (en) Membrane for separating water-alcohol mixed liquid
JPH069645B2 (en) Separation method of mixed solution
Xiao et al. Trimesoyl chloride crosslinked chitosan membranes for CO2/N2 separation and pervaporation dehydration of isopropanol
JPH0553528B2 (en)
CN102580559A (en) Hydrophilic single skin layer tubular high polymer porous membrane
JP3216910B2 (en) Porous hollow fiber membrane
JPS58183903A (en) Method for controlling permeation speed of water and organic liquid through regenerated cellulose membrane
JPS61281138A (en) Composite membrane selectively transmitting water from ethanol/water mixture and its production
AU2006261581B2 (en) Cross linking treatment of polymer membranes
JP2883406B2 (en) Hydrophilic membrane
JP3336150B2 (en) How to recover the performance of a permselective pervaporation membrane
JP2004121922A (en) Hollow fiber membrane
JP3218101B2 (en) Semipermeable membrane for separating organic matter and method for producing the same
JPH074508B2 (en) Separation method of mixed solution
SU1082758A1 (en) Method for producing carbon sorbent for separating low- and high-molecular substances
NAWAWI et al. Pervaporation separation of isopropanol-water mixtures using crosslinked chitosan membranes
KR20010028009A (en) A hydrophillic polysulfone based hollow fiber membrane and process for preparing the same
Hassan et al. CHITOSAN AS A MEMBRANE MATERIAL FOR PERVAPORATION SEPARATION OF ISOPROPANOL-WATER MIXTURES
Nawawi et al. Polyion complex chitosan membrane consisting of sodium alginate/chitosan for the pervaporation separation of methanol/methyl tert-butyl ether mixtures
Saim et al. Preparation of pervaporation membrane using a-type zeolite filled chitosan membrane for the separation of isopropanol/water mixtures