JPS58183226A - Method and apparatus for obtaining molding body having different density from each other - Google Patents

Method and apparatus for obtaining molding body having different density from each other

Info

Publication number
JPS58183226A
JPS58183226A JP57066967A JP6696782A JPS58183226A JP S58183226 A JPS58183226 A JP S58183226A JP 57066967 A JP57066967 A JP 57066967A JP 6696782 A JP6696782 A JP 6696782A JP S58183226 A JPS58183226 A JP S58183226A
Authority
JP
Japan
Prior art keywords
mold
molding
molded
die
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57066967A
Other languages
Japanese (ja)
Other versions
JPH0218979B2 (en
Inventor
Yoshiaki Morimoto
森本 芳昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP57066967A priority Critical patent/JPS58183226A/en
Publication of JPS58183226A publication Critical patent/JPS58183226A/en
Publication of JPH0218979B2 publication Critical patent/JPH0218979B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/04Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities
    • B29C44/0446Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities by increasing the density locally by compressing part of the foam while still in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/10Applying counter-pressure during expanding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • B29C44/445Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3415Heating or cooling
    • B29C44/3426Heating by introducing steam in the mould

Landscapes

  • Molding Of Porous Articles (AREA)

Abstract

PURPOSE:To improve the efficiency of molding of foamed resin products, having an improved strength, by performing molding while organically combining a heating die and a cooling die of transfer die molding devices. CONSTITUTION:A feeder 6 is operated, and a die indentation 5 is supplied and filled with preparatorily foamed thermoplastic resin grains. Mantle sections 8, 9 are supplied with a heating medium from supply ports 10, 11 to heat the inside of the die indentation 5. Resin grains are plasticized while being further foamed, mutually welded by inner pressure and integrated, and changed into a semimanufactured good. When the supply of the heating medium is stopped and a male die 2 is backed, the semimanufactured good is separated from a female die 4, and held by the male die 2. The male die 2 is moved, connected to a female die 18, and cooled by cold water supplied to a mantle section 23 from a supply port 25. Supply and discharge ports 10, 12 for the male die 2 are supplied with compressed air while backing the male die 2 as sucking the die 2 by vacuum from supply and discharge ports 24, 27, a waiting male die 16 is connected to the cooling female die 18, a semimanufactured good A' is compressed by the male die 16, and a section A having large density is formed.

Description

【発明の詳細な説明】 熱金型で更に発泡成形して半製品となし、その半製品を
冷却金型に移送して圧縮成形し製品となす、1% rn
i、トランスファ式成形法に関し、特に成形体を構成す
る樹脂の密度が必要に応じて部分的に変化した製品を製
造するためのトランスファ式成形法および装置に関する
ものである。
[Detailed description of the invention] Further foam molding is performed in a hot mold to form a semi-finished product, and the semi-finished product is transferred to a cooling mold and compression molded to form a product, 1% rn.
i. This invention relates to a transfer molding method, and in particular to a transfer molding method and apparatus for producing a product in which the density of resin constituting a molded body is partially changed as necessary.

尚、本書中「密度」とは特に言及しない限り「見掛は密
度」を云うものとする。
In this document, "density" refers to "apparent density" unless otherwise specified.

一般に発泡樹脂成形体はその優れた保温性.緩衝作用1
靭f1″,化学的安定性及び軽量安価等の特性から各種
物品の包(°4,梱包材料として幅広い用途を有する。
In general, foamed resin molded products have excellent heat retention properties. Buffering effect 1
It has a wide range of uses as a packaging material for various articles due to its characteristics such as toughness f1'', chemical stability, light weight and low cost.

このような成形体は通常、全体が均一に発泡された熱可
塑性樹脂よりなり、等しい密1W分布を有するものであ
るが、使用土特別な衝撃や圧迫を蒙る部分、例えば隅角
部分や、緊締用又にI#定用金具等を取付ける部分など
大きな@度を必要とする部分が増大した密度となるよう
に成形する幾つかの1夫が従来行なわれていた。例えば
異なった強IWを与えるような異種の発泡樹脂H料を用
いて別々の成形体を作り、それらを接着等の手段により
一体化する方法、あるいは成形用型窩の一部全閉塞した
状態で発泡性樹脂材料を充填し第一回1]の発泡成形を
行なった後、閉塞部分を開放して生成した空洞部分に異
種の発泡性樹脂材料全弁il′< L再度第二回目の発
泡成形を行なうように17だ装置(特開昭55−469
38号公報)等が1が案さねでいる。
Such a molded body is usually made of a thermoplastic resin that is uniformly foamed throughout and has an equal density distribution of 1W, but it is difficult to remove the parts that are subject to special impact or pressure, such as corners or tightened parts. Some methods have been used in the past in which parts that require a large degree of strength, such as parts where I# fixing fittings are attached, are formed to have increased density. For example, there is a method in which separate molded bodies are made using different types of foamed resin H materials that give different strong IWs, and they are integrated by means such as adhesion, or a method in which a part of the mold cavity for molding is completely closed is used. After filling the foamable resin material and performing the first foam molding, the closed part is opened and the created cavity is filled with a different type of foamable resin material. A 17-day device was developed to perform the
No. 38) etc. are being proposed by 1.

こねら従来提案または実施されている方法は、′N:な
った複数の成形用金型を用いてそれぞれ別途に成形を行
なった士、イ!Iられた成形体を合体結合させる■程を
必要とするとか、あるいは複雑な特殊溝3/ljを有す
る金型を用いて発泡f1−樹脂利料充填及び発に2成形
[程を複数回施すなど、繁雑な丁稈操イ′1を経るため
、いぜれも生産効率が低く、また設備投資が増大するな
どの不利を伴なう。
The conventionally proposed or practiced method is to perform separate molding using multiple molding molds. In some cases, it may be necessary to combine and bond the molded bodies, or it may be necessary to fill the foamed resin with a mold having complicated special grooves and perform two molding steps multiple times. Because of the complicated culm operations such as these, production efficiency is low and equipment investment is increased, which are disadvantageous.

寸だ元来、熱可塑性樹脂の発泡成形には、加熱−発にリ
成形ー冷jdlという全工程サイクルが同一の成形用?
 lj,47内で行なわれるため、熱エネルギーの消費
先・よび丁稈サイクル所要時間が大きいという固イJの
問題があり、そわば前述の特殊成形法においてもその生
産性を史に低下させる要因となっているのである。
Originally, in foam molding of thermoplastic resin, the entire process cycle of heating, remolding, and cooling JDL was used for the same molding.
Since the molding process is carried out within 47 mm, there is a problem in that the heat energy is consumed and the time required for the culm cycle is large, which is a factor that reduces the productivity of the above-mentioned special molding method. This is the result.

このような熱1■塑f1,樹脂の発泡成形に固有の間 
1題点を解消するため特開昭52−905’78号公報
に開示さノ1だ発明は、優れた方法を提供する。
Such heat 1 plastic f1, during the time inherent in resin foam molding
To solve this problem, the invention disclosed in Japanese Patent Application Laid-Open No. 52-905'78 provides an excellent method.

この発明は、所謂、トランスファ式成形法であり、製造
すべき成形物にほソ対応する型窩形状及び・1′法を有
する加熱型中へ予備発泡された熱可塑f1樹脂粒J′−
全充填し、加熱して可塑化膨張さぜることにより粒子−
kTi−いに結合させて半製品となし、半製品を加熱型
より取り出して発泡を完了させた後、製造−rべき成形
物に71シより正確に対応するノW窩形4JS及び・j
法を有する冷却型に前記半製品を挿入することにより硬
化安定し7た最終製品を得るのである。この方法におい
てに、nいに極めて近似し7だ形状及び寸法の型窩を有
するIJn熱型と冷却型とが用いられ、1だ加熱型より
取出されて6月1晴に移行さぜる半製品も、型窩と実質
的に相似し層といわねるところの表皮部分のみが若干大
きい密度をイfするに過ぎない。
This invention is a so-called transfer molding method, in which thermoplastic f1 resin particles J'-
Particles are completely filled and heated to plasticize and expand.
After the semi-finished product is taken out of the heating mold and foaming is completed, the molded product is molded into a molded product with a shape of 4JS and 4JS, which more accurately corresponds to the molded product to be manufactured.
By inserting the semi-finished product into a cooling mold having a cooling method, a final product with stable hardening is obtained. In this method, an IJn heating mold and a cooling mold are used, which have mold cavities of a shape and size very similar to those of the IJn mold, and the half mold is removed from the heating mold and heated on June 1st. The product also has only a slightly higher density in the epidermis, which is substantially similar to the mold cavity and is referred to as a layer.

木発明者ら汀1一述した技術の現状並びに問題点に鑑み
、前記特開昭52−90578号の発明を史に改良・発
展せしめ、成形体全構成する樹脂の密度が必要に応じて
iVli分的に変化した製品を効率良く、1かも安n1
1;に取イ!Jすることを目的として本発明’!!” 
’t’+’: 1ノ7 またものである。
In view of the current state of the technology and the problems mentioned above, the inventors of the invention have improved and developed the invention of JP-A No. 52-90578, and the density of the resin constituting the entire molded article can be adjusted to iVli as necessary. Efficiently process partially changed products
1; Nitorii! This invention is aimed at J'! ! ”
't'+': 1 no 7 Again.

すなわち、ト述の目的を達成するだめの木登明方θ、i
i,それぞれーλ1の雄型と雌型とをもって成形用型窩
を形成しイ(する加熱型と冷却型とを用い、予f+ii
l発fLリされた熱可塑性樹脂粒子をト記+JII熱型
の型窩に充填し加PP−発泡ぜしめ相r7に融着させて
一体的半製品となした後、該半製品を冷却型へ移送しで
冷却しつつ圧縮成形を施し製品となすトランスファ式成
形法において、該製品の高密度を必要、とする都(1’
tに対応する半製品の部分の厚味が製品の設−1111
)味よりも適宜に大となるように該半製品を成形し、次
いで冷却型によって厚味の大なる部分が前記設計厚味に
なるまで圧縮成形することを特徴とするものである。
In other words, the method of climbing the tree θ, i that achieves the purpose mentioned above
i, a mold cavity for molding is formed with a male mold and a female mold of −λ1, respectively, using a heating mold and a cooling mold,
The thermoplastic resin particles that have been exfoliated are filled into the mold cavity of the above + JII heat mold and fused to the PP-foamed cementing phase r7 to form an integral semi-finished product, and then the semi-finished product is cooled. In the transfer molding method, the product is compressed and molded while being cooled.
The thickness of the part of the semi-finished product corresponding to t is the product design-1111
) The semi-finished product is molded so that it is appropriately larger than the thickness, and then compression molded using a cooling mold until the thicker part reaches the designed thickness.

壕だ、このような方法を実施するだめの本発明装置の特
徴は、それぞれ1対の互いに開閉自在なli型と雌型と
をもって型窩を形成し得る2組の成形用金型からなり、
第一の金型は型窩への発泡性熱可塑性樹脂粒子−の供給
口と型窩内を加熱する手段とを備え、第二の金型は型窩
内の成形体金離型させる手段と冷却させる手段とを備え
ており、更2. に一方の金型のMF型に他方の金型の
雌型とも係脱L7得るように構成されたトランスファ式
成形装置イ において、第二の金型内で成形される成形体の高密度全
必要とする部位に対応する第一の金型の型窩の深さ方向
のNI゛法を第二の金型の対応部分の寸法よりも適宜に
大ならしめたことにある。
The feature of the apparatus of the present invention for carrying out such a method is that it consists of two sets of molding molds capable of forming a mold cavity with a pair of mutually openable and female molds, respectively.
The first mold is equipped with an inlet for supplying expandable thermoplastic resin particles into the mold cavity and a means for heating the inside of the mold cavity, and the second mold is equipped with a means for releasing the molded object in the mold cavity. and 2. cooling means. In a transfer type molding apparatus configured so that the MF mold of one mold can be connected and disconnected from the female mold of the other mold, the high density of the molded body molded in the second mold is required. The reason is that the NI' method in the depth direction of the mold cavity of the first mold corresponding to the part to be made is appropriately larger than the dimension of the corresponding part of the second mold.

以下、本発明の態様を添付図面について詳説する0 第1図及び7F、2図は本発明方法に適用される成型用
金型のそれぞれ縦断面図であり、第1図は加熱型を、又
、第2図は冷却型を示す。
Hereinafter, embodiments of the present invention will be explained in detail with reference to the accompanying drawings. Figures 1, 7F and 2 are longitudinal cross-sectional views of a molding die applied to the method of the present invention, and Figure 1 shows a heating mold or , FIG. 2 shows a cooling type.

第1図において型枠(1)に取付けられた雄型(2)と
型枠(3)に取付けられた雌型(4)とは互いに型閉じ
をして型窩(5)を形成する。雌型(4)は通常、フレ
ーム(図示しない)トに固定され金型の開閉は雄型(2
)の前進後退連動によって行なわれるが、その逆も勿論
可能である。
In FIG. 1, a male mold (2) attached to a mold frame (1) and a female mold (4) attached to a mold frame (3) close each other to form a mold cavity (5). The female mold (4) is usually fixed to a frame (not shown), and the opening and closing of the mold is controlled by the male mold (2).
), but the reverse is of course possible.

一方のll、IJ例えば第1図の例では雌型(4)には
成形原料でにするf−f+iif発泡された熱可塑性樹
脂粒子の供給器(6)がその供給口(7)を型窩(5)
内に臨ましめて取付けられる。雄型(2)と雌型(4)
のそれぞれ背部には型枠(1)と型枠(3)とによって
区画された外套部(8)。
For example, in the example shown in Fig. 1, a feeder (6) for foamed thermoplastic resin particles (f-f+iif) with a molding raw material is placed in the female mold (4) with its feed port (7) connected to the mold cavity. (5)
It can be installed close to the inside. Male type (2) and female type (4)
On the back of each is a mantle (8) partitioned by a formwork (1) and a formwork (3).

(9)が形成され、熱媒供給口OO)、■からそれぞれ
外套部(R1,(91に例えば7711熱水蒸気等の加
熱媒体が供給され、金型を介して型窩(5)円を加熱し
、排出口(121,(1:(+より排出される。又、金
型に透孔04を穿設すれば、IJII熱媒体はそれらの
透孔Q41を通って型窩(5)内へ流入する。
(9) is formed, and a heating medium such as 7711 hot steam is supplied to the mantle (R1, (91) from the heating medium supply ports OO) and (), respectively, and heats the mold cavity (5) circle through the mold. Then, it is discharged from the discharge port (121, (1: Inflow.

史に又、これらの熱媒供給口(101,αD及び排出口
(121,(+31から圧縮空気を供給することによっ
て成形体金離型させたり、真空吸引することによって成
形体の離型を妨げたりすることができる。
Historically, the molded body was released from the mold by supplying compressed air from these heating medium supply ports (101, αD and exhaust ports (121, You can

ここで、金型7JIl熱手段として加熱流体を熱媒とす
る例を示したが、他の慣用された手段に置換することは
簡iliな設計変更によって容易になし得ることである
Here, an example is shown in which the heating fluid is used as the heating medium as the heating means of the mold 7JIl, but it can be easily replaced with other commonly used means by a simple design change.

第2図に示した成形用金型は第1図の金型と組合わされ
て本発明装置を構成する。第2図において前記同様に型
枠(15)に取付けられた雄型06)と型枠(17)に
取付けられた雌型08)とは互いに型閉じをして型窩0
9を形成する。ここでも雌型0稀は通常、フレーム(図
示しない)−Fに固定され、金型の開閉は雄型(l l
i)の前進後退運動によって行なわれるが、その逆も亦
、可能である。
The molding die shown in FIG. 2 is combined with the mold shown in FIG. 1 to constitute the apparatus of the present invention. In Fig. 2, the male die 06) attached to the formwork (15) and the female die 08) attached to the formwork (17) are closed to each other in the same manner as described above.
form 9. Again, the female mold 0 is usually fixed to the frame (not shown) -F, and the opening and closing of the mold is controlled by the male mold (l l
i), but the reverse is also possible.

また、雌型08)は第1図の雄型(2)と係脱可能なよ
うに雄型(2)は適宜な機構により雌型(4)と(18
)の開音往復することができるように1夫されている。
In addition, the male mold (2) is connected to the female mold (4) and (18) by an appropriate mechanism so that the female mold 08) can be connected to and detached from the male mold (2) in Fig. 1.
) is one husband so that he can go back and forth.

雄型が固定型である場合は雌型が移動型となることは云
うまでもない。更に第2図の金型の一方の型例えば雌型
08)には成形体を突き山王だめのエジェクター(2(
11がガスケットi介して取り付けである。
Needless to say, if the male type is a fixed type, the female type will be a mobile type. Furthermore, one of the molds in Fig. 2, for example, the female mold 08, is fitted with a Sanno-dam ejector (2 (
11 is the attachment via gasket i.

又、雄型(Hilと雌型08)のそれぞれ背部には冷却
用外套部(221c23)が形成される。空気又は冷水
等の冷媒に冷媒供給r−11241に)よりから外套部
a)因)へ入り、冷媒排出口(21i1−から排出され
る。勿論、冷媒による強制冷却の外、空気中に置くだけ
の自然冷却が好−f L、い場合もある。
Further, a cooling mantle (221c23) is formed on the back of each of the male molds (Hil and female mold 08). The refrigerant supply to the refrigerant such as air or cold water enters the mantle a) from the refrigerant supply r-11241) and is discharged from the refrigerant outlet (21i1-).Of course, in addition to forced cooling with refrigerant, just place it in the air. In some cases, natural cooling is preferable.

なお、l’ +71’、、冷媒供給[]又は冷媒排出口
には製品をJl:J [吸引相持させるための直空装置
(図示せず)が連結さFl−(いる。
Note that a direct air device (not shown) for suctioning and holding the product is connected to the refrigerant supply [ ] or the refrigerant discharge port.

第1図及び第2゛図に示【7たそれぞれ1対の雄型、と
雌型とからなる2組の成型用金型は組合わされて本発明
のトランスファ式成形装置を構成するが、その最も特色
とする点はそれぞれの型窩の形状並びにq1法の設計に
ある。すなわち、第2図の冷却型における型窩の形状・
寸法は、設計された製品の形状・寸法に概ね厳密に対応
するが、第1図の加熱型における型窩の形状・寸法は、
最終製品の特に高密度を必要とする部位(A)に対応す
る部分(A)において、製品の設i1厚味よりも適宜に
大きい厚味としであるのである。
The two sets of molding molds shown in FIGS. 1 and 2, each consisting of a pair of male and female molds, are combined to constitute the transfer molding apparatus of the present invention. The most distinctive features are the shape of each mold cavity and the design of the q1 method. In other words, the shape of the mold cavity in the cooling mold shown in Figure 2.
The dimensions generally correspond strictly to the shape and dimensions of the designed product, but the shape and dimensions of the mold cavity in the heating mold shown in Fig. 1 are as follows.
In the part (A) corresponding to the part (A) of the final product that requires particularly high density, the thickness is suitably larger than the specified thickness of the product.

ここで厚味とは、型窩の深さ方向の寸法、即ち金型の開
閉方向の軸に沿った寸法を謂う。
Here, thickness refers to the dimension in the depth direction of the mold cavity, that is, the dimension along the axis in the opening/closing direction of the mold.

次にこのような装置を用いて本発明方法を実施する場合
の態様をその作用と共に詳述する。
Next, the mode of carrying out the method of the present invention using such an apparatus will be described in detail along with its operation.

[−述の装置において、先ず加熱型を閉じた状態で供給
器(6)を作動し、型窩(5)内へ供給口(7)から予
備発泡されだ熱可塑性樹脂粒子例えばポリスチレン系ビ
ーズ、ポリエチレン系ビーズ等を供給充填する。しかし
ながら、本発明にはポリスチレン系ビーズが特に好1し
く使用される。
[- In the above-mentioned apparatus, first, the supply device (6) is operated with the heating mold closed, and the thermoplastic resin particles, such as polystyrene beads, are pre-foamed into the mold cavity (5) from the supply port (7). Supply and fill with polyethylene beads, etc. However, polystyrene beads are particularly preferably used in the present invention.

これら原料樹脂の予備発泡倍率は100倍位まで可能で
あるが、通常、30〜60倍程度のものを用いることが
好ましい。
Although the preliminary expansion ratio of these raw resins can be up to about 100 times, it is usually preferable to use a ratio of about 30 to 60 times.

原料充填後、熱媒供給口(101,01)より、最も好
ましくは加熱水蒸気よりなる加熱媒体を、外套部(8)
After filling the raw materials, a heating medium, most preferably made of heated steam, is supplied to the mantle (8) from the heating medium supply port (101, 01).
.

(9)に供給し、型窩(5)の内部f!r:110〜1
20℃程度に加熱すれば、10秒足らずで樹脂粒子は可
塑化すると共に更に発泡し、内圧により相互に融着[7
て一体化し半製品となる。
(9) and internal f! of mold cavity (5). r: 110-1
If heated to about 20°C, the resin particles will plasticize and further foam in less than 10 seconds, and will fuse together due to internal pressure [7]
They are integrated into a semi-finished product.

一体化した頃合いを見計らって加熱媒体の供給を停止F
、シ、雄型(2)を後退させて金型を開けば、半製品は
雌型(4)より離脱し雄型(2)上に担持された状態と
なる。雌型よりの離型を確実にするだめに型の内面にシ
リコーン等の離型剤を予め塗布しておくとか、雌型の外
套部(9)より圧縮空気による背圧を作用させるとか、
又はその逆に雄型の背後に貞′n、> y置により0圧
を生成させる等の方法は好ましいことである。
Stop the supply of heating medium when the time is right for integration.F
When the male mold (2) is moved back and the mold is opened, the semi-finished product is separated from the female mold (4) and is supported on the male mold (2). In order to ensure release from the female mold, a release agent such as silicone is applied to the inner surface of the mold in advance, or back pressure is applied using compressed air from the outer part (9) of the female mold.
Or, conversely, it is preferable to generate zero pressure by placing the mold behind the male die.

半製品を担持した雄型(2)は次に第2図に示した(守
却型の雌型θR)と対峙する位置まで移動し、次いで前
進し雌型0紛と保合するのであるが、半製品はこの移送
中自由雰囲気の中に移動させられる。雌型0種の背後外
套部色には冷媒供給口の1から最も好tL<に冷水が供
給され、冷媒排出口−から排出される流路が形成さねで
おり、雄型(2)の前進によって雌型0杓の中へ挿入さ
れた半製品は冷却された雌型(18)の内壁面に接触し
た部分から冷却が進められる。
The male mold (2) carrying the semi-finished product then moves to a position where it confronts the female mold θR of the defensive type shown in Figure 2, and then moves forward and unites with the female mold 0. , the semi-finished product is moved into a free atmosphere during this transfer. A flow path is formed in the rear mantle color of the female type 0, through which cold water is supplied from the refrigerant supply port 1 to the most preferable tL<, and is discharged from the refrigerant discharge port. The semi-finished product inserted into the female mold (18) by the advance is cooled starting from the portion that contacts the cooled inner wall surface of the female mold (18).

なお、離型のために吹き付ける空気のみで冷却の[]的
を達成することも多々あり、この場合は特に排出口より
排出することは必要でない。
Note that the purpose of cooling is often achieved only with air blown for mold release, and in this case, it is not necessary to discharge from the discharge port.

次いで、雄型(2)の熱媒供給口OI及び排出口α2か
ら圧縮空気を供給して背圧を作用させると共に、冷媒供
給口(2」又は冷媒排出口−より真空吸引しつつ雄型(
2)を後退せしめれば半製品は雌型0&内に残置され、
雄型(2)が雌型0&の中心軸線から外れると同時に、
離れて待機していた冷却雄型06)が前進し冷却雌型0
8)と係合する。
Next, compressed air is supplied from the heating medium supply port OI and the discharge port α2 of the male mold (2) to apply back pressure, and while vacuum suction is applied from the refrigerant supply port (2'' or the refrigerant discharge port), the male mold (
If 2) is moved back, the semi-finished product will remain inside the female mold 0&,
At the same time as the male die (2) comes off the central axis of the female die 0&,
The cooling male mold 06), which was waiting at a distance, moves forward and the cooling female mold 0
8).

雄型(lli)は、冷媒供給口例から冷媒排出口■へ向
かって流れる冷水等の冷媒により冷却されている。
The male type (lli) is cooled by a refrigerant such as cold water flowing from the refrigerant supply port to the refrigerant discharge port (2).

゛ト製品の形状のうち<i>の部分はその厚味すなわち
深さ方向の寸θミが、冷却型の型窩の対応部分色)の厚
味よりも大であるから、雄型OOの前進によシ他の部分
よりも大きく圧縮され、製品設計厚味迄LL縮すること
により密度の大なる部分FA)が形成されるのである。
The thickness of the part <i> of the shape of the product, that is, the dimension θ in the depth direction, is larger than the thickness of the corresponding part of the mold cavity of the cooling mold. As it moves forward, it is compressed more than other parts, and by shrinking to the product design thickness, a denser part FA) is formed.

高密度部分(A)の密度は、幻の厚味と(Nの厚味との
関係及び熱可塑性樹脂の予備発泡率によって左右される
が、予備発泡率が40〜60倍の場合(Xの厚味)/(
Aの厚味)が約X程度で熱可塑性樹脂の真密度に可成シ
近付けることが出来、また3°入程度であれば機械的に
も無理することなく実用土満足すべき強度を与える高密
度ケ得ることができる。又、他の部分と実質的に強1ル
差を付与するには、前記の厚味比を9  以上とするこ
とが望ましく、更に好1しぐに1占以上である。
The density of the high-density portion (A) depends on the relationship between the phantom thickness and the thickness of (N) and the pre-expansion rate of the thermoplastic resin, but if the pre-expansion rate is 40 to 60 times ( thickness)/(
A thickness of about Density can be obtained. In addition, in order to provide a substantial difference in strength from other parts, it is desirable that the thickness ratio be 9 or more, more preferably 1 or more.

このような密度の大きい部分を製品のどの部分に形成す
るか汀、その用途、製品の使用の状態に、【り8妙に応
じて任意に選定し、その部位に対応する加熱型のや窩の
厚味を適宜に大きく設計すれば良い。
Depending on the part of the product where such a high-density part is to be formed, its purpose, and the state of use of the product, the heating mold cavity corresponding to that part is arbitrarily selected. The thickness may be appropriately designed to be large.

第3図及び第5図は共に加熱型の型窩の縦断面形状であ
り、第4図及び第6図にそれぞれそれらに対応する冷却
型の型窩、すなわち製品の縦断面形状を示す。
3 and 5 both show the longitudinal cross-sectional shape of a heating mold cavity, and FIGS. 4 and 6 respectively show the corresponding cooling mold cavity, that is, the vertical cross-sectional shape of the product.

第3図のcA)部分は厚味を大にしであるため、その部
分が特に圧縮成形され、第4図に示す高密度部分tA)
が形成される。第5図は隅角に相当する部分(A)から
、第6図に示した高密度部分(A)’を形成し、耐衝撃
強度の大lる隅角を具えた成形体?取得する場合の例で
ある。
Part cA) in Figure 3 is thicker, so that part is especially compression molded, and the high-density part tA) shown in Figure 4 is
is formed. Fig. 5 shows a molded article in which the high-density part (A)' shown in Fig. 6 is formed from the part (A) corresponding to the corner, and the corner has a high impact strength. This is an example of acquiring.

かように冷却型でF「綿成形された成形体は約10〜2
0秒間行の冷却で硬化、安定し、次いで、M1型(16
)を後退させ型を開いた後、冷媒供給口又は冷媒排出[
1より吸引する真空装置全停止すると同時にエジェクタ
ーC(υを突出させることにより、成形体を離型する。
In this way, the molded product made of cotton in the cooling mold is approximately 10 to 2
It hardens and stabilizes by cooling the row for 0 seconds, then M1 type (16
) to open the mold, open the refrigerant supply port or refrigerant discharge [
The molded body is released from the mold by completely stopping the vacuum device sucking from 1 and simultaneously ejecting the ejector C (υ).

ト述の説明によって既に明らかな通り、本発明はトラン
スファ式成形法を巧みに利用し改善を加I  えたもの
であるから、従来の発泡成形の如く、同′  −の金型
で加熱−発泡成形−冷却の工程サイクルf!:長時間か
けて行なうことなく、常時加熱されたIJII熱型と常
時冷却されている冷却型とを有機的に組合わせて短時間
のサイクルで相次いで成形操作を行なうことができ、熱
エネルギーの損失も減少し得ると共に、必要に応じて、
成形体の任意の部位において適宜に密度が増大し、従っ
て強度の増大した発泡樹脂製品を単に加熱型の型窩形状
を変えるのみで頗る容易に、且つ弔−の発泡性熱可塑+
II樹脂を用い、又特別に複雑な装置を要することなく
安価、珪つ効率良く得ることができ、発泡成形技術分野
において極めて有用な発明である。
As is already clear from the above explanation, the present invention skillfully utilizes and improves the transfer molding method, so it can be heated and foamed in the same mold as conventional foam molding. - cooling process cycle f! :It is possible to perform molding operations one after another in a short cycle by organically combining the constantly heated IJII hot mold and the constantly cooled cooling mold without spending a long time. Losses can also be reduced and, if necessary,
The density of the molded product can be increased appropriately in any part of the molded product, and therefore, the foamed resin product with increased strength can be produced easily and conveniently by simply changing the shape of the mold cavity of the heating mold.
This invention is extremely useful in the field of foam molding technology because it uses II resin and can be obtained at low cost and with high efficiency without requiring any particularly complicated equipment.

以Fに本発明方法の実施例を述べる。Examples of the method of the present invention will be described below.

(実施例) 第1図及び第2図に示したトランスファ式成形装置を用
いて、粒径2〜5咽、予備発泡平均倍率約50倍のポリ
スチレンビーズの発泡成形を行なった。冷却j%lJの
型窩形状は頂部外径300m、内径180M、中央部分
の厚味50覇、縁部厚味60胡、下縁部外径310rM
I、内径190咽の円蓋状とし、加熱型の型窩形状は中
央部分に直径6゜祁、厚味25咽の突出部6′)を有す
る以外は冷却型の型窩と同−形状及び寸法とした。ff
1Jち、中央部の厚味は75咽でありその周囲の1.5
倍であった。
(Example) Using the transfer molding apparatus shown in FIGS. 1 and 2, polystyrene beads having a particle size of 2 to 5 mm and an average pre-foaming ratio of about 50 times were foam-molded. The mold cavity shape of cooling j%lJ is top outer diameter 300m, inner diameter 180m, center thickness 50mm, edge thickness 60cm, lower edge outer diameter 310rM.
I, the shape of the mold cavity of the heating type is the same as that of the cooling type, except that it has a conical shape with an inner diameter of 190 mm, and a protruding part 6') with a diameter of 6 degrees and a thickness of 25 mm in the central part. Dimensions. ff
1J, the thickness of the central part is 75 mm, and the thickness of the surrounding area is 1.5 mm.
It was double that.

加熱型を閉じ原料供給器を作動して前記予備発泡さねた
ポリスチレンビーズを型窩内に装填し、加熱咽周囲の外
套部(81(91にゲージ圧力1.0 YAの水蒸気を
供給し2て120℃の湿度で8秒間発泡成形ケ行なった
。水蒸気の供給を停止した後、雌型の蒸気供給rl(I
l+及び排出口(13(より圧縮空気を送入し成形体を
押し山王と共に、雄型の蒸気供給口QO)及び排出口(
12)よりξ′算空1吸引しつつ雄型(2)を後退させ
た。雄型(2)のトに吸引担持された樹脂成形体は各$
I7fがh゛いに融着し一体となり半製品となっている
The heating mold was closed, the raw material feeder was activated, and the pre-expanded polystyrene beads were loaded into the mold cavity. Foam molding was carried out for 8 seconds at a humidity of 120°C.After stopping the supply of water vapor, the steam supply rl (I
l+ and the exhaust port (13 (inject more compressed air and push the molded body together with the male steam supply port QO) and the exhaust port (
From 12), the male mold (2) was moved back while suctioning ξ' 1. The resin molded body sucked and supported by the male mold (2) costs $
I7f is highly fused and integrated into a semi-finished product.

雄型(2)は次いで、冷却型の雌型0印と対峙する位置
迄移動l−た俊、1〕11進し、成形体を雌型081内
に挿入した。その状態で雄型(2)の背後の外套部(8
)に圧縮空気を供給し、背圧により成形体全前方に押し
山王と共に冷媒供給口(25(より真空吸引して成形体
全吸着した状態で雄型(2)全後退させた。
The male mold (2) was then moved to a position facing the female mold 0 mark of the cooling mold, and the molded body was inserted into the female mold 081. In that state, the mantle (8) behind the male mold (2)
) was supplied with compressed air, and with the back pressure, the molded object was pushed all the way forward together with the refrigerant supply port (25).

雌型08)内に残さ扛た成形体は、次いで前進係合(1
,た冷)J1雄型(16)により型閉めされた。冷却を
約10〜20秒間行なうことによって成形体は硬化し、
形態は安定した。型を開き冷媒供給口(251に連結す
る氏子装置を停止すると共にエジェクター(2(1)を
突出させて成形体金離型させた。
The molded body left in the female mold 08) is then engaged in forward engagement (1
The mold was closed using a J1 male mold (16). The molded product is hardened by cooling for about 10 to 20 seconds,
The morphology was stable. The mold was opened and the parishioner device connected to the refrigerant supply port (251) was stopped, and the ejector (2(1)) was protruded to release the molded product from the mold.

得られた成形体の中央部の密IWは0.02B〜0゜0
30汐侃であり、他の部分が0.02v蛇あるのに比し
約2倍であり破壊強度も優れていた。
The density IW of the central part of the obtained molded body is 0.02B~0°0
It had an excellent breaking strength of 30 V, which was about twice that of the other parts, which had a 0.02 V.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明装置のそれぞれ加熱1%lJ
及び冷却型の態様を示す縦断面図である。第3111及
び第5図は加熱型の型窩の例を示すそれぞれ縦断面[′
ン1、第4図及び第6図はそれぞれ第3図及び第5図の
IJn熱型にZ1応する冷却型の型窩の縦断面図又は製
品の縦断面図である。 (21(lfil   ME型、(4)旺・・・・雌型
。 f!’51(191・・・・型窩、(7)・・・・・・
樹脂粒子供給[1゜(IO+ (11+・・・・・・熱
媒供給口、  (20+・・・・・・・エジェクター。 ・(24105+ ・・・・・冷媒供給rl、A、A’
・・・・・ 高密度を要する部位。 特許出羅■人  鐘淵化学工業株式会社I+、□□ 光
□1F−Q・74−  −   〆【゛\竿3し1 竿3目 A’         A’ 華4しI 芋に目
Figures 1 and 2 show heating 1% lJ of the device of the present invention, respectively.
FIG. 3 is a vertical sectional view showing an embodiment of the cooling type. 3111 and 5 are longitudinal sections ['
Figures 1, 4, and 6 are longitudinal cross-sectional views of a mold cavity of a cooling mold corresponding to Z1 of the IJn thermal mold of Figs. 3 and 5, respectively, or a vertical cross-sectional view of a product. (21 (lfil ME type, (4) Want... female type. f!'51 (191... type fossa, (7)...
Resin particle supply [1゜(IO+ (11+...Heat medium supply port, (20+...Ejector. ・(24105+...Refrigerant supply rl, A, A'
... Parts that require high density. Patent source Kanekabuchi Chemical Industry Co., Ltd. I+, □□ Light □1F-Q・74- - 〆【゛\Pole 3 1 Rod 3 eye A'A' Hana 4 Shi I Imo ni eye

Claims (1)

【特許請求の範囲】 l それぞれ1対の雄型と雌型とをもって成形用型窩を
形成し得る加熱型と冷却型とを用い、予備発泡された熱
可塑性樹脂粒子を上記加熱型の型窩に充填し加熱発泡せ
しめ相互に融着させて一体的半製品となしだ後、該半製
品を冷却型へ移送して冷却しつつ圧縮成形tmし製品と
なすトランスファ式成形法において、該製品の高密度を
必要とする部位に対応する半製品の部分の厚みが製品の
設計厚みよりも適宜に大となるように該半製品を成形し
7、次いで冷却型によって厚味の大なる部分が前記設計
厚味になる迄圧縮成形することを特徴とする異種密度を
有する成形体の成形法。 コ、厚味の大なる部分が製品の設計厚味の約11O〜4
00%の厚味となるように半製品を成形する特許請求の
範囲第1項記載の異種密度を有する成形体の成形法。 3 厚味の大なる部分が製品の設計厚味の約120〜2
00%の厚味となるように半製品を成形する特許請求の
範囲第2項記載の異種密度を有する成形体の成形法。 ダ それぞれ1対のrzいに開閉自在な雄型と雌型とを
もって型窩を形成し得る2組の成形用金型からなり、第
一の金型は型窩への発泡性熱可塑性樹脂粒子の供給[]
と型窩内を加熱する手段とを備え、第二の金型は型窩内
の成形体金離型させる手段と冷却させる手段とを備えて
おり、更に一方の金型の雄型は他方の金型の雌型とも係
脱し得るように構成さねたトランスファ式成形装置にお
いて、第二の金型内で成形される成形体の高密度を必要
と“Tる部位に対応する第一の金型の型窩の深さ方向の
寸υ、を第二の金型の対応部分の寸法よりも適宜に犬な
ら[7めたことを特徴とする異種密度を有する成形体の
成形装置。 S 前記第一の金型の型窩の深さ方向の寸法が第二の金
型の7・1応部分の寸法の約110〜400%である特
許請求の範囲第4項記載の異種密度を有する成形体の成
形装置。 ム 前記第一の金型の型窩の深さ方向の寸法が第二の金
型の対応部分の寸法の約120〜200%である特許請
求の範囲第5項記載の異種密度を有する成形体の成形装
置。
[Claims] l A heating mold and a cooling mold each having a pair of male and female molds each capable of forming mold cavities are used, and the pre-foamed thermoplastic resin particles are placed in the mold cavities of the heating molds. In the transfer molding method, the semi-finished product is filled with heat, foamed, and fused together to form an integral semi-finished product.The semi-finished product is then transferred to a cooling mold and compressed while cooling to form a product. The semi-finished product is molded so that the thickness of the part of the semi-finished product corresponding to the area that requires high density is appropriately larger than the design thickness of the product 7, and then the thicker part is molded using a cooling mold. A method for molding a molded article having different densities, which is characterized by compression molding until it reaches a designed thickness. The major part of the thickness is approximately 11O~4 of the product's designed thickness.
A method for molding a molded article having different densities according to claim 1, wherein the semi-finished product is molded to have a thickness of 0.00%. 3 The major part of the thickness is approximately 120 to 2 of the designed thickness of the product.
A method for molding a molded body having different densities according to claim 2, wherein the semi-finished product is molded so as to have a thickness of 0.00%. It consists of two sets of molding molds each having a pair of male and female molds that can be freely opened and closed to form mold cavities, and the first mold is used to inject expandable thermoplastic resin particles into the mold cavities. supply []
and a means for heating the inside of the mold cavity, the second mold is equipped with a means for releasing the molded object in the mold cavity and a means for cooling it, and further, the male mold of one mold is heated in the mold cavity of the other mold. In a transfer type molding device configured to be able to engage and disengage from the female mold of the mold, the first mold corresponding to the "T" part that requires high density of the molded product to be molded in the second mold is used. An apparatus for molding a molded article having different densities, characterized in that the dimension υ in the depth direction of the mold cavity of the mold is set to be appropriately larger than the dimension of the corresponding part of the second mold. The molding having different densities according to claim 4, wherein the dimension in the depth direction of the mold cavity of the first mold is about 110 to 400% of the dimension of the 7.1 corresponding part of the second mold. Body molding device. The heterogeneous body molding device according to claim 5, wherein the dimension in the depth direction of the mold cavity of the first mold is about 120 to 200% of the dimension of the corresponding part of the second mold. A molding device for molded bodies with density.
JP57066967A 1982-04-20 1982-04-20 Method and apparatus for obtaining molding body having different density from each other Granted JPS58183226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57066967A JPS58183226A (en) 1982-04-20 1982-04-20 Method and apparatus for obtaining molding body having different density from each other

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57066967A JPS58183226A (en) 1982-04-20 1982-04-20 Method and apparatus for obtaining molding body having different density from each other

Publications (2)

Publication Number Publication Date
JPS58183226A true JPS58183226A (en) 1983-10-26
JPH0218979B2 JPH0218979B2 (en) 1990-04-27

Family

ID=13331296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57066967A Granted JPS58183226A (en) 1982-04-20 1982-04-20 Method and apparatus for obtaining molding body having different density from each other

Country Status (1)

Country Link
JP (1) JPS58183226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240286A (en) * 2005-02-01 2006-09-14 Kaneka Corp Thermoplastic resin foamed and molded product
JP2012201820A (en) * 2011-03-25 2012-10-22 Sekisui Plastics Co Ltd Expansion-molded product and production method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51132278A (en) * 1975-05-14 1976-11-17 Badische Yuka Co Ltd Method of producing styrene resin foaming formed article
JPS5290578A (en) * 1976-01-16 1977-07-29 Selene Trust Process for manufacturing molded resin foam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51132278A (en) * 1975-05-14 1976-11-17 Badische Yuka Co Ltd Method of producing styrene resin foaming formed article
JPS5290578A (en) * 1976-01-16 1977-07-29 Selene Trust Process for manufacturing molded resin foam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240286A (en) * 2005-02-01 2006-09-14 Kaneka Corp Thermoplastic resin foamed and molded product
JP2012201820A (en) * 2011-03-25 2012-10-22 Sekisui Plastics Co Ltd Expansion-molded product and production method therefor

Also Published As

Publication number Publication date
JPH0218979B2 (en) 1990-04-27

Similar Documents

Publication Publication Date Title
JP2860007B2 (en) Molding method of foam with skin
JPS59145125A (en) Preparation of thermoplastic resin expanded material with skin layer
JPS58183226A (en) Method and apparatus for obtaining molding body having different density from each other
JPS6218335B2 (en)
JP2681730B2 (en) Molding method of foam with skin
JP2787127B2 (en) Molding method of foam with skin
JPS6315138B2 (en)
JPS6234533B2 (en)
JP3055831B2 (en) Foam molding method for foamed resin
JP2000062031A (en) Molding method of foamed synthetic resin molded body and foamed synthetic resin molded body
US20040142053A1 (en) Method and system for molding low density polymer articles
JPH0740358A (en) Production of foamed resin-made molded composite
KR20160033669A (en) Compression Foam Molding Articles Formed with High Strength Epidermal Layer and the Devices for Making the Same and the Method Making the Same
JP2784704B2 (en) Molding device for foam with skin
JPS61216836A (en) Production of expanded blow molding for full mold having skin
JPS62187018A (en) Manufacture of foaming molded product
JPS58188632A (en) Method and apparatus for transfer type molding
JPS6342532B2 (en)
JPH01283130A (en) Manufacture of thermoplastic resin foam molded product with skin
JPH06166095A (en) Molding method for foam with skin
JPS58183227A (en) Mold for expansion molding
JP2004322446A (en) Multi-layer number foaming injection molding method and its molding
JP2770120B2 (en) Manufacturing method of foamed molded body with skin
JPS63158229A (en) Manufacture of foam molded body
JP2002144362A (en) Foam molding die