JPS58182603A - Optical fiber bundle having flexibility - Google Patents

Optical fiber bundle having flexibility

Info

Publication number
JPS58182603A
JPS58182603A JP57065064A JP6506482A JPS58182603A JP S58182603 A JPS58182603 A JP S58182603A JP 57065064 A JP57065064 A JP 57065064A JP 6506482 A JP6506482 A JP 6506482A JP S58182603 A JPS58182603 A JP S58182603A
Authority
JP
Japan
Prior art keywords
optical fiber
flexible
fiber bundle
glass
boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57065064A
Other languages
Japanese (ja)
Inventor
Isatomo Harada
原田 勇朋
Tsutomu Maruyama
勉 丸山
Yoshiyuki Kumakura
熊倉 能幸
Shigeo Kuwayama
桑山 重男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp, Fuji Photo Optical Co Ltd filed Critical Fujinon Corp
Priority to JP57065064A priority Critical patent/JPS58182603A/en
Publication of JPS58182603A publication Critical patent/JPS58182603A/en
Priority to US06/808,226 priority patent/US4710216A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/028Drawing fibre bundles, e.g. for making fibre bundles of multifibres, image fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/022Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from molten glass in which the resultant product consists of different sorts of glass or is characterised by shape, e.g. hollow fibres, undulated fibres, fibres presenting a rough surface
    • C03B37/023Fibres composed of different sorts of glass, e.g. glass optical fibres, made by the double crucible technique
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To decrease the fracture of the fibers in the boundary part and to enable the bending of the forward end part at an acute angle by filling a flexible plastic in the boundary part between the end part and flexible part of a flexible optical fiber bundle having the end parts which are stuck to one body, and winding and reinforcing the outside circumference thereof with a linear member. CONSTITUTION:An elution preventive covering 20 is applied in both end parts of a fiber bundle obtained by heating and melt sticking an optical fiber bundle with tripple optical fibers each consisting of core glass 2, convering glass 3 and acid soluble glass 4 and stretching said bundle, whereafter the bundle is dipped in eluting liquid to elute the glass 4 whereby a flexible part 28 is formed in the bundle except the covering parts 20 in the end parts. The many optical fibers 22 in the end part 24a are stuck in one body by the acid soluble glass 24. A flexible plastic filler 29 is filled in the boundary part 25a with the flexible part and a linear member 27a such as cotton or the like is wound on a part 25b of the part 25a to reinforce the same. A reinforcing pipe 26a is fitted onto the end part 24a. The fracture in the part 25a is thus decreased and the bending of the forward end part at an acute angle is made possible.

Description

【発明の詳細な説明】 本発明は各光学繊維が端部において固着され、かつ端部
以外の部分が可撓性を有する光学繊維束に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber bundle in which each optical fiber is fixed at its end and is flexible at a portion other than the end.

現在、光学繊維束はイメージガイドや2イトガイドなど
に使用されているが、イメージガイドとして使用する場
合には鮮明な正しい像を得るためKその両端で各繊維を
一対一に対応するように正しく配列する必要がある。
Currently, optical fiber bundles are used for image guides, double-light guides, etc., but when used as an image guide, each fiber must be correctly arranged in one-to-one correspondence at both ends in order to obtain a clear and correct image. There is a need to.

とりわけイメージガイド用光学繊維束が内視鏡などとし
て使用される場合には体腔内あるいは機器内の加電中空
体内のいか表る箇所にでも観察のために挿入し得るよう
にするために端部以外は可撓性を有し、かつ先端部は自
由にしかも急角度に屈曲可能iする必要がある。ところ
で、このような端部以外では可撓性を有し、かつ先熾部
は自由にしかも急角度に屈曲可能な光学繊維束の製造方
法に関して種々の方法が提案されている。例えば、2重
工( クスを外側の堆堝に屈折率の比較的低い被榎に加熱し、
逼堝の底部孔から両ガラスを引き芯ガラスに被覆ガラス
を被覆し、得られた光学繊維を一列のループ状に隙間な
く巻きとり、該ループの一ケ所t−接涜剤で固層し、そ
の上に前回と同様にして一列にループ状に1閾なく巻き
、先に形成したループの固着部において接着剤で固層し
、該操作を繰返して所望の厚さのループ状光学繊−束會
得、該ループ状光学繊維束の固着部のほぼ中央を光学−
一束の最さ方向く対して直角に切断しついでこの2つの
切断面を研磨することからなる可撓性を有するイメージ
ガイド用光学繊維束の製造方法が知られている。この方
法においては、11g1の加熱で所望の太さの光学績−
を作るため(例えば20s)それ以後の孤造工橿、つま
り光学繊維の配列作業は、極め罰細い光学繊維全4j扱
うために作業は非常に熟練を要し、また切断の危険も高
くなる九めK、この方法によるイメージガイドは得率が
悪く、ひいてはコスト^になるとiう不利な点を有して
いた。また別法として績躊出による光学a−束較的高い
芯ガラスをその外−〇雇堝に雇折率邦 ゛ の比較的低い被覆ガラスを、5k4h外舖θ植堝を)m
尚なm臘に加熱し、櫓堝の底部孔から前記蹟ガラスil
き、芯ガラスに被覆ガラスを被覆し、更にその外周に酸
可溶性ガラス會被榎するととにより光学績−(この光学
績−の径は約200sii度である)t−得、威光学績
−を適当な長さく約soo■)に切断し、その多数本(
例えば1へG O(1)を束ねて加熱融着し、更に適当
な温度に加熱し、該光学IjRI7mの径が1/Is 
’程度になるまで延伸し、がくて得られた硬い光学繊維
束の両端を溶出防止用のプラス7ツクで被覆し、ついで
威光学績−東金体t−111(例えば硝酸)と接触させ
て光学繊織の中間部分から酸可溶性ガラスを溶出するこ
とからなる。この方法は、前記方法と比較すると光学繊
維の配列作業は、約200声程度の太いもので作業でき
るため配列は容易であシ、且つ切断のおそれも非冨に少
ない。
In particular, when the optical fiber bundle for image guide is used as an endoscope, the end portion is inserted so that it can be inserted for observation at any point inside the body cavity or inside the electrified hollow body inside the device. The other parts must be flexible, and the tip must be able to bend freely and at a steep angle. By the way, various methods have been proposed for manufacturing an optical fiber bundle that is flexible except for such ends and whose leading end can be bent freely and at a steep angle. For example, in the double-heavy industry (heating the gas in an outer composting pot to a material with a relatively low refractive index,
Pulling both glasses through the bottom hole of the conduit, coating the core glass with the coating glass, winding the obtained optical fiber into a row of loops without any gaps, solidifying one part of the loop with a T-containing agent, Wrap it in a loop shape in a line in the same way as before, fix it with adhesive at the fixed part of the previously formed loop, and repeat this operation to obtain a loop-shaped optical fiber bundle with the desired thickness. When the optical fiber bundle is assembled, approximately the center of the fixed part of the loop-shaped optical fiber bundle is
A method of manufacturing a flexible optical fiber bundle for an image guide is known, which comprises cutting a bundle at right angles to the outermost direction and polishing the two cut surfaces. In this method, the desired thickness can be obtained by heating 11g1.
(for example, 20 seconds) The subsequent process of arranging the optical fibers is extremely difficult and requires great skill to handle all the thin optical fibers, and the risk of cutting them is also high. However, the image guide using this method had the disadvantage of a poor yield and even higher costs. Alternatively, in addition to optical a-core glass with a relatively high flux, a coating glass with a relatively low refraction rate and a 5k4h outer diameter θ-planting pot can be used as an alternative method.
After heating to a temperature of 100 ft, the glass filter is poured through the bottom hole of the tower.
Then, by coating the core glass with a coating glass and coating the outer periphery with acid-soluble glass, an optical score (the diameter of this optical score is about 200sii degrees) is obtained, and a prestige score is obtained. Cut it into appropriate lengths (approx.
For example, the diameter of the optical IjRI7m is 1/Is by bundling G O (1) into 1 and heating and fusing it, and then heating it to an appropriate temperature.
Both ends of the hard optical fiber bundle thus obtained are coated with a plus 7 film to prevent elution, and then brought into contact with Ikko Seki-Togane Tai T-111 (for example, nitric acid) to form an optical fiber bundle. It consists of eluting acid-soluble glass from the middle part of the fabric. Compared to the above-mentioned method, in this method, the optical fibers can be arranged with a thickness of about 200 tones, so the arrangement is easy and the risk of breakage is extremely low.

しかも配列後は、加熱融着により一体化してしまうため
に上記のおそれは全くなくなってしまう。従って、この
方法によれは、前1方法に比較して製造得率が高く、コ
ストも大巾に減じ得る。この効果は光学繊維が細くなれ
ばなるほどその効果は大となる。しかしながらこの方法
においては、光学繊維束の端部の谷繊維が酸可溶性ガラ
スによシ非常に強園に同着されているためプラスチック
接着剤により固層されている場合に比較して一部と可撓
部との境界付近の1lfflはどうしても折れやす −
くなるという欠点をもっている。上記の欠点を改嵐する
ためKfli々提案されている。
Moreover, after the arrangement, the above-mentioned fear is completely eliminated because they are integrated by heat fusion. Therefore, this method has a higher manufacturing yield than the first method and can significantly reduce costs. This effect becomes more pronounced as the optical fiber becomes thinner. However, in this method, the valley fibers at the ends of the optical fiber bundle are bonded very tightly to the acid-soluble glass, so that some of the valley fibers at the ends of the optical fiber bundle are bonded very tightly to each other, compared to when they are bonded with plastic adhesive. 1lffl near the boundary with the flexible part is prone to breakage -
It has the disadvantage of becoming Various proposals have been made to overcome the above drawbacks.

例えば光学繊維束の端部と可撓性を有する・部分との境
界付近を適宜な硬さと適宜な可撓性を有するプラスチッ
クにて被い、吏に上記境界付近の各41i!一間に上記
プラスチックを充填して4部を強化した光学繊維束(%
公昭56−47526)、光学繊維束O端部と可mat
有する部分との境界付近t一連続的又は段階的に疎次可
物性が変化する補強パイプにて被うようにした曲げ耐力
のある光学繊維束(%開ff150−98344)、光
′44部束の4部のソリッド部とフレキシブル部との中
間にある十m解部分(不溶性残渣)の繊維間に硬度が鍋
く、接着性がよくしかも低粘度の高分子物質を含浸硬化
させ、゛この^分子物質の流出部付近に低゛粘度のゴム
弾性体を含浸、硬化させて一部を強化した光学繊維束(
特公昭56−48844)、光学繊維束の端部と可碗性
忙有する部分との境界付近の外周に、同化恢適当な硬さ
と適当な可撓性を有する高分子有機物質の液体と、固化
後の高分子物質を強化する朽木との混合物を被層し、中
心方向及び長ざ方向に浸透させて端部を補強する方法(
特公昭5@−49327)、などが提案されている。
For example, the vicinity of the boundary between the end of the optical fiber bundle and the flexible portion is covered with plastic having appropriate hardness and appropriate flexibility, and each 41i! Optical fiber bundle (%
Kosho 56-47526), Optical fiber bundle O end and mat
Optical fiber bundle with bending strength (% opening FF150-98344), optical fiber bundle with bending strength covered with a reinforcing pipe whose physical properties change continuously or in steps near the boundary with the part with which it is attached. By impregnating and curing the fibers of the 10m-dissolved part (insoluble residue) between the solid part and the flexible part of the 4th part, a polymeric substance with high hardness, good adhesion, and low viscosity is applied. An optical fiber bundle (partially reinforced by impregnating and curing a low-viscosity rubber elastic material near the outflow part of molecular substances)
(Japanese Patent Publication No. 56-48844), a liquid of a polymeric organic material having an appropriate hardness and flexibility for assimilation and solidification is applied to the outer periphery near the boundary between the end of the optical fiber bundle and the flexible portion. A method of reinforcing the edges by covering the mixture with rotten wood that will strengthen the polymer material that will be used later, and penetrating it in the center and length directions (
Tokuko Sho 5@-49327), etc. have been proposed.

しかしながら、これらの先行技術は以下に述べるような
諸欠点を有している。すなわち(特公昭56−4731
26 )においては境界付近tプラスチックで゛−一体
に被うために光学繊維束の先端t−a角度に曲げること
が崩しい。(特開昭50−98344 )、(特公昭5
6−49327 )は(特公昭56−47526 )と
殆んど同じ欠点tもっている。(41公[56−488
44) においては先端St曲げfC場合に最も大きな
応力の加わる境界部の外周が補強されていないため使用
中に外周部の繊維が折れ中ずいという欠点がある。
However, these prior art techniques have various drawbacks as described below. In other words (Special Public Interest Publication No. 56-4731
In 26), it is difficult to bend the tip of the optical fiber bundle to the t-a angle because it is integrally covered with plastic near the boundary. (Japanese Patent Publication No. 50-98344), (Special Publication No. 50-98344)
6-49327) has almost the same drawbacks as (Japanese Patent Publication No. 56-47526). (41 Duke [56-488
44) has the disadvantage that the outer periphery of the boundary where the greatest stress is applied in the case of tip St bending fC is not reinforced, so that the fibers at the outer periphery break during use.

本発明は上記欠点を除去するためになされ友もので、そ
の目的とするところは端部の各光学繊維を酸可溶性ガラ
スtたは無機系接着剤で一体に固着し、その端部と可撓
性部分との境界付近に町45I!性のあるプレスチック
を充填して、この充填部外局の少なくと一端部側境界付
近を線状部材で巻回して断続的に充分な機械的mIIL
t付与すると同時に先端部の肩曲性を大にし九可撓性を
有する光学#it−束を提供するものである。すなわち
本発明は、端部において各光学繊#mを酸可溶性ガラス
または無機系接着剤にて一体に固着した可撓性を有する
光学繊維束において、上記端部と可撓性部分との境界付
近の各光学繊維間に可撓性を有するプツスナックtye
、填して、この充積部外周の少なくとも端部側境界付近
を線状部材にて巻回して端sho機械的強fi+を可撓
性部分儒よ部分帆することを%黴とする可撓性を有する
光学繊維束に関するものである。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and its purpose is to fix each end of each optical fiber together with acid-soluble glass or an inorganic adhesive, and to connect the end and flexible optical fibers together. Town 45I near the border with the sexual part! A wire member is wound around the boundary of at least one end of the outer part of the filling part to provide sufficient mechanical mIIL intermittently.
The objective is to provide an optical bundle that has flexibility by increasing the shoulder bendability of the tip at the same time. That is, the present invention provides a flexible optical fiber bundle in which optical fibers #m are integrally fixed at the end with acid-soluble glass or an inorganic adhesive, in the vicinity of the boundary between the end and the flexible portion. A plastic snack tie with flexibility between each optical fiber.
, and wrap at least the vicinity of the end side boundary of the outer periphery of the filled part with a linear member to make the end mechanically strong and flexible. The present invention relates to an optical fiber bundle having properties.

次に本発明を以下図面を参照しながら詳細に説明する。Next, the present invention will be explained in detail below with reference to the drawings.

まず142図に示し喪ような3電譚         
斧 廖堝に於て蝋も内側の壜堝@に比較的高い屈折率のガラ
ス、すなわち芯ガラスSk、中間揮 の壜堝9に芯ガラス5よ如も低い屈折率の被刊 榎ガクス[を、最4外側の櫓堝10に酸可溶社 性の硼績酸ガラスTを夫々仕込む。本実f14において
使扇することがで亀る芯ガラスは、例。
First, the three mourning stories shown in Figure 142
In the axel jar, wax is placed in the inner pot @ a glass with a relatively high refractive index, namely core glass Sk, and in the middle pot 9 is a core glass 5 with a lower refractive index. Acid-soluble borosilicate glass T is charged into the four outermost tower pots 10, respectively. The core glass that can be used in real F14 is an example.

えは次のような組成並びに性状を有するものである。芯
ガラスの組成(ml t ’lk ) ; 5hot 
: ’45.0*、 K、0:ILO*、 PbO: 
24.0%、BaO二  110%  、   Zn 
O:  5.0  %  、 Al5o@  :3、O
fk % AamOi ’α7−1屈折率(ad):1
.59062、転位点: 528℃、軟化点:583℃
、熱膨張係数: 99X1G−’ car/a++、 
C0本発明にお−て使用することができる値後ガラスは
、例えば次のような組成韮びに性状を有するものである
。被覆ガラスの組成(n量−) ; Stow : 6
4096、Na、O:110%、Pbo : 12fO
優、ho :&0 % 1.utos : xo−1A
alO1:α7饅、屈折率(ad):152852、転
位点:番86℃、軟化点:533℃、熱膨張係数: 9
8 X 1 G ’−’ tx/cM、 U。
The material has the following composition and properties. Composition of core glass (ml t'lk); 5hot
: '45.0*, K, 0:ILO*, PbO:
24.0%, BaO2 110%, Zn
O: 5.0%, Al5o@:3, O
fk % AamOi 'α7-1 refractive index (ad): 1
.. 59062, dislocation point: 528℃, softening point: 583℃
, thermal expansion coefficient: 99X1G-' car/a++,
The C0 glass that can be used in the present invention has, for example, the following compositional properties. Composition of coated glass (n amount -); Stow: 6
4096, Na, O: 110%, Pbo: 12fO
Excellent, ho: &0% 1. utos: xo-1A
alO1: α7, refractive index (ad): 152852, dislocation point: 86°C, softening point: 533°C, coefficient of thermal expansion: 9
8 X 1 G '-' tx/cM, U.

本発明において使用することができる酸可溶性ガラスは
例えば、次のような組成並びに性状を有するものである
。−組成(重を−);mow : 1&5−15−1B
 :3B5% 、Nano :ILO* 、BaO: 
26−Ofk、ム0 : 7.Ofk % Am 10
 m ’0.3優、屈折率(ad):L5j1090.
転位点:540℃、軟化点:s74℃、熱膨張係数二9
2 X 10 ’ ext/lvi、 C。
The acid-soluble glass that can be used in the present invention has, for example, the following composition and properties. -Composition (weight -); mow: 1 & 5-15-1B
:3B5%, Nano :ILO*, BaO:
26-Ofk, Mu0: 7. Ofk % Am 10
m'0.3 excellent, refractive index (ad): L5j1090.
Dislocation point: 540℃, Softening point: s74℃, Coefficient of thermal expansion 29
2 X 10' ext/lvi, C.

ついで芯ガラス、普覆ガラス、酸可溶性ガが ラスを入れた3重車堝t’を気炉11内にて加熱して3
重光学繊維11t−ローラー12にて、 引く。第1図
に得られた3重光学IR維13の直径方向の断面図を示
す。3重元字a#1の外径は約20ζ声、酸可溶性ガラ
ス4の厚さは約5声、被覆ガラス3の厚さは約20μで
ある。
Next, the triple carton t' containing core glass, coated glass, and acid-soluble glass is heated in the air furnace 11.
Heavy optical fiber 11t - Pulled with roller 12. FIG. 1 shows a diametrical cross-sectional view of the triple optical IR fiber 13 obtained. The outer diameter of the triad a#1 is about 20ζ, the thickness of the acid-soluble glass 4 is about 5, and the thickness of the covering glass 3 is about 20μ.

次にこの3重光学繊維1を畏さ約300 +uK切断し
て、各光学繊維の端部が1対1に対応するように隙間な
く一肯督並ぺて光学繊維束(約io、ooo本)を作り
これを加熱融着する。次に@31fiに示すように加熱
融着された光学繊維束を更に加熱して延伸する。すなわ
ち加熱融着し良光学繊維束18を、ローラー14で下方
′へ少しづつ送ル、その先端部を′1気炉16にて約7
00CK加熱し軟化させ一一フー1sで下方に延伸する
。この場合延の1/15gKすなわち約1.5m機展に
延伸される。その結果、各光学繊維の径は約13μとな
る。
Next, cut this triple optical fiber 1 at approximately 300 + uK, and cut the optical fiber bundle (approximately io, ooo) so that the ends of each optical fiber correspond one-to-one. ) and heat-fuse it. Next, as shown in @31fi, the thermally fused optical fiber bundle is further heated and stretched. That is, the heat-fused and good optical fiber bundle 18 is sent downwards little by little with the roller 14, and its tip is heated in the air furnace 16 for about 70 minutes.
It is heated to 00CK to soften it and then stretched downward for 1 second. In this case, it is stretched to 1/15 gK of the stretching, that is, about 1.5 m. As a result, the diameter of each optical fiber is approximately 13μ.

次に得られた硬い光字縁−’f−7の両端部全浴出防止
被覆20にて被覆する。ついで両端部に被覆された光学
繊維束全体を第4図に示す如く、溶出処理槽21に浸漬
し処理する。
Next, both ends of the obtained hard optical edge -'f-7 are entirely coated with a bath bleed-out prevention coating 20. Then, the entire optical fiber bundle coated at both ends is immersed in an elution treatment tank 21 for treatment, as shown in FIG.

溶出処理は例えば先づ約70cのIN硝酸にて約2時間
処理し、その後約10分間水洗し、次に約35℃のαS
NN*OHKて約1時間処理して**にもう一度約1時
間の水洗を行なう。上記の溶出処理によプ光学繊繍束1
1の被ai20以外の部分の酸可溶性ガラス及び不溶性
残渣を殆んど完全に除去することができる。g&5図は
上記の溶出処理により可撓性を付与された光学繊維束の
概略図であC21は可撓部を示す、$6図は本発明によ
る光学繊維束の一例を示す断面図であり、多数の光学繊
維22が#を可溶性ガラス24によ如端部24mにおい
て一体的に固着されている。端部24mと可撓部2@と
の境界部25mにはり撓性を有するプラスチック充填材
29を充填する。可撓性を有するプラスチック充填材2
sとしては例えばシリコーン系接着剤(7リコーンRT
V)、又はエポキシ樹脂の一部であるチバ社のアクルダ
イトムY1G3等に&iT!la剤を添加したものなど
が適当である。
The elution treatment is, for example, first treated with about 70℃ IN nitric acid for about 2 hours, then washed with water for about 10 minutes, and then treated with αS at about 35℃.
Treat for about 1 hour with NN*OHK, and then wash with water for about 1 hour again. Optical fiber bundle 1 made by the above elution process
Acid-soluble glass and insoluble residues other than the ai20 of No. 1 can be almost completely removed. Figures g & 5 are schematic diagrams of an optical fiber bundle imparted with flexibility by the above elution treatment, C21 indicates a flexible portion, and Figure $6 is a cross-sectional view showing an example of an optical fiber bundle according to the present invention; A large number of optical fibers 22 are integrally fixed to each other by soluble glass 24 at the end portion 24m. A boundary portion 25m between the end portion 24m and the flexible portion 2@ is filled with a plastic filler 29 having flexibility. Flexible plastic filler 2
For example, silicone adhesive (7 Silicone RT
V), or some of the epoxy resins such as Ciba's Akuru Daitom Y1G3 &iT! A suitable material is one containing a la agent.

次Kq!It性を有するプラスチック充填材29を充填
した境界i12 S aの外周の端smの1部25bt
天然繊is<木綿、絹等)、合成繊維(ナイロン等)、
等の線状部材27aKて巻回し、境界@ 2 S mの
可撓部側の一部25gは可撓性を有するプラスチック充
填材29を充填し九ままに残すと端f124 mに近い
方から可撓部2Iへと順次に#i]′撓性が大となシ、
且つ境界II 2 S aの端部に近い一部25bは断
続的に充分な機械的強度が付与されると同時に屈曲性が
大となる。次に端部24mを補強するために接着剤2s
を介して補強パイプ26a中に嵌着する。補食パイプ2
6&としては例えば金属(ステンレイを友はアルミニュ
ーム)などが用いられる。
Next Kq! One part 25bt of the edge sm of the outer periphery of the boundary i12 S a filled with a plastic filler 29 having It properties
Natural fibers (cotton, silk, etc.), synthetic fibers (nylon, etc.),
25g of the flexible part side of the boundary @ 2 S m is filled with a flexible plastic filler 29 and left as it is. Sequentially to the flexible part 2I #i] 'The flexibility is large,
In addition, a portion 25b near the end of the boundary II 2 S a is intermittently given sufficient mechanical strength and at the same time has high flexibility. Next, use 2s of adhesive to reinforce the end 24m.
It is fitted into the reinforcing pipe 26a through. supplementary pipe 2
For example, metal (aluminum is used as a substitute for stainless steel) is used as 6&.

このような構成にすると境界部の機械的強度が大となる
と同時にm曲性も大となシ、この部分の各繊維に応力が
系中することがなく、曲げや引張シ等に対して非常に強
いしかも先端の屈曲性の大なる光学kRiIa束を効率
よく作ることができる。
With this structure, the mechanical strength of the boundary area is increased, and at the same time, the bendability is also increased, and stress is not applied to each fiber in this area, making it extremely resistant to bending, tensile stress, etc. It is possible to efficiently produce an optical kRiIa bundle that is strong against water and has great flexibility at the tip.

第7図は本発明のもう一つの実施例の端部の断面図であ
シ、可撓性を有するプラスチック充填材29を充填した
境界部25aの端部24mに近い部分に縁状部材27b
t3贋善回して可撓部28に向って711次巻回の層数
を減じて行き端部側の機械的強dLt−可撓性部分側よ
p大にすると同時に先端部のJ7Aii!i性を大にす
る。第8図は第7図の巻回層数の代シに質を端S側から
可撓部側へと編成伸縮性の大なる索材を用いても同様の
効果を上げることができる。又上記実施例を適当に檎々
組合せても本発明の目的を達成することができる。
FIG. 7 is a cross-sectional view of the end of another embodiment of the present invention, in which an edge-like member 27b is placed near the end 24m of the boundary 25a filled with a flexible plastic filler 29.
t3 and reduce the number of layers of the 711st winding toward the flexible part 28, increasing the mechanical strength dLt on the end side - p greater than the flexible part side, and at the same time, J7Aii! Increase your i-ness. In FIG. 8, the same effect can be obtained by using a highly elastic cord material that is knitted from the end S side to the flexible portion side instead of the number of winding layers shown in FIG. 7. The objects of the present invention can also be achieved by appropriately combining the above embodiments.

第6.7.8.9、図において線状部材27a27b、
27・、21−1の巻回は固層端部24mと可撓性グフ
スチックを充填しfc境界# 2 S mとの境界から
開始しているがf!1l−ytx44$ 24 a内の
一点から始めても勿論麦皮えはない。tた前記の実施例
の#出処理は酸溶液処理とアルカリ溶液処理の組合につ
いて述べたが、率なる酸溶液処理にても本発明の目的を
達成することができる。また前記の実施例においては酸
可溶性ガラスを機種した3重光学#l!維について述べ
たが、2重光学繊維の複数本の端部を無機系接着剤(例
えばシリカ、アルミナ系水溶性ペースト)で固着した光
学境界部に可撓性を有するプラスチックを充填して、こ
の充填部外周の少なくとも端部側境界付近t−線状部材
にて巻回して端部側の機械的強度を9撓性部分側より大
にすることにより境界部の繊維の折れを少くシ、シかも
今までより先端Sを急角度に曲げることが出きるように
したもので、先−mを息角kに曲げて使用する内視鏡用
イメージガイドなどを製造する場合には非常に有効なも
のである。
No. 6.7.8.9, linear member 27a27b in the figure,
The winding of 27・, 21-1 starts from the boundary between the solid bed end 24m and the flexible Goufstick filled fc boundary #2 S m, but f! 1l-ytx44$ 24 Even if you start from one point within a, of course there will be no barley. Although the above-mentioned embodiments described the #output treatment as a combination of acid solution treatment and alkaline solution treatment, the purpose of the present invention can also be achieved with primary acid solution treatment. In addition, in the above embodiment, the triple optical #l model is made of acid-soluble glass! As mentioned above, this method is made by fixing the ends of multiple double optical fibers with an inorganic adhesive (e.g., silica, alumina-based water-soluble paste) and filling the optical boundary with flexible plastic. By winding the outer periphery of the filling part with a T-wire member at least near the boundary on the end side, the mechanical strength on the end side is made greater than that on the flexible part side, thereby reducing folding of the fibers at the boundary. The tip S can be bent at a steeper angle than before, making it very effective when manufacturing image guides for endoscopes that use the tip -m bent at an angle of repose K. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は3重光学繊維の断面図、 Aぢ 42図は3重卓堝を加熱して光学績−を引く工程の概略
図、 第3図は加PA融着された光学繊維束を加熱延伸する工
程の概略図、 第4図は酸可溶性ガラスの溶出処理の工程のd#i図1 、g5図は゛両端w5を接着剤で接着し、中間部では可
撓性を有する光学繊維束の概略図、第6図は本発明を適
用したり一性を有する光学繊維束の一実施例を示す要部
断面図、jI7図、48図及び第9図は他の実施例の!
11断面図である。 1.13・・・3重光学繊維、2.5・・・芯ガ11.
16・・・電気炉、12.14ζ15・・・ローラー、
1T・・・光学繊維束、1@・・・加熱融着した光学繊
維束、1−・・・処ffl液、 20・・・被覆、21
・・・処理槽、22・・・2重光学繊維、2s・・・接
着剤、24h・・・固着端部、25a・・・可撓性を有
するプラスチックを充填した境界部、16&、21b、
2@1ls2 @d ・・・補“強バイブ、27&’;
  zyb。 27c、274・・・線状部材、21・・・可撓部、2
s・・・町JIa性を有するプラスチック充填材笥J図
          ¥J 4 図V、5  図 第 乙 図
Figure 1 is a cross-sectional view of the triple optical fiber, Figure A-42 is a schematic diagram of the process of heating the triple table and drawing the optical score, and Figure 3 is heating the optical fiber bundle that has been fused with PA. Figure 4 is a schematic diagram of the drawing process. Figure 4 shows the process of elution treatment of acid-soluble glass. A schematic diagram, FIG. 6 is a cross-sectional view of a main part showing one embodiment of an optical fiber bundle to which the present invention is applied or has the same structure, and FIGS. 7, 48, and 9 show other embodiments.
11 is a sectional view. 1.13... Triple optical fiber, 2.5... Core 11.
16...Electric furnace, 12.14ζ15...Roller,
1T...Optical fiber bundle, 1@...Heat-fused optical fiber bundle, 1-...Treatment ffl liquid, 20...Coating, 21
...Processing tank, 22...Double optical fiber, 2s...Adhesive, 24h...Fixed end, 25a...Boundary part filled with flexible plastic, 16&, 21b,
2@1ls2 @d ・・・Supplementary “strong vibe, 27&’;
zyb. 27c, 274... Linear member, 21... Flexible part, 2
s...Plastic filler material with town JIa properties J figure ¥J 4 Figure V, 5 Figure B Figure

Claims (2)

【特許請求の範囲】[Claims] (1)端部において各光学繊維を酸可溶性ガラスまたは
無機系接着剤にて一体に固層した可撓性を有する光学繊
維束、において、上記端部と可撓性部分との境界付近の
各光学繊維間に可撓性を有するプラスチックを充填して
、この充填郵外周の少々くとも端部−境界付近を線状部
材にて巻回して端部備の機械的強度を可撓性部分儒より
大にすることt%徴−とする可撓性を有する光学繊維束
(1) In a flexible optical fiber bundle in which each optical fiber is integrally bonded at the end with acid-soluble glass or an inorganic adhesive, each of the optical fibers near the boundary between the end and the flexible portion A flexible plastic is filled between the optical fibers, and a linear member is wound around the outer periphery of the filled material at least a little near the edge to the boundary to reduce the mechanical strength of the end portion. An optical fiber bundle having flexibility with a characteristic of increasing t%.
(2)第1項記載の線状部材の素材の断面積、間隔ピッ
チ、巻回項数、および材質のうち少なくとも1つが軸方
向において異なり、端sho機械的強度を可撓性部分儒
より大にすることを特徴とする特許請求の範囲第1項記
載の可撓f!Iを有する光学繊維束。
(2) At least one of the cross-sectional area, interval pitch, number of turns, and material of the material of the linear member described in paragraph 1 is different in the axial direction, and the mechanical strength of the end is greater than that of the flexible part. The flexible f! according to claim 1, characterized in that the flexible f! Optical fiber bundle with I.
JP57065064A 1982-04-19 1982-04-19 Optical fiber bundle having flexibility Pending JPS58182603A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57065064A JPS58182603A (en) 1982-04-19 1982-04-19 Optical fiber bundle having flexibility
US06/808,226 US4710216A (en) 1982-04-19 1985-12-12 Method of making flexible optical fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57065064A JPS58182603A (en) 1982-04-19 1982-04-19 Optical fiber bundle having flexibility

Publications (1)

Publication Number Publication Date
JPS58182603A true JPS58182603A (en) 1983-10-25

Family

ID=13276147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57065064A Pending JPS58182603A (en) 1982-04-19 1982-04-19 Optical fiber bundle having flexibility

Country Status (1)

Country Link
JP (1) JPS58182603A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098343A (en) * 1973-12-26 1975-08-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098343A (en) * 1973-12-26 1975-08-05

Similar Documents

Publication Publication Date Title
US4427717A (en) Process for producing an object with a chiralic structure obtained from a shapeable material source
JPS6138134B2 (en)
EP0377294A3 (en) Stress controlling superconductor wire
US4710216A (en) Method of making flexible optical fiber bundle
JPS58182603A (en) Optical fiber bundle having flexibility
US4832722A (en) Method of manufacturing flexible optical fiber bundles
JPH0247412B2 (en)
JP3710610B2 (en) Fiberscope and manufacturing method thereof
JPH1152184A (en) Method for connecting coated optical fiber
JPH0387703A (en) Method for fixing optical fiber end
JPS61170706A (en) Production of optical fiber bundle
JP2006343403A (en) Apparatus and method of manufacturing optical fiber bundle
JPS58216215A (en) Method for connecting optical fiber
JPS5828706A (en) Production of optical fiber bundle having flexibility
JPS61101709U (en)
JPS58156556A (en) Manufacture of flexible optical fiber bundle
JPH0526164B2 (en)
JPS649602B2 (en)
JPS60233603A (en) Flexible image fiber and its manufacture
JPS5762005A (en) Manufacture of multicore fiber
JPS5850506A (en) Reinforcing method of connecting part of optical fiber core
JPS59174547A (en) Method for covering glass fiber for optical transmission with resin
JPS6184610A (en) Production of flexible image fiber
JPS59222802A (en) Optical fiber bundle
JP2000147341A (en) Optical fiber cord