JPS58182529A - Semiconductor pressure transducer - Google Patents

Semiconductor pressure transducer

Info

Publication number
JPS58182529A
JPS58182529A JP6509382A JP6509382A JPS58182529A JP S58182529 A JPS58182529 A JP S58182529A JP 6509382 A JP6509382 A JP 6509382A JP 6509382 A JP6509382 A JP 6509382A JP S58182529 A JPS58182529 A JP S58182529A
Authority
JP
Japan
Prior art keywords
pressure
resistance
bridge circuit
semiconductor
semiconductor gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6509382A
Other languages
Japanese (ja)
Other versions
JPH0419494B2 (en
Inventor
Shunji Shiromizu
白水 俊次
Ryuzo Noda
龍三 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP6509382A priority Critical patent/JPS58182529A/en
Publication of JPS58182529A publication Critical patent/JPS58182529A/en
Publication of JPH0419494B2 publication Critical patent/JPH0419494B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/04Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To improve precision, by connecting the 2nd semiconductor gauge resistance which decreases in resistance and the 3rd semiconductor gauge resistance which increases in resistance to a bridge circuit consisting of the 1st semiconductor gauge resistances, and driving them with specific currents. CONSTITUTION:The full bridge circuit is constituted of 4 pieces of the 1st semiconductor gauge resistances which vary in resistance when applied with pressure constitute. Then, the 2nd semiconductor gauge resistance 4 which decreases in resistance by pressure application is connected to the bridge circuit 1 in series. Further, the 3rd semiconductor gauge resistance 5 which increases in resistance is connected to the bridge circuit 1 in parallel through the 2nd semiconductor gauge resistance 4. This device is driven with a specific current by a power source 6.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は圧力に感応するゲージ抵抗【組合わせ【ブリ
ッジ回路を構成してなる半導体圧力変換装置に関する0 〔発@t)vt留的背景とそQ問題点〕Vリコン等の半
導体単結晶が有するピエゾ抵抗効果k14NLft圧力
変換器は、ワイヤ歪ゲーi7に比べて感II!が神霊に
高い利点がある。しかしそ0[画、歪−抵抗変化特性の
非直線性が大きく、tた温度係数も大きいことが欠点と
なっている◎こt)りめ、高い精度が必要な工業プロセ
ス用計器に応用する鳩舎には、何らかの補正を施さなけ
ればならない。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a semiconductor pressure transducer comprising a pressure-sensitive gauge resistor [combination] bridge circuit. Q: The piezoresistance effect of semiconductor single crystals such as V Recon has a k14NLft pressure transducer, which is far more sensitive than the wire strain game i7! However, divine spirits have a high advantage. However, its disadvantages are that the strain-resistance change characteristics are highly nonlinear and the temperature coefficient is also large. Some modifications must be made to the pigeon house.

通常、半導体圧力変換装置の特性は圧力入力に対してナ
プリエア、即ち大きな圧力が加わった場会に出力が次J
IK飽和する傾向を示す。このような出力特at補正す
るために、従来第1gt)ような−路が用いられている
。図において、[2,lはそれぞれ圧力入力に対して抵
抗変化の方向を異にするゲージ抵抗で、これと固定抵抗
”tellt組脅せてハーフブリッジ回路゛Jt構成し
ていゐoJl!航rlt’rlは零点調整用である。ブ
リッジ回路10出力は演算増幅器0P、を用い次出力増
S*、tにより取出されゐ03は駆動電圧調整回路で、
演算増幅器OF、とバランス用抵抗Rb、、Rb、から
なり、その反転入力端に基準電圧VI  Q入力すると
同時に前記出力増幅器2の出力tリニアライズ用抵抗R
L【介して入力するようになっている0 この回路では、駆動電圧調整回路JKJす、ブリッジ出
力に応じてブリッジ1動電圧が変化Tゐ。即ち、圧力入
力が増加するにつれ、ブリッジ出力がリニアライズ抵抗
Ill  を介して駆動電圧調整回路Sに帰還されて駆
動電圧Vl が上昇するように働く0例えば2#/−用
として構成した例での圧力入力に対するブリッジ出力お
よびブリッジ駆動電圧viag化を示Tと菖2図のとお
りである0こD1g2図に示される特性から明らかなよ
うに、ブリッジ出力の直線性はリニアライズ用抵抗RL
  によってナプV晶アからスーパーリニアまで変化す
る。l!つで、ゲージ抵抗軍ν、’11Nt)非直線I
kの度合に応じて9=アライ、< Fl m抗ト を設
定すれば、ブリッジ出力【圧力入力に対して直線化する
ことができるQ従ってJIIZ図に示す例ではRL=2
00にΩ が最適値となる。この↓うに素子の非直線性
を補償するためには、圧力測定用のブリッジ回路1の印
加電圧Vl  f圧力入力の増加とともに増加させて補
償することが必要である0非直線性補償のための回路の
動作は、基本的にはブリッジ回路“1【定電圧で駆動し
、その変形として圧力入力に対する正extかけて印加
電圧VB  li動かすものとなっている〇 一方、半導体の常である温度依存性(零点、圧力感度)
を補償する場合、前記ブリッジ回路1を定電圧で動作さ
せるか、定電流で動作させるかによってその補償のしか
たが大きく異る。
Normally, the characteristics of a semiconductor pressure transducer are that the pressure input is equal to the pressure input, that is, when a large pressure is applied, the output is
It shows a tendency for IK saturation. In order to correct such an output characteristic at, a negative path such as the first gt) is conventionally used. In the figure, [2 and l are gauge resistors that change the direction of resistance change in response to pressure input, and these and fixed resistors are combined to form a half-bridge circuit. is for zero point adjustment.The output of the bridge circuit 10 is taken out by the next output increase S*,t using the operational amplifier 0P, and 03 is the drive voltage adjustment circuit.
It consists of an operational amplifier OF, and balancing resistors Rb, , Rb, and at the same time a reference voltage VIQ is input to its inverting input terminal, the output t of the output amplifier 2 is linearized by a resistor R.
In this circuit, the dynamic voltage of the bridge 1 changes according to the drive voltage adjustment circuit JKJ and the bridge output. That is, as the pressure input increases, the bridge output is fed back to the drive voltage adjustment circuit S via the linearizing resistor Ill, and the drive voltage Vl increases. As is clear from the characteristics shown in the diagram, the linearity of the bridge output is determined by the linearization resistor RL.
It changes from Napu V Crystal A to Super Linear depending on the direction. l! , gauge resistance force ν, '11Nt) nonlinear I
If we set 9 = ARAI and < Fl m resistance according to the degree of k, the bridge output [Q that can be linearized with respect to the pressure input] Therefore, in the example shown in the JIIZ diagram, RL = 2
The optimum value is Ω at 00. In order to compensate for this nonlinearity of the element, it is necessary to compensate by increasing the applied voltage Vl f of the bridge circuit 1 for pressure measurement as the pressure input increases. The operation of the circuit is basically a bridge circuit "1 [driven by a constant voltage, and as a modification, the applied voltage VB li is applied by applying the positive ext to the pressure input. On the other hand, the temperature control which is usual for semiconductors Dependency (zero point, pressure sensitivity)
When compensating for , the method of compensation differs greatly depending on whether the bridge circuit 1 is operated with a constant voltage or with a constant current.

したがって、上記の圧力特性の非直線性補償回路と0.
11食わせか九も異つでくる〇一般に半導体圧力センサ
ーを定電圧で動作させた場合には、温度変化に対する圧
力感度の変動が大きく、例えば−0,15〜−4L21
に/℃、1DIlk示す0これに対して、定電流で動作
さく九場合には例えば−0,0511G/’C程度の圧
力感度の変動【招くだけであり、一般の用途であれば無
補償でも使える。
Therefore, the above pressure characteristic nonlinearity compensation circuit and 0.
In general, when a semiconductor pressure sensor is operated at a constant voltage, the pressure sensitivity to temperature changes varies greatly, for example, from -0.15 to -4L21.
/°C, 1 DIlk indicates 0. On the other hand, when operating at a constant current, it only causes a pressure sensitivity fluctuation of, for example, -0,0511 G/'C, and for general use, even without compensation. It can be used.

ところで本発明者らは先に特願1854−124989
号等により定電圧動作でも±0.00511i/l::
に違し得る高精度温度補償法【提唱し、さらに又この手
法【発展させて前述の圧力特性の非線形性に対する補償
法1m唱した0その後、更に定電流動作に対しても圧力
特性の非線形化補償を行う新しい手段倉見出した。
By the way, the present inventors previously filed Japanese Patent Application No. 1854-124989.
±0.00511i/l even in constant voltage operation due to the issue etc.
We proposed a high-precision temperature compensation method that could be used in different ways, and further developed this method and advocated a method for compensating for the nonlinearity of the pressure characteristics described above.After that, we also developed a method for nonlinearity of the pressure characteristics for constant current operation. A new means of compensation has been found.

前述した如く、圧力特性の非線形性【補償するためには
、圧力入力の増加に連動させてブリッジ印加電圧V■ 
を変化させればよいoしftがつ【、定電圧動作での温
度補償(温度に連動させてブリッジ電圧vB髪変えて圧
力感度【一定にする為の電圧補償)では、非線形O@償
と兼ね合わせ晶い。これに対し、ブリッジ回路1を定電
流で動作させる場合は、元素そO圧力感度OIl家変動
が少ないとデう訓点はあゐが、いざそo@@を行おうと
すると暮に困−であるo−紋には定電流動作で、より高
11111:01度補償【行う場合は、半導体素子の製
法、つまり不純物の拡散工程での調整法がとられている
。第3図はn形S1基板にp形不純物【拡散して形成し
た歪抵抗層の温度変化率の一例?示してbる。
As mentioned above, in order to compensate for the nonlinearity of pressure characteristics, the bridge applied voltage V
Temperature compensation in constant voltage operation (pressure sensitivity by changing bridge voltage vB in conjunction with temperature [voltage compensation to keep it constant) requires non-linear compensation. Both crystallized. On the other hand, when the bridge circuit 1 is operated with a constant current, there is a good point that there is little variation in the pressure sensitivity of the element, but when you try to do it, it becomes difficult. For the o-pattern, a constant current operation is used to compensate for a higher degree of 11111:01 [If this is done, an adjustment method is used in the manufacturing method of the semiconductor element, that is, in the impurity diffusion process. Figure 3 is an example of the temperature change rate of a strain resistance layer formed by diffusing p-type impurities into an n-type S1 substrate? Show me.

歪抵抗層の基準抵抗kRasその温度係数1(1(1圧
力による抵抗変化iJR,その温度係数?β、”/Ro
=a、Sゲージ率とすると、定電流動作時の圧力出力4
v!は以下の如くになる。
Standard resistance of strain resistance layer kRas Its temperature coefficient 1 (1 (1 (Resistance change due to pressure iJR, Its temperature coefficient ? β, ”/Ro
= a, S gauge factor, pressure output during constant current operation 4
v! becomes as follows.

〕Vx =jli(1+/)Io  ”  Go Re
  (x+g)(1+β)I+1” Go Ro (1
+(α+β))l。
]Vx =jli(1+/)Io” Go Re
(x+g)(1+β)I+1” Go Ro (1
+(α+β))l.

・・・・・・・・・(1) 第2図に示す特性と上記第(1)式かられかるように、
歪抵抗の不純物濃度か10I8/−又は10”/薗付近
であれば(α+β)−〇、つまり、温度依存性が零とな
るや件が得られる。この工うに、定を流蛎作では、感度
の一度依存性か無く/よる条件が存在し、この条件に正
確に合致しなくCも温度特性の向上を図り得る0しかし
、この為には印加電圧を人為的に変化させねばならない
ので、一般に非直線補償には向かないと考えられてい次
・・・・・・・・・(1) As can be seen from the characteristics shown in Figure 2 and the above equation (1),
If the impurity concentration of the strain resistance is around 10I8/- or 10"/son, we can obtain (α+β)-〇, that is, as soon as the temperature dependence becomes zero. In this method, when the temperature is changed, There is a condition where the sensitivity depends on once or no dependence, and if this condition is not exactly met, it is possible to improve the temperature characteristics of C as well.However, for this purpose, the applied voltage must be artificially changed, so It is generally considered that it is not suitable for non-linear compensation.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情【考慮してなされ次もので、そ
の目的とするところは、定電流駆動されるブリッジ回路
の圧力感度の温度変化【効果的に補償することのできる
簡易で実用性の高い半導体圧力置換装置を提供すること
にある。
The present invention has been made in consideration of these circumstances, and its purpose is to provide a simple and practical method that can effectively compensate for temperature changes in the pressure sensitivity of a bridge circuit driven by a constant current. The object of the present invention is to provide a high semiconductor pressure displacement device.

〔発明の概要〕[Summary of the invention]

本発明は圧力に感応して互いに異なる方向に抵抗変化【
示す少なくとも一組の@IE)半導体ゲージ抵抗を用い
て構成されたブリッジ回路に、上記圧力に感応して抵抗
減少【示す菖2の半導体ゲージ抵抗を直列に接続し、前
記圧力に感応して抵抗増加を示す第3の半導体ゲージ抵
抗を前記縞2の半導体ゲージ抵抗を介して前記ブリッジ
回路に並列に接続し、これらt定電流駆動するようにし
たものであるO 〔発明の効果〕 従って本発明によれば、簡易にしてセンサの圧力感度の
フルスケール精度【大幅に改善することができ、その効
果は絶大である。また半導体ゲージ抵抗Oピエゾ効釆【
、感度補償に係りなく十分に発揮させることができる。
The present invention changes resistance in different directions in response to pressure.
A bridge circuit constructed using at least one set of semiconductor gauge resistors shown in FIG. A third semiconductor gauge resistor showing an increase is connected in parallel to the bridge circuit via the semiconductor gauge resistor of stripe 2, and these are driven at a constant current. According to the authors, the full-scale accuracy of the sensor's pressure sensitivity can be greatly improved by simplifying the method, and the effect is enormous. Also semiconductor gauge resistance O piezo effect [
, can be fully utilized regardless of sensitivity compensation.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の実施例につき説明する。 Embodiments of the present invention will be described below with reference to the drawings.

114図は圧力人力pに対するブリッジ出力の関係の一
例【示すものである。第4図中実線Aはブリッジ回路を
定電流I、で動作させた場合の圧力出力であり、大きく
非直線化している。
Figure 114 shows an example of the relationship between the bridge output and the pressure force p. The solid line A in FIG. 4 is the pressure output when the bridge circuit is operated with a constant current I, and is largely non-linear.

しかして、フル圧印加時の出力【ΔVtr 、”/2圧
力印加時の圧力出力とフル出力ΔV、が直線的に変化し
たと仮定し良場合(一点破線B)の172圧力点での出
力とO差5sv・とすると、非直線性りは以下に示す関
係にある0 こO非直線性tブリッジ回路に流す電流を圧力入力に応
じて増加させて直線化するものとする。圧力入力零のと
きのブリッジ電流【夏・、フル圧印加時に電流IIy 
 に増加させることによって非直線性りが零にする場合
、 の関係【満たすことが必要である。
Therefore, assuming that the output when full pressure is applied [ΔVtr,''/2 and the full output ΔV change linearly, the output at the 172 pressure point in the good case (dotted line B) is Assuming that the O difference is 5 sv, the nonlinearity has the relationship shown below.The current flowing through the O nonlinearity t-bridge circuit is increased in accordance with the pressure input to linearize it.When the pressure input is zero, Bridge current [summer, current IIy when full pressure is applied]
If the nonlinearity is made zero by increasing , it is necessary to satisfy the following relationship.

jI5図はSl  の(100)面に拡散抵抗層【設は
九ダイヤ7′yム形圧カセ7葉において、圧力による抵
抗変化と非直線性ならびに、その非線形【線形化する九
めに必要な電lLO増加分【示し九ものである。ダイヤ
72ム形セン夛−では素子への応力はダイヤス2ムO形
状とそO板厚お工び印加圧力によって決る。ss  0
(100)面ダイヤフツムでは、抵抗変化が15−に達
する応力によって、上記ダイヤフツムが破壊するO1s
図O右例の縦軸は、前記Jl(3)式から求まる電流増
加【比で示したものである0 IN6mはこのような観点に立脚してなされ九本発明の
一実施例装置を示す概略構成図である。
Figure jI5 shows a diffusion resistance layer on the (100) plane of Sl. Electricity ILO increase (indicated by 9). In a diamond 72mm type sensor, the stress on the element is determined by the shape of the diamond 2mm, the thickness of the plate, and the applied pressure. ss 0
In the (100) plane diamond, the stress that causes the resistance change to reach 15- causes the diamond to break.
The vertical axis in the right example of Figure O is the current increase [expressed as a ratio] determined from the Jl (3) formula. FIG.

この装置は歪ゲージブリッジ回路1に定電流で作動させ
、更に圧力感度の直線補償を行う1うにし九ものである
。即ちこの装置は圧力を受けて(r±jr)に変化する
4つの第1の半導体ゲージ抵抗によりフルブリッジ回路
1【構成している。
This device operates the strain gauge bridge circuit 1 with a constant current and further linearly compensates for pressure sensitivity. That is, this device is constructed of a full bridge circuit 1 by four first semiconductor gauge resistors that change (r±jr) in response to pressure.

そして印加圧力によって(R+−)R1)に抵抗変化す
るJllI2の半導体ゲージ抵抗4を上記ブリッジ回路
1に直列に接続し、更に、(R3+ΔRt )に抵抗変
化するJISの半導体ゲージ抵抗5t−上記#2の半導
体ゲージ抵抗4t−介して前記ブリッジ回路1に並列K
JI絖して構成される0これらO圧力検出用のゲージ抵
抗r1直線性補償用抵抗RIsおよびR,は全て同一シ
リコン基板上に設けられている。尚、図中6は、上記装
置を定電流駆動する電源である。
Then, a JllI2 semiconductor gauge resistor 4 whose resistance changes to (R+-)R1) depending on the applied pressure is connected in series to the bridge circuit 1, and a JIS semiconductor gauge resistor 5t whose resistance changes to (R3+ΔRt) - the above #2 K is connected in parallel to the bridge circuit 1 through the semiconductor gauge resistor 4t.
These gauge resistors r1 for pressure detection, resistors RIs and R for linearity compensation, which are constructed by JI, are all provided on the same silicon substrate. Note that 6 in the figure is a power source for driving the above device with a constant current.

116!Elの構成において、圧力無印加時の基準抵抗
t−r=4000Bとし、圧力を印加するにつれてブリ
ッジ回路1の電流増加【無印加時の霞流に対する比で示
し九のが17図に示す特性である。但しここではR,=
4rΩとし、”*にパラメータとしている。破線は前記
jIs図で示した必要補償電流比である。また、第6図
に示される全回路系に流れる定電流【10、圧力検出ブ
リッジ回路1に流れる電流は、圧力無印加時で’ro%
圧力印加時で1r、シて与えられるものとする。
116! In the configuration of El, the reference resistance t-r when no pressure is applied is set as 4000B, and as pressure is applied, the current in the bridge circuit 1 increases. be. However, here R,=
4rΩ, and "*" is the parameter.The broken line is the required compensation current ratio shown in the jIs diagram above.Also, the constant current flowing through the entire circuit system shown in FIG. The current is 'ro% when no pressure is applied.
It is assumed that 1r is given when pressure is applied.

またJIB図は第6図お↓び菖7図に示される条件で、
補償【施し艮後のブリッジ回路10残留非締形性である
。一般に、金属の歪ゲージに比べて、81  などの半
導体単結晶ではピエゾ抵抗効果による歪感度が大きいの
が特徴であるが、グイヤフツム形のセンサーでは出力む
非線形化で効果を十分に発揮できないoしかし本装置に
よればjIs図に示すごとく、ピエゾ感度【十分に発揮
させることが出来る0ちなみに計測器として許容し得る
誤差は±1%FB  と嘗われている。この為従来のグ
イヤフツム形圧力センナーでは、この許容lK差が出力
む非線形化で左右され、第8図かられかる↓うに無補償
では抵抗感度t5%程度までしかとれない。これに対し
て本装置によれば、その抵抗感度kll〜12チまで高
く取り得るので、零点、感度などの温度ドリフトに対す
るフルスケール精度忙2倍以上に向上させることができ
る。しかもセンサーの生産性の面では、そOtP貿りの
向上1図ることかでと、低コスト比【促進し得るという
実用上絶大なる利点が奏せられる0 尚、本発明は上記実施例に限定されるものではない。例
えばブリッジ回路1を構成する半導体ゲージ抵抗に1組
とし、ハーフブリッジ回路【実現することもできる。ま
た各半導体ゲージ抵抗の抵抗値は仕様に応じて定めれば
1いものであるoilするに本発明はその要旨を逸脱し
ない範囲で種々変形して実施することができる。
In addition, the JIB diagram is under the conditions shown in Figure 6 and Figure 7.
Compensation [Residual non-clamping property of the bridge circuit 10 after application. In general, compared to metal strain gauges, semiconductor single crystals such as 81 have greater strain sensitivity due to the piezoresistive effect, but Guyaftum type sensors cannot fully demonstrate their effectiveness due to nonlinear output. According to this device, as shown in the jIs diagram, piezo sensitivity [0 which can be fully demonstrated] Incidentally, the allowable error as a measuring instrument is said to be ±1% FB. For this reason, in the conventional Guyaftum type pressure sensor, this allowable lK difference is affected by the nonlinearity of the output, and as shown in Figure 8, the resistance sensitivity can only be achieved up to about t5% without compensation. On the other hand, according to the present device, the resistance sensitivity can be as high as kll to 12, so that the full-scale accuracy with respect to temperature drift of zero point, sensitivity, etc. can be more than doubled. Moreover, in terms of productivity of sensors, it is possible to improve the OTP trade and to achieve a great practical advantage of promoting a low cost ratio.The present invention is limited to the above embodiments. It is not something that will be done. For example, a half-bridge circuit can be realized by using one set of semiconductor gauge resistors constituting the bridge circuit 1. Further, the resistance value of each semiconductor gauge resistor is determined according to the specifications.However, the present invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of drawings]

JI1図は従来装置〇−例を示す構成図、石2図は従来
装置の動作特性【示す図、第3因は圧力感度の温度依存
性と拡散S度との関係倉示す図、第4図および第5図は
非線形補償特性を示す図、第6図は本発明の一実施例装
置の概略構成図、#I7図お↓びWJ8図はそれぞれ本
装置の動作特性娶示す図である。 1・・・ブリッジ回路(第1の半導体ゲージ抵抗)、4
・・・1s2の半導体ゲージ抵抗、5・・・第3の半導
体ゲージ抵抗、6・・・定電流電源。 出願人代理人 弁理士  鈴 江 武 彦牙3図 T耗#B鷹磨(%m1) オ6図 オフ図 十8図 圧力による抵9し1孜。
Figure JI1 is a configuration diagram showing an example of the conventional device, Figure 2 is a diagram showing the operating characteristics of the conventional device, and the third factor is a diagram showing the relationship between the temperature dependence of pressure sensitivity and the degree of diffusion S. Figure 4 5 and 5 are diagrams showing nonlinear compensation characteristics, FIG. 6 is a schematic configuration diagram of an embodiment of the device of the present invention, and Figures #I7 and WJ8 are diagrams showing the operating characteristics of the device, respectively. 1... Bridge circuit (first semiconductor gauge resistor), 4
. . . 1s2 semiconductor gauge resistance, 5 . . . third semiconductor gauge resistance, 6 . . . constant current power supply. Applicant's agent Patent attorney Suzue Takehiko Hikoga 3rd figure T wear #B Takama (%m1) 6th figure off figure 18 resistance due to pressure 9th grade.

Claims (1)

【特許請求の範囲】 圧力に感応して互いに異なる方向に抵抗変化を示す少な
くとも一組の第1の半導体ゲージ抵抗を用いて構成され
九ブリッジ回路と、このブリッジ回路に直列に接続され
前記圧力に感応して抵抗減少【示す第2の半導体ゲージ
抵抗と、こogzの半導体ゲージ抵抗【介して前記ブリ
ッジ回路に並列に接続され前記圧力に感応して抵抗増加
【示す93M)半導体ゲージ抵抗と【同一半導体基板上
に形成してなる圧力感応素子、およびこの圧力感応素子
【定電流駆動してなる電at臭備したこと【特徴とする
半導体圧力変換装置0
[Scope of Claims] A nine-bridge circuit configured using at least one set of first semiconductor gauge resistors exhibiting resistance changes in mutually different directions in response to pressure; A second semiconductor gauge resistor (indicated by 93M) whose resistance decreases in response to the pressure, and a second semiconductor gauge resistor (indicated by A pressure sensitive element formed on a semiconductor substrate, and a semiconductor pressure transducer characterized by a pressure sensitive element [equipped with an electric current driven by constant current]0
JP6509382A 1982-04-19 1982-04-19 Semiconductor pressure transducer Granted JPS58182529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6509382A JPS58182529A (en) 1982-04-19 1982-04-19 Semiconductor pressure transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6509382A JPS58182529A (en) 1982-04-19 1982-04-19 Semiconductor pressure transducer

Publications (2)

Publication Number Publication Date
JPS58182529A true JPS58182529A (en) 1983-10-25
JPH0419494B2 JPH0419494B2 (en) 1992-03-30

Family

ID=13276957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6509382A Granted JPS58182529A (en) 1982-04-19 1982-04-19 Semiconductor pressure transducer

Country Status (1)

Country Link
JP (1) JPS58182529A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253279A (en) * 1984-05-29 1985-12-13 Toyota Central Res & Dev Lab Inc Measuring instrument for strain in semiconductor
JPS6122223A (en) * 1984-07-10 1986-01-30 Sumitomo Electric Ind Ltd Strain sensor
JPS61212740A (en) * 1985-03-18 1986-09-20 Yokogawa Electric Corp Semiconductor pressure converter
JPS61215935A (en) * 1985-03-22 1986-09-25 Yokogawa Electric Corp Semiconductor pressure converting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253279A (en) * 1984-05-29 1985-12-13 Toyota Central Res & Dev Lab Inc Measuring instrument for strain in semiconductor
JPH0337750B2 (en) * 1984-05-29 1991-06-06 Toyoda Chuo Kenkyusho Kk
JPS6122223A (en) * 1984-07-10 1986-01-30 Sumitomo Electric Ind Ltd Strain sensor
JPH0542613B2 (en) * 1984-07-10 1993-06-29 Sumitomo Electric Industries
JPS61212740A (en) * 1985-03-18 1986-09-20 Yokogawa Electric Corp Semiconductor pressure converter
JPH0445059B2 (en) * 1985-03-18 1992-07-23 Yokogawa Electric Corp
JPS61215935A (en) * 1985-03-22 1986-09-25 Yokogawa Electric Corp Semiconductor pressure converting device
JPH0445060B2 (en) * 1985-03-22 1992-07-23 Yokogawa Electric Corp

Also Published As

Publication number Publication date
JPH0419494B2 (en) 1992-03-30

Similar Documents

Publication Publication Date Title
US4173900A (en) Semiconductor pressure transducer
US4337665A (en) Semiconductor pressure detector apparatus with zero-point temperature compensation
JPS62223601A (en) Semiconductor strain gauge bridge circuit
JPH038482B2 (en)
KR20200033190A (en) Amplifier with common mode detection
US3482197A (en) Pressure sensitive device incorporating semiconductor transducer
JPS58182529A (en) Semiconductor pressure transducer
JPS6255629B2 (en)
JP3041829B2 (en) Pressure sensor
JPH03220402A (en) Detecting circuit of strain of semiconductor
JPS60144632A (en) Temperature compensating circuit
RU2342642C1 (en) Pressure detector
RU2165602C2 (en) Semiconductor pressure transducer
JPH0851328A (en) Small signal amplifier circuit
JPH02150732A (en) Compensation circuit for pressure transducer
JPS62242801A (en) Load transducer provided with nonlinearity compensating function
KR830001352B1 (en) Semiconductor pressure detector with zero temperature compensation
SU1610328A1 (en) Strain-measuring device
SU401291A1 (en) Strain gauge
JPS62251604A (en) Nonlinearity compensating method for load transducer
JPH06742Y2 (en) Semiconductor pressure transducer
JP2639101B2 (en) Pressure detector
JPS61212740A (en) Semiconductor pressure converter
JP2001255215A (en) Method for compensating nonlinearity of wheatstone bridge
JPH0560672B2 (en)