JPS58182330A - Modem training system - Google Patents
Modem training systemInfo
- Publication number
- JPS58182330A JPS58182330A JP6470982A JP6470982A JPS58182330A JP S58182330 A JPS58182330 A JP S58182330A JP 6470982 A JP6470982 A JP 6470982A JP 6470982 A JP6470982 A JP 6470982A JP S58182330 A JPS58182330 A JP S58182330A
- Authority
- JP
- Japan
- Prior art keywords
- transmission
- segment
- signal
- training
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/1438—Negotiation of transmission parameters prior to communication
- H04L5/1446—Negotiation of transmission parameters prior to communication of transmission speed
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Computer Networks & Wireless Communication (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はモデムを利用したデータ伝送システムに係わ夛
、特に7丁りシ宅すデータの伝送に好適なデータ伝送シ
ステムにおけるモデムトレイエンダ方式に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a data transmission system using a modem, and more particularly to a modem tray-end system in a data transmission system suitable for transmitting data over multiple addresses.
電話回線−通して7アクシ建す信号等のデータを伝送す
る場合、電話回線は本来アナ冒グ信号である音声信号を
伝送する丸めのものでTo9、必ずしも7アクシ建り信
号等のデータを伝送する九めに最適化されたものでは7
&l/sことも一因となって、遅延歪、減衰歪等の種々
の回線品質の劣化が発生する。When transmitting data such as a 7-axis signal through a telephone line, the telephone line is a rounded type that transmits voice signals that are originally analog signals, and does not necessarily transmit data such as a 7-axis signal. The ninth most optimized version is 7.
&l/s is also a contributing factor, causing various deteriorations in line quality such as delay distortion and attenuation distortion.
モデム(変復調装置)は、送信側では入力されたファク
シ建す信号等のデータを変調して伝送路の帯域に合っ九
スペクトルの信号に変換し、受信側では受信された信号
を復調し゛て元の7アクシンリ信号勢のデータに再生す
る装置であるが、回線には種々の品質劣化要因があるの
で、モデムはとれらの回線の品質劣化を補償して元の信
号を正しく復調するために1データを伝送する前にモデ
ムトレイエンダを行う必要がある。A modem (modulator/demodulator) modulates input data such as a facsimile signal on the transmitting side and converts it into a nine-spectrum signal that matches the band of the transmission path, and on the receiving side demodulates the received signal and converts it to the original signal. This is a device that regenerates the data of the 7-axis signal, but since there are various quality deterioration factors in the line, the modem uses 1. A modem relay must be performed before transmitting data.
モデムトレイエンダは、一定のテスト信4t−モデムに
送って回線に生じた品質劣化を補償させる操作を行わせ
るものであるが、CCITTは9600bpm 、
7 N 0 0 1eps 、 4 8 0
0 kpm 、 2 4 0 0bpmの各伝
送速度について、それぞれトレイユングシーケンスおよ
びトレイニングに要する時間を予め一定に規定している
。The modem tracer sends a certain test signal to the 4t modem to compensate for the quality deterioration that has occurred in the line, but CCITT transmits a certain test signal at 9600 bpm,
7 N 0 0 1 eps, 4 8 0
For each transmission speed of 0 kpm and 2400 bpm, the training sequence and the time required for training are predetermined to be constant.
従って、回線の劣化状態に対応してトレイニング時間が
短縮できないため、劣化が少なく回線特性が比較的良好
な伝送路についてはトレイニング ・時間が長すぎ、全
体的な情報伝送時間としては損失が増大することになり
、逆に劣化が多く回線特性が悪い伝送路については、ト
レイニング時間がもう少し長ければトレイニングに成功
する場合も、トレイユング時間が一定に規定されている
なめ、その一定時間にトレイユングに成功できないため
、その伝送速度における伝送を放棄し、それよシも低い
伝送速度でデータ伝送を行わねばならなくなプ、中は)
情報伝送時間としては損失が増大するという不都金があ
った。Therefore, the training time cannot be shortened in response to the deterioration of the line, so the training time is too long for transmission lines with little deterioration and relatively good line characteristics, and there is a loss in the overall information transmission time. On the other hand, for transmission lines with a lot of deterioration and poor line characteristics, training may be successful if the training time is a little longer, but since the training time is specified as a constant, Since the data transmission cannot be successfully transmitted at that transmission speed, data transmission at that transmission speed must be abandoned and data transmission must be performed at an even lower transmission speed.
This has the disadvantage of increasing losses in terms of information transmission time.
本発明状従来のトレイニング方式の欠点を除去し、情報
伝送時間の損失を減少させてデージ伝送量を増加すゐこ
とのできるモデムトレイニング方式を提供することを目
的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a modem training method which can eliminate the drawbacks of conventional training methods, reduce loss of information transmission time, and increase data transmission amount.
このため、本発明は回線の品質、特性に応じてトレイユ
ング時間を可変にすること、す0ち、劣イヒが少く回線
特性が良好な場合はトレイニング時間を短くシ、回線特
性が悪い場合はトレイニング時間を長くすることにより
トレイニングを成功させ、情報伝送時間の遺失を少なく
し、データ伝送量を増加°させることを特徴とする。For this reason, the present invention makes the training time variable according to the quality and characteristics of the line. The present invention is characterized by making training successful by lengthening the training time, reducing loss of information transmission time, and increasing the amount of data transmission.
以下、本発明を図面を参照して説明する。Hereinafter, the present invention will be explained with reference to the drawings.
先ず、本発明の具体的な実施例を説明する前に、その概
!!を第1図乃至第3図によって説明する。First, before explaining specific embodiments of the present invention, let us first give an overview! ! will be explained with reference to FIGS. 1 to 3.
モデムトレイニングは、デー!受信のために必要な準備
作業を復調器に行わせるもので、各伝送速度によって異
なるが、主要な内容は次の三項目である。Modem training is a day! It causes the demodulator to perform the preparation work necessary for reception, and although it differs depending on the transmission speed, the main contents are the following three items.
(1)メイ建ンダ再生動作の確立即ちタイ建ングパ
・ルスの再生と同期確立を行うこと。(1) Establishment of the main construction regeneration operation, that is, the construction maintenance
・Regenerate Luz and establish synchronization.
(2)キャリア再生動作の確立即ち同期検波用のキャリ
ア再生を行うこと。(2) Establishing a carrier regeneration operation, that is, performing carrier regeneration for synchronous detection.
(3)自動等化器の補正動作の確立即ち入力データを整
形し、回線の歪により発生し九符号間干渉を補償するこ
と。(3) Establishing a correction operation of the automatic equalizer, that is, shaping the input data to compensate for nine intersymbol interferences caused by line distortion.
このうち、モデムトレイニングが成功するか否かを最も
左右するのは自動化器の補正動作の確立である。Of these, the most important factor that determines whether modem training is successful or not is the establishment of corrective actions by the automation device.
第1図は自動等化器の補正動作の説明図、第2図は自動
等化器の原理図である。送信側から第1図(、)で示す
ように、一定間隔Tの・ヤルス符号からなるデータが受
信側に伝送されると、回線に伝送歪がない場合は、回線
の帯域幅が比較的狭いため各ノ量ルスは第1図(b)の
ようになる。(第1図(b)はノfルスP・についての
波形ムのみ示す。)各波形はそれぞれのタイミング時点
において、それぞれのノヤルス振幅値に比例した振幅を
有するが、他のパルスのメイよング時点では全て振幅が
零となる。FIG. 1 is an explanatory diagram of the correction operation of the automatic equalizer, and FIG. 2 is a diagram of the principle of the automatic equalizer. As shown in Figure 1 (, ), when data consisting of Jars codes with a fixed interval T is transmitted from the transmitting side to the receiving side, if there is no transmission distortion on the line, the bandwidth of the line is relatively narrow. Therefore, each nominal pulse becomes as shown in FIG. 1(b). (Figure 1(b) shows only the waveforms for the pulse P.) Each waveform has an amplitude proportional to its respective pulse amplitude value at each timing point, but the amplitude of the pulses of the other pulses At this point, the amplitudes are all zero.
飼えば、パルスP・はt・においてのみ有限値をと夛、
その他のタイミング時点t! 、tl・・・’−1y1
−.・・・では全て振幅は零と表る。従って、時点t・
、tl、を曹・・・t−1、t−=・・・でサンプリ
ングすれば、正しく元のノlルス符号p、e pl a
PI・・・P−11P−*・・・が復調されることに
なる。しかしながら、回゛線から伝送歪を受けると、第
1図(@)に示すように1受信波形に歪が生じ、この九
めt・以外のタイミング時点においてもパルスP・成分
が存在することになる。他の/lルスPleP!・・・
K関しても同様に他のΔルスのタイミング時点に出力を
発生する。従って、時点t・でサンプリングするとΔル
スP・成分の他にP1+Ps・・・PI。Then, the pulse P has a finite value only at t,
Other timing points t! , tl...'-1y1
−. ...The amplitudes are all expressed as zero. Therefore, time t・
, tl, are sampled with t-1, t-=..., the original Norse code p, e pl a
PI...P-11P-*... will be demodulated. However, when transmission distortion is received from the circuit, distortion occurs in the received waveform as shown in Figure 1 (@), and the pulse P component is present even at timings other than the ninth point t. Become. Other/l Lus PleP! ...
Regarding K, similarly, an output is generated at the timing of other Δ pulses. Therefore, when sampling at time t, in addition to the Δrus P component, P1+Ps...PI.
p、 ++・の成分が混入するとと即ち符号量干渉が生
じることになる。自動等化器は、このように回線から受
けた伝送歪を自動的に補正して符号量干渉をなくするよ
うにするものでやる。If components of p and ++ are mixed in, code amount interference will occur. The automatic equalizer is a device that automatically corrects the transmission distortion received from the line in this way to eliminate code amount interference.
第2図において、rは遅延時間Tt有する複数個の遅延
線D1〜D、からなるタッグ付遅延回路、M@−wM、
は倍率器、Σは合成回路である。この構成において、倍
率器M・の出力(第1図(・)、偵)のB)とこれを時
間Tだけ遅延した倍率器M1の出力(第1図0)のC)
を合成するに際し、倍率器M・とMlの値會調整すれば
、第1図(4)に示すように1時点tIにおいて波形皇
とC1−等振幅で逆位相にすることができる。そうする
と、合成波形は時点t1において零となるので時間t1
における符号量干渉は除去される。In FIG. 2, r is a tagged delay circuit consisting of a plurality of delay lines D1 to D having a delay time Tt, M@-wM,
is a multiplier, and Σ is a synthesis circuit. In this configuration, the output of the multiplier M (B in Fig. 1 (-)) and the output of the multiplier M1 delayed by time T (C) in Fig. 1 0)
When synthesizing, by adjusting the values of the multipliers M and Ml, it is possible to make the waveforms have the same amplitude and opposite phases as C1- at one time point tI, as shown in FIG. 1 (4). Then, the composite waveform becomes zero at time t1, so time t1
The code amount interference in is removed.
次に、2Tだけ遅延した出力を加算し、倍率器M、の値
と共に倍率器M・ 2M1の値を調整すれば、合成波形
を時点t1およびt3において零にすることができる。Next, by adding the outputs delayed by 2T and adjusting the value of the multiplier M.2M1 as well as the value of the multiplier M, the composite waveform can be made zero at time points t1 and t3.
倍率器M、の出力を加算すると新九に時点tlに微小出
力が混入するので、この成分を打消すために%M1と共
KM・ 、Mlを調整することが必要になる。When the output of the multiplier M is added, a minute output is mixed into the new nine at time tl, so in order to cancel this component, it is necessary to adjust KM·, Ml together with %M1.
以下同様にして、倍率器M、〜M、の倍率値を調整しな
がらその出力を合成器Σで合成すれば、時点jl*jl
*js・・・j−1s t−= 1 ’−’における合
成波形の振幅を零にすることができる。鳳を限シなく多
くすれば、理論上、収斂条件を満足するかぎ多伝送歪を
受けても符号量干渉がなくなるように補償することがで
きる。しかし、そのためには無限時間が要求されるので
、符号量干渉量が実用上無視できる程度となるlの値が
設定される。Similarly, if the outputs of the multipliers M, ~M, are combined by the synthesizer Σ while adjusting the multiplier values, the time jl*jl
*js...j-1s t-=1 The amplitude of the composite waveform at '-' can be made zero. In theory, by increasing the number of signals without limit, it is possible to compensate so that code amount interference is eliminated even if key multi-transmission distortion that satisfies the convergence condition is received. However, since infinite time is required for this purpose, a value of l is set so that the amount of code amount interference can be practically ignored.
この補正操作は倍率器M、 % Mnの調整が相互に関
連しているので、手動で行うとすれば大変な時間を要す
るので、これを自動化したのが自動等化器で、これkよ
シ自動等化操作を高速化、標準化することができる。し
かし、回線特性が悪くなる程、自動等化器の補正操作に
要する時間およびタイ建ング再生、キャリア再生に要す
る時間が多くなプ、回線特性とトレイニング時間の関係
は第3図のようになる。従来のように、トレイニング時
間がTiに固定されている場合は、第3図に示すように
1自動勢化の可能な範囲はC・〜C1の範囲4C@定さ
れ、cl より回4m特性が劣化すればトレイ二ンダは
成功しないことになる。This correction operation involves the adjustment of the multipliers M and %Mn, so it would take a lot of time to do it manually, so an automatic equalizer is an automatic equalizer that automates this process. Automatic equalization operations can be sped up and standardized. However, the worse the line characteristics become, the more time it takes to correct the automatic equalizer, and the time required for tie-setting regeneration and carrier regeneration.The relationship between line characteristics and training time is as shown in Figure 3. Become. As in the past, when the training time is fixed to Ti, the possible range of 1 automatic activation is determined by the range 4C@ of C・~C1, as shown in Fig. 3, and the 4m characteristic is determined from cl. If it deteriorates, Treininda will not be successful.
本発明紘回線特性に応じてトレイニング時間を変化させ
ること釦より、即ち、回線特性が悪いときはトレイニン
グ時間を長くすることにより、回線特性が悪いときでも
トレイニングを成功させるようにし虎ものである。In the present invention, the training time can be changed according to the line characteristics using a button, that is, when the line characteristics are bad, the training time is lengthened, so that training can be performed successfully even when the line characteristics are bad. It is.
次に1本発明の具体的実施的を第4図乃至第6図に基づ
いて説明する。Next, a concrete implementation of the present invention will be explained based on FIGS. 4 to 6.
第4図は本発明の毫デムトレイユング方式の構成をブロ
ック図で示したもので、図において、10は送信側で、
デーメ発生器111変調器12、信号検出器13、送信
側全体の動作を制御するシーケンサ14によシ構成され
る。20は伝送する回線を示す。30は受信側で、復調
器(内部に図示しない自動等化器を含む)31、信号送
出器32、受信側全体の動作を制御するシーケンサ33
により構成される。FIG. 4 is a block diagram showing the configuration of the DM Trayung method of the present invention. In the figure, 10 is the transmitting side;
It is composed of a signal generator 111, a modulator 12, a signal detector 13, and a sequencer 14 that controls the entire operation of the transmitting side. 20 indicates a transmission line. 30 is a receiving side, which includes a demodulator (including an automatic equalizer (not shown) inside) 31, a signal transmitter 32, and a sequencer 33 that controls the entire operation of the receiving side.
Consisted of.
第4図の装置によるモデムトレイニング方式を第5図の
モデムトレイニングシーケンスのタイムチャートおよび
第6図に示す送信側のフローチャートによって説明する
。The modem training method using the apparatus shown in FIG. 4 will be explained with reference to the time chart of the modem training sequence shown in FIG. 5 and the flowchart on the transmitting side shown in FIG.
本実施例においては、次の3個のセグメントによりモデ
ムトレイニングシーケンスが構成されている。In this embodiment, the modem training sequence is composed of the following three segments.
(1)セグメン)1:180°位相反転連続波を伝送す
る。(1) Segment) 1: Transmits a 180° phase-inverted continuous wave.
(2)セグメント2:00,180°位相反転符号を伝
送する。(2) Segment 2: 00, transmits a 180° phase inversion code.
(3)セグメント3′:連続l信号をスクランブラした
信号を伝送する。(3) Segment 3': Transmits a scrambled signal of the continuous l signal.
このセグメン)1.2.3の内容は、CCITT規格V
27 TERにおけるセグメン)3,4.5に対応す
るものである。The contents of this segment) 1.2.3 are based on CCITT Standard V
This corresponds to segment 3 and 4.5 in 27 TER.
今、セグメント1により180°位相反転連続波が受信
1130に伝送されると、復調器31はこれを検出して
モデムトレイニングの開始を知り、先ずメイオング再生
の粗調整とキャリア再生の粗調整を行う。メイオングお
よびキャリアの位相のずれが予め決められた範囲内に入
ると、シーケンサ33は信号送出器32を駆動してセグ
メント2送信要求信号(以下、Ji@g21!求信号と
貫う)を発生させ、送信側10に返送する。一定ずれ範
囲内に入りたタイ7ング波およびキャリアはその位相値
でホールドされる。尚、180°位相反転連続波は自動
等化動作には適さないので、セグメント1の段階では自
動等化は行われない。Now, when a 180° phase-inverted continuous wave is transmitted to the receiver 1130 by segment 1, the demodulator 31 detects this and knows the start of modem training, and first performs coarse adjustment of Mayong regeneration and coarse adjustment of carrier regeneration. conduct. When the phase shift between the main ion and the carrier falls within a predetermined range, the sequencer 33 drives the signal transmitter 32 to generate a segment 2 transmission request signal (hereinafter referred to as Ji@g21! request signal). , and returns it to the sending side 10. The timing wave and carrier that fall within a certain deviation range are held at their phase values. Incidentally, since the 180° phase inverted continuous wave is not suitable for automatic equalization operation, automatic equalization is not performed at the stage of segment 1.
送信側10の信号検出器13は、セグメント1信号送信
中8・g2要求信号の受信をチェックしておI%II@
g!要求信号を受信するとシーケンサ14に通報し、セ
グメント2のシーケンスに入る。The signal detector 13 on the transmitting side 10 checks the reception of the 8-g2 request signal while transmitting the segment 1 signal.
g! When the request signal is received, it is notified to the sequencer 14 and the sequence of segment 2 is started.
もし、所定期間内(大体数I Q ms )にS・g2
9求信号が受信されないときは、シーケンサ14はタイ
ミングおよびキャリア再生不可能と判断して、その伝送
速度でのデータ伝送を放章して、それよシ一段低い伝送
速度に移行させる。S命g2*求信号が受信されると、
シーケンサ14はデータ発生器11を駆動してθ°、1
80°位相瓜転符号を発生し、変調器12で変調して回
線2を経由して受信側30に伝送する。受信側30の復
調器31はセグメント2信号を検知すると、粗調整され
たタイミング波およびキャリアの各位相について#密調
整を行い同期を確立させる。タイミング波とキャリアの
同期が確立すると、自動等化器の等化動作、即ち、第2
図に示した各倍率器の倍率値等の夕。If S・g2 within a predetermined period (approximately several I Q ms)
When the 9 request signal is not received, the sequencer 14 determines that the timing and carrier cannot be regenerated, discontinues data transmission at that transmission rate, and shifts to a transmission rate one step lower. When the S order g2* request signal is received,
The sequencer 14 drives the data generator 11 to generate θ°, 1
An 80° phase inversion code is generated, modulated by a modulator 12, and transmitted to a receiving side 30 via a line 2. When the demodulator 31 on the receiving side 30 detects the segment 2 signal, it performs fine adjustment for each phase of the coarsely adjusted timing wave and carrier to establish synchronization. Once the synchronization between the timing wave and the carrier is established, the equalization operation of the automatic equalizer, i.e., the second
The values of the magnification of each multiplier shown in the figure.
!常数の設定作業を行う。そして、符号量干渉量が所定
のレベル以下に入って醇化調整動作が終了すると、シー
ケンサ33は信号、送出器32を駆動してセグメント3
送信要求信号(以下、B@g 3要求信号と言う)を発
生させ、送信側10に返送す送信側10の信号検出器1
3は、セグメント2信号送信中8・g31!求信号の受
信をチェックしており、8@g 31!求信号を受信す
るとシーケンサ14に通報し、セグメント3のシーケン
スに入る。! Perform constant setting work. Then, when the code amount interference falls below a predetermined level and the meltening adjustment operation is completed, the sequencer 33 drives the signal transmitter 32 and sends a signal to the segment 3.
A signal detector 1 on the transmitting side 10 that generates a transmission request signal (hereinafter referred to as B@g3 request signal) and returns it to the transmitting side 10.
3 is transmitting segment 2 signal 8・g31! Checking for reception of request signal, 8@g 31! When the request signal is received, it is notified to the sequencer 14 and the sequence of segment 3 is entered.
もし、所定時間内に8・g3要求信号が受信されないと
きは、自動等化調整が不可能とシーケンサ14は判断し
て、その伝送速度でのデータ伝送を放棄して、それより
一段低い伝送速度によるデータ伝送に移行する。8@g
3要求信号を受信すると、シーケンサ14はデータ発生
器11および変調器12を駆動して連続1信号をスフ之
ンプルし九信号を発生し、受信側30に伝送する。If the 8.g3 request signal is not received within a predetermined period of time, the sequencer 14 determines that automatic equalization adjustment is impossible, abandons data transmission at that transmission rate, and transmits data at a transmission rate one step lower. Shift to data transmission by 8@g
Upon receiving the three request signals, the sequencer 14 drives the data generator 11 and the modulator 12 to sequentially compress the continuous one signal to generate nine signals and transmit them to the receiving side 30.
受信側30の復調器31はセグメント3g1号を受信す
ると、このセグメント3信号により自動等化調整管続行
する。セグメンナ2信号ではデータ4インド(位相)が
2個であるのに対し、セグメント3信号では2個以上、
即ち実際の生テ・−lにおけるデータIインドと同数(
例えば、CCITT規格では96 OObpsでは16
/イン) 、7200bpm 、 4800 bpsお
よび2400 bpmでは8ポイント)6るので等化*
a動作が速やかに行われる点が異なるが、等化調整の動
作原理はセグメント2のときと同じである。セグメント
3信号による等化調整動作が終了すると、シーケンサ3
3は信号送出器32を駆動してデータ送信ルーチン開始
信号(以下、データ要求信号と言う)全発生させ、送信
側10に返送する。When the demodulator 31 on the receiving side 30 receives the segment 3g1, it continues the automatic equalization adjustment tube based on this segment 3 signal. While the segmenter 2 signal has two data 4 inds (phase), the segment 3 signal has two or more data 4 inds (phase).
That is, the same number of data I India in the actual raw Te-l (
For example, according to the CCITT standard, 96 OObps is 16
/in), 7200 bpm, 4800 bps and 2400 bpm are 8 points) 6, so equalize *
The principle of operation of equalization adjustment is the same as in segment 2, except that operation a is performed quickly. When the equalization adjustment operation using the segment 3 signal is completed, the sequencer 3
3 drives the signal transmitter 32 to generate all data transmission routine start signals (hereinafter referred to as data request signals) and sends them back to the transmission side 10.
送信側10の信号検出器13は、セグメント信号送信中
データ要求信号の受信をチェ、りしてお夛、データ要求
信号を受信すると、シーケンサ14に通報し、通常のデ
ータ送信ルーチンに移行する。もし、所定期間内にデー
タ要求信号を受信しないときは、等化調整が不可能と判
断して、その伝送速度でのデータ伝送を放棄する点はセ
グメント2のジ−タンスと同じであるが、この段階でト
レイユングに失敗するととは少い。The signal detector 13 on the transmitting side 10 checks the reception of the data request signal during segment signal transmission, and upon receiving the data request signal, notifies the sequencer 14 and proceeds to the normal data transmission routine. If a data request signal is not received within a predetermined period, it is determined that equalization adjustment is impossible and data transmission at that transmission speed is abandoned, which is the same as the Geitance of segment 2. It is unlikely that Trayung will fail at this stage.
この場合、8@g2要求信号はセグメント1信号のスペ
クトルの間隙の周波数を、S@g3要求信号はセグメン
ト2信号のスペクトルの間隙の周波数を、データ要求信
号はセグメント3信号のスペクトルの間隙め周波数をそ
れぞれ選定して返送すればよい。會え、トレイニング信
号の所有するスペクトル(500〜2900 Hz )
のすぐ外側の周波数を用いてもよい。また、本実施例は
半二重通信方式管前提としてlI2明したが、全二重通
信方式でも勿論よく、その場合は8・g2要求信号醇の
返送信号に対するスペクトルの制限はなくなる。半二重
通信方式でもパックワード・チャネルをとれる変調方式
の場合はそれt使用すれdよい。In this case, the 8@g2 request signal is the frequency of the gap in the spectrum of the segment 1 signal, the S@g3 request signal is the frequency of the gap in the spectrum of the segment 2 signal, and the data request signal is the frequency of the gap in the spectrum of the segment 3 signal. All you have to do is select them and send them back. The spectrum of the training signal (500-2900 Hz)
Frequencies just outside of may also be used. Further, although this embodiment has been described assuming a half-duplex communication system, a full-duplex communication system may of course be used, and in that case, there is no spectrum restriction on the return signal of the 8.g2 request signal. If the modulation method allows a packed word channel even in a half-duplex communication method, it may be used.
尚、セグメント3の自lIb等化器のiJ整クシ−ケン
ス第6図で点線で囲った部分)は、セグメント2のシー
ケンスで行っ九自―等(ヒ調整の再111g的なもので
あるため、回線の劣化がそれ程大きくないときは、セグ
メント2のシーケンスで自動等化調整が良好に行われる
ので、そのような場合は消略して4よい。Note that the iJ adjustment sequence of the equalizer of segment 3 (the part surrounded by the dotted line in Figure 6) is performed using the sequence of segment 2. , when the deterioration of the line is not so large, automatic equalization adjustment is performed well in the sequence of segment 2, so in such a case, segment 4 can be omitted.
また、実用的見地から考えられると、9600bpm
、 7200 kpm 、 4800 bps 、 2
400bpsの伝送速度ではCCITY勧告の規定に従
ったモデムトレイニングを行うのが正統的であるから、
本発明はよシ高速のモデム、例えば12 Kbpa。Also, from a practical standpoint, 9600 bpm
, 7200 kpm, 4800 bps, 2
At a transmission speed of 400 bps, it is orthodox to perform modem training in accordance with the CCITY recommendations.
The present invention is suitable for use with high speed modems, such as 12 Kbpa.
14.4 Kbpi K適用するのが好適と考えられる
。It is considered suitable to apply 14.4 Kbpi K.
以上説明したように、本発gAは従来のように、トレー
ニング中のデータ受信のための準備作条の時間が固定化
されていないので次の効果がある。As explained above, the present gA has the following effects because the time for preparing for data reception during training is not fixed as in the conventional case.
(1) 各セグメントにおけるトレーニングシーケン
スが終了次第直ちに次のセグメントのトレーニングシー
ケンスに移行するので、可能な限りトレーニング時間を
短縮することができる。(1) As soon as the training sequence for each segment is completed, the training sequence for the next segment is started, so the training time can be shortened as much as possible.
(2) タイミングおよびキャリア再生動作が終了す
ると直ちに自動等化調整動作に移動できるので、トレー
ニングが成功するか否かを最も左右する自動等化調整に
従来よシも多くの時間をかけることができる結果、回線
の伝送特性に対し可能な限り高速の伝送速度でデータ伝
送ができる。(2) Since the automatic equalization adjustment operation can be started immediately after the timing and carrier regeneration operations are completed, more time can be spent on the automatic equalization adjustment, which has the greatest effect on whether or not the training is successful. As a result, data can be transmitted at the highest possible transmission speed given the transmission characteristics of the line.
(3) この結果、データ伝送時間即ち伝送情報−を
増加させることができる。(3) As a result, the data transmission time, that is, the transmission information can be increased.
第1図は自動等化器の動作波形図、第2図は自動等化器
の基本構成を示すプロ、り図、第3図は回1141性と
モデムトレイニング時間の関係を示す説明図、篤4図は
本発明のモデムトレイニング方式のブロック図、第5図
は本発明のモデムトレイニング方式のタイムチャート、
第6図は本発明のモデムトレイニング方式の送信側のフ
ローチャートである。
10・・・送信側、11・・・データ発生器、12・・
・変調器、13・・・信号検出器、14.33−・・シ
ーケンサ、20・・・伝送回線、30・・・受信側、3
1・・・復調器(含自動等化器)、32・・・信号送出
器、F・・・り、グ付遅延線、D1〜Dn・−・遅−延
時間Tの遅嬌線、y0〜Mm・・・倍率器、Σ・・・合
成器。
17図
第2図
第3図
8−回線特j注−良Fig. 1 is an operating waveform diagram of the automatic equalizer, Fig. 2 is a professional diagram showing the basic configuration of the automatic equalizer, Fig. 3 is an explanatory diagram showing the relationship between frequency 1141 and modem training time, Figure 4 is a block diagram of the modem training method of the present invention, and Figure 5 is a time chart of the modem training method of the present invention.
FIG. 6 is a flow chart of the transmitting side of the modem training method of the present invention. 10... Transmission side, 11... Data generator, 12...
・Modulator, 13... Signal detector, 14. 33-... Sequencer, 20... Transmission line, 30... Receiving side, 3
DESCRIPTION OF SYMBOLS 1... Demodulator (including automatic equalizer), 32... Signal transmitter, F... R, delay line with tag, D1 to Dn... Delay line of delay time T, y0 ~Mm... Multiplier, Σ... Synthesizer. Figure 17 Figure 2 Figure 3 Figure 8-Line Special Note-Good
Claims (1)
るに先立って行うモデムトレイニング方式において、モ
デムトレイニングのシーケンスを複数個のセグメントに
分割し、各セグメントに対して予め復調器が行うべきデ
ー!受信のための準備作業の時間配分を行い、受信側は
前記複数個のセグメントのうち先行するセグメント信号
の受信中に予め決められ九準備作業が終了すると、後続
のセグメントの送信要求信号を送信側に返送し、送信側
はこの送信要求信号を受信すると、後続するセグメント
信号の送信を開始することt%黴とするモデムトレイニ
/ダ方式。In a modem training method that is performed prior to transmitting data in a data transmission system using a modem, the modem training sequence is divided into a plurality of segments, and the data to be performed by the demodulator for each segment is determined in advance. The receiving side allocates time for preparatory work for reception, and when the preparatory work is completed while receiving the preceding segment signal among the plurality of segments, the receiving side sends a transmission request signal for the subsequent segment to the transmitting side. The modem train/data mode is such that when the transmitting side receives this transmission request signal, it starts transmitting the subsequent segment signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6470982A JPS58182330A (en) | 1982-04-20 | 1982-04-20 | Modem training system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6470982A JPS58182330A (en) | 1982-04-20 | 1982-04-20 | Modem training system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58182330A true JPS58182330A (en) | 1983-10-25 |
JPH053176B2 JPH053176B2 (en) | 1993-01-14 |
Family
ID=13265942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6470982A Granted JPS58182330A (en) | 1982-04-20 | 1982-04-20 | Modem training system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58182330A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS613534A (en) * | 1984-06-18 | 1986-01-09 | Ricoh Co Ltd | Data transmission system |
US5247546A (en) * | 1990-06-29 | 1993-09-21 | International Business Machines Corporation | Method and apparatus for automatic functional speed setting of a data circuit terminating equipment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5664550A (en) * | 1979-10-31 | 1981-06-01 | Hitachi Ltd | Information transfer system |
-
1982
- 1982-04-20 JP JP6470982A patent/JPS58182330A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5664550A (en) * | 1979-10-31 | 1981-06-01 | Hitachi Ltd | Information transfer system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS613534A (en) * | 1984-06-18 | 1986-01-09 | Ricoh Co Ltd | Data transmission system |
US5247546A (en) * | 1990-06-29 | 1993-09-21 | International Business Machines Corporation | Method and apparatus for automatic functional speed setting of a data circuit terminating equipment |
Also Published As
Publication number | Publication date |
---|---|
JPH053176B2 (en) | 1993-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920004132B1 (en) | Packetized ensemble modem | |
CA1324642C (en) | Modem for rf subscriber telephone system | |
JPS5842665B2 (en) | Echo/forward integrated equalizer | |
EP0225652B1 (en) | Automatic retrain method for a full duplex modem having an echo canceller and an equalizer | |
US4689787A (en) | Method of initially establishing burst acquisition in TDMA satellite communications system and arrangement therefor | |
JP2832188B2 (en) | Wireless communication system | |
US4672630A (en) | Training method of data receiving equipment | |
JP3389492B2 (en) | Simultaneous transmission device and simultaneous transmission method | |
JPH01503268A (en) | Time division multiple access (TDMA) communication system with adaptive equalizer control functionality | |
EP0137830B1 (en) | Dynamic noise reduction for video | |
JPS59115640A (en) | System for transmitting privacy signal | |
JPS58182330A (en) | Modem training system | |
JPH0216066B2 (en) | ||
GB2029675A (en) | Circuit arrangement for generating sampling pulses for use in receiving stations of data transmission | |
JPS60141033A (en) | Acoustic coupler | |
JP2827875B2 (en) | Microwave band signal generator | |
EP1220484A2 (en) | Transmitting/receiving system | |
JPS61238133A (en) | Phase adjusting system | |
JPS6328138A (en) | Communication method for power line carrier | |
JPH03278724A (en) | Data receiver | |
JP2850520B2 (en) | Loopback control method | |
JPS6342447B2 (en) | ||
JPS5859643A (en) | Bidirectional base band digital transmission system on 2-wired line | |
SU621105A1 (en) | Tv channel correcting device | |
JPS58195336A (en) | Communication system |