JPS58182066A - Method of heating hothouse and heat pump - Google Patents
Method of heating hothouse and heat pumpInfo
- Publication number
- JPS58182066A JPS58182066A JP6576582A JP6576582A JPS58182066A JP S58182066 A JPS58182066 A JP S58182066A JP 6576582 A JP6576582 A JP 6576582A JP 6576582 A JP6576582 A JP 6576582A JP S58182066 A JPS58182066 A JP S58182066A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- refrigerant
- greenhouse
- groundwater
- heat exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Central Heating Systems (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明に、農業用、家庭用等の温室の1暖房方法及びこ
れに直接に用いられるヒートポンプに関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for heating greenhouses for agricultural and domestic use, and a heat pump directly used for the heating method.
従来、この種の温室の暖房方法としては、温室内に配設
した放熱用配管内全循環する温室暖房用水を、温室外に
設置したM油ボイラーで加熱する方式が一般的である。Conventionally, as a heating method for this type of greenhouse, a method is generally used in which greenhouse heating water, which is circulated throughout heat dissipation piping arranged inside the greenhouse, is heated by an M oil boiler installed outside the greenhouse.
このx /Ii]ボイラーによる加熱方式の場合、近年
の石油費の高騰に伴って燃料費が嵩み経費的に者L<不
;1UICなっており、父、火災の心配もある等の欠点
がある。In the case of this heating method using a boiler, fuel costs have increased due to the recent rise in oil prices, and the cost has reached 1 UIC, and there are drawbacks such as the risk of fire. be.
本発明者はこのような問題に対処して先に地中J:り汲
み上げられた直後の地下水をヒートポンプの吸熱側に供
給して、ヒートポンプの熱媒体であるフレオン等を膨張
気化させ、この膨張気化せj−めた熱媒体を放熱側〕で
圧縮液化せしめ、その際の放熱で、このヒートポンプの
放熱側に循環供給される温室暖房用水を加熱するように
すると共に、上記の汲み上げられた地下水は再び地中個
所I/7:戻す温室の暖房方法について開発したが、本
発明はこれを更に改良したものである。In order to solve this problem, the present inventor first supplied groundwater that had just been pumped underground to the heat absorption side of the heat pump, expanded and vaporized Freon, etc., which is the heat medium of the heat pump, and The vaporized heat medium is compressed and liquefied on the heat dissipation side, and the heat dissipated at that time heats the greenhouse heating water that is circulated and supplied to the heat dissipation side of the heat pump. developed a heating method for a greenhouse that is placed underground again, and the present invention is a further improvement on this method.
即ち本発明は上記のヒートポンプの冷媒循環系路におい
て、
(1)冷媒を圧縮機により凝縮液化せしめて凝縮熱を発
生せしめる工程
龜)凝縮熱の発生により高温となった冷媒を負荷側の熱
媒体、即ち温室暖房用水と熱交換せしめて温室lv、房
用水用水熱すると共に冷媒温度を温室暖房用水の温度ま
で下降せしめる工程
(3)前工程の熱交換により温室暖房用水の温贋筐で下
降した冷媒をj彫1辰弁により急膨張させて冷媒の膨張
気化を開始させる工程
(4)この膨張気化を開始した冷媒を他の媒体、即ち地
下水と熱交換せしめて地下水の熱を吸収してその気化を
促進せしめる工程
(5)前工程の熱交換により地下水温度まで加温された
冷媒を前記の圧縮機に戻す工程
と全順次行う方法及び装置により所期の目的を収めたも
のである〇
更に本発明では一上記の(1)(2)の工程に次いで(
3′〕 前工程の熱交換により温室暖房用水の温度ま
で下降した冷媒を他の媒体、即ち地下水と熱交換せしめ
て該地下水を加温する冷媒の余熱利用の工程
(3″) この余熱利用の工程を経た冷媒を(3)の
場合と同じく膨張弁により急膨張させて冷媒の膨張気化
を開始させる工程
(4′)このj膨張気化を開始した冷媒を(3′)の工
程で加温された地下水と熱交換せしめて地下水の熱全吸
収してその気化を促進せしめる工程を経て(5)の工程
を順次行う方法及び装置によりその作用効果を一層向上
せしめたものである。これは(3′)の工程で温度を上
昇せしめられた地下水を(4′)の工程で冷媒と熱交換
せしめることから、(4′)の工程での熱交換作用を高
め、地下水の利用水量をA〜見に節減せしめうることに
よる。That is, in the refrigerant circulation system of the heat pump described above, the present invention provides the following steps: (1) A step in which refrigerant is condensed and liquefied by a compressor to generate heat of condensation; , that is, the step of exchanging heat with the greenhouse heating water to heat the greenhouse lv, room water and lowering the refrigerant temperature to the temperature of the greenhouse heating water. The process of rapidly expanding the refrigerant using a single cylinder valve to start the expansion and vaporization of the refrigerant (4) The refrigerant that has started expanding and vaporizing is caused to exchange heat with another medium, that is, groundwater, absorbing the heat of the groundwater. Step (5) of promoting vaporization The desired purpose is achieved by the step of returning the refrigerant, which has been heated to the groundwater temperature by heat exchange in the previous step, to the compressor, and the method and device that performs the entire process sequentially. In the present invention, following steps (1) and (2) above, (
3'] Process of utilizing the residual heat of the refrigerant, in which the temperature of the refrigerant, which has been lowered to the temperature of greenhouse heating water through heat exchange in the previous step, is exchanged with another medium, that is, groundwater, to warm the groundwater (3'') Step (4') in which the refrigerant that has undergone the process is rapidly expanded using an expansion valve to start expansion and vaporization of the refrigerant, as in (3). This method and device further improves the effectiveness of the process by sequentially performing the step (5) through the step of absorbing all the heat of the groundwater and promoting its vaporization by exchanging heat with the groundwater. Since the groundwater whose temperature has been raised in the step (') is exchanged with the refrigerant in the step (4'), the heat exchange effect in the step (4') is enhanced and the amount of groundwater used can be reduced from A to A. This is due to the savings that can be made.
以下本発明を図■に示す実施例によって説明するが、こ
れを〕1福用する温室の暖房システムを第1図によって
説明すると次の通りである。The present invention will be described below with reference to the embodiment shown in FIG.
5−
温室111′内の下面にはフィンパイプ(周面に多数の
円形放熱フィンを密間隔に取付けたパイプ)よりなる放
熱管2を蛇行状に配設し、これら放熱管2の出入口を、
温室外に設置したヒートポンプ3の放熱側(フレオンの
圧縮凝縮部)に接続して、ヒートポンプ3の放熱側と温
室1.1′内の放熱管2との間で温室暖房用水の循環系
路を形成している。5- Heat radiation pipes 2 made of fin pipes (pipe with a large number of circular radiation fins attached at close intervals on the circumferential surface) are arranged in a meandering manner on the lower surface of the greenhouse 111', and the entrances and exits of these heat radiation pipes 2 are arranged in a meandering manner.
Connect to the heat radiation side (Freon compression condensation part) of the heat pump 3 installed outside the greenhouse, and create a circulation system for greenhouse heating water between the heat radiation side of the heat pump 3 and the heat radiation pipe 2 inside the greenhouse 1.1'. is forming.
4は上記の温室暖房用水を循環せしめるためのポンプ、
5.5′は各温室の放熱管2への温室暖房用水の循環を
オン争オフないしは増減−節するための電磁弁である。4 is a pump for circulating the above greenhouse heating water;
5.5' is a solenoid valve for turning off or increasing/decreasing the circulation of greenhouse heating water to the heat radiation pipes 2 of each greenhouse.
上記のヒートポンプ3の吸熱側(フレオンの膨張気化部
)には、地中に打込まれた汲み上げ用バイブロ全通して
、ポンプ7で汲み上げられた地下水が供給接触され、こ
\で熱を奪われた地下水はバイブロとは別個の水平方向
(図示の場合)又は上下方向に離れた地中個所に打込ま
れた戻し用バイブ8を通して、重力により再び地中に戻
される。The heat absorption side (Freon expansion vaporization part) of the heat pump 3 is supplied with the groundwater pumped up by the pump 7 through the pumping vibro inserted into the ground, where heat is removed. The groundwater is returned to the ground by gravity through a return vibrator 8 that is driven into the ground at a location separate from the vibro in the horizontal direction (in the case shown) or in the vertical direction.
上記の戻し用バイブ8は図面では2本に分岐されている
が、未分岐のものでも、又3本以上に分岐し6−
たものでもよく、地下水を地中に戻す際の難易度によっ
て決定される。Although the above-mentioned returning vibe 8 is branched into two in the drawing, it may be unbranched or branched into three or more branches, and the number is determined depending on the difficulty level of returning groundwater underground. be done.
父、両バイブロ、8の地中における開口位置は、両パイ
プの地下水が混合するのを回避するに十分な間隔(水平
方向及び/又は水平方向)′f:隔て\設置することが
必要である。The underground opening positions of both vibros and 8 must be installed at a sufficient distance (horizontal and/or horizontal direction) to avoid mixing of the groundwater in both pipes. .
上記の装置によれば、バイブロを経て汲み上げられた地
下水は、ヒートポンプ3の吸熱側に接触して冷媒のフレ
オンを膨張気化せしめた後、バイブ8を経て再び地中に
戻されると共に、ヒートポンプ3の放熱側では、フレオ
ンの圧縮凝結による放熱によってこ\に接触循環してい
る暖房用水を加温するので、この加温された暖房用水は
、温室1.1′内の放熱管2を通る間に温室内を暖房す
ることになる。According to the above device, the groundwater pumped up through the vibro comes into contact with the heat absorption side of the heat pump 3 and expands and vaporizes the refrigerant Freon, and then returns to the ground via the vibrator 8. On the heat dissipation side, the heat dissipated by compression and condensation of Freon heats the heating water that is circulating in contact with this area, so this heated heating water passes through the heat dissipation pipe 2 in the greenhouse 1.1'. This will heat the greenhouse.
実施例1゜
ヒートポンプ(3)の冷媒循環系路を示している第2図
において先ず冷媒のフロンガスを圧縮機3−Aで圧縮凝
縮せしめると冷媒は凝縮熱の発生により110℃位に加
熱される(a)。この凝縮熱を第1の熱交換部3−Bで
入口2−Aより出口2−BK流れる温室暖房非水と熱交
換させると温室暖房用水は入口2−Aでの温度40℃(
i)が出口2−Bでの温度45℃(g)(水量12Ot
a度)まで加熱される。Embodiment 1 In Fig. 2 showing the refrigerant circulation system of the heat pump (3), first, the refrigerant fluorocarbon gas is compressed and condensed by the compressor 3-A, and the refrigerant is heated to about 110°C due to the generation of heat of condensation. (a). When this condensation heat is exchanged with the greenhouse heating non-water flowing from the inlet 2-A to the outlet 2-BK in the first heat exchange section 3-B, the temperature of the greenhouse heating water at the inlet 2-A is 40°C (
i) has a temperature of 45°C (g) at outlet 2-B (amount of water 12Ot)
heated to a degree).
一方冷媒はこの熱変換部3−Bでの熱交換により110
℃の温度から温室暖房用水の温度である40℃丑で温ル
°降下する。(b)40℃の温度まで下降した冷媒は膨
張弁3−cにより急膨張し膨張気化を始めるが、そのと
きの冷媒温度は0〜5℃である(C)。この温度0〜5
℃の冷媒は第2の熱交換部3−Dにおいて人口6−Aよ
り出口6−Bに流れる地下水(6)と熱変換し地下水よ
り熱を吸収して蒸発を促進され、こ\で気化し温度12
〜15℃の熱をもって(d)、再び圧縮機3−Aに入る
。その際上記の地下水に入口6−Aでの温度(汲み上げ
直後の温度17℃(f)から出口(i−Bでの温度 1
2℃(g)(利用水量80tM)まで温度が下降する。On the other hand, the refrigerant becomes 110% by heat exchange in this heat conversion section 3-B.
The temperature drops from 40°C to 40°C, which is the temperature of greenhouse heating water. (b) The refrigerant that has dropped to a temperature of 40°C rapidly expands by the expansion valve 3-c and begins to expand and vaporize, but the refrigerant temperature at that time is 0 to 5°C (C). This temperature 0-5
The refrigerant at ℃ undergoes heat exchange with the groundwater (6) flowing from the population 6-A to the outlet 6-B in the second heat exchange section 3-D, absorbs heat from the groundwater, and promotes evaporation. temperature 12
It reenters compressor 3-A (d) with heat of ~15°C. At that time, the temperature at the inlet 6-A (temperature 17°C (f) immediately after pumping) to the outlet (temperature at i-B 1
The temperature drops to 2°C (g) (80 tM of water used).
実施例2゜
本f/11は81!3南に示すように実施セ111にお
ける第2 1の熱交換部3−Dにこれに先行
する予備的熱交換部3−Eをもたせた例で、この熱交換
部3−Eは熱交換部3−Eを出た熱媒が保有する余分な
熱を汲み上げ直後の地下水に熱交換さすることを目的と
している。Embodiment 2 This f/11 is an example in which the 21st heat exchange section 3-D in the embodiment section 111 is provided with a preliminary heat exchange section 3-E preceding it, as shown in 81!3 south. The purpose of this heat exchange section 3-E is to heat-exchange the excess heat held by the heat medium that has exited the heat exchange section 3-E to the groundwater immediately after pumping up.
この熱交換部3−Bの作用により地下水の温度は入口6
−Aの所での17℃(f) 1−ら5〜10℃昇温しで
25℃()I)程度となり、これを熱交換部3−Dに使
用するため、この熱交換部3−Dの働きを高めうろこと
になる。この場合出口6−Bでの地下水の温度は10℃
程度(g′)となる〇一方予備的熱交換部3−Eを出た
冷媒の温度は25℃<e>に下降してから膨張弁3−C
に入ることKなる。このことは引いては熱交換部3〜D
で使用する地下水の利用水量を実施例の場合に比しA−
見に低減しうることKなり、地下水の利用量を30を程
度にまで大巾に節減しうろことKなる。Due to the action of this heat exchanger 3-B, the temperature of the groundwater is reduced at the inlet 6.
17℃ (f) at 1-A increases the temperature by 5 to 10℃ to about 25℃ ()I), which is used for heat exchange section 3-D. It will increase the function of D. In this case, the temperature of the groundwater at outlet 6-B is 10°C.
degree (g')〇Meanwhile, the temperature of the refrigerant leaving the preliminary heat exchange section 3-E drops to 25℃<e>, and then the expansion valve 3-C
It's K to enter. This also applies to heat exchange parts 3 to D.
A-
This means that the amount of groundwater used can be significantly reduced by as much as 30%.
第1図は本発明の適用される温室の暖房システムの系統
説明図、第2図は本発明の実施例1に係わるヒートポン
プの作動系統図、第3図は実施例2に係わるヒートポン
プの作動系統図である。
2−A・・・・・・・・・・・・・・・温室暖房用水入
口2−B・・・・・・・・・・・・・・・温室暖房用水
出口9−
3・・・・・・・・・・−・・・・・・・・・・・・ヒ
ートポンプ3−A・・・・・・・・・・・・・・・・・
・圧縮機3−B・・・・・・・・・・・・・・・・・・
第1の熱交換部3−c・・・・・・・・・・・・・・・
・・・膨張弁3−J〕・・・・・・・・・・−・・・・
・・・第2の熱交換部、3−E・・・・・・・・・・・
・・・・・・・予備的熱交換部6−A・−・・−・・・
・・・・・・・・・・地下水入口6−B・−・・・・・
・・・・・・・・・・地下水出口10−Fig. 1 is an explanatory system diagram of a greenhouse heating system to which the present invention is applied, Fig. 2 is an operational system diagram of a heat pump according to Embodiment 1 of the present invention, and Fig. 3 is an operational system of a heat pump according to Embodiment 2. It is a diagram. 2-A・・・・・・・・・・・・Greenhouse heating water inlet 2-B・・・・・・・・・・・・Greenhouse heating water outlet 9-3...・・・・・・・・・-・・・・・・・・・・・・Heat pump 3-A・・・・・・・・・・・・・・・・・・
・Compressor 3-B・・・・・・・・・・・・・・・・・・
First heat exchange section 3-c......
・・・Expansion valve 3-J〕・・・・・・・・・・・・・・・
...Second heat exchange section, 3-E...
......Preliminary heat exchange section 6-A...
・・・・・・・・・Groundwater inlet 6-B・・・・・・・・・
・・・・・・・・・Groundwater outlet 10-
Claims (3)
放熱管内を循環する温室暖房用水とをヒートポンプで熱
交換せしめることにより、当該循環水を加熱して温水と
なし、これを温室内の放熱管内全通過せしめる間にその
放熱によって温室内を暖房すると共に、上記のヒートポ
ンプで熱交換を終えた地下水を地中[戻すようにした温
室の暖房方法において、上記ヒートポンプは冷媒の循環
系路で該冷媒を圧縮機によす凌縮液化せしめ、次いでこ
れを温室暖房川水と熱交換せしめて前記の温室暖房川水
を加熱し、該温室暖房用水との熱交換を経た該冷媒を膨
張弁を経て急膨張させる前後又は後に前記の地下水と熱
交換せしめて該地下水による該冷媒の気化加温を行い、
次いで上記の圧縮機に戻すことを特徴とする温室の暖房
方法。(1) By using a heat pump to exchange heat between the groundwater pumped above ground and the greenhouse heating water circulating in the heat radiation pipes installed in the greenhouse, the circulating water is heated and turned into hot water, which is then used inside the greenhouse. In a greenhouse heating method in which the heat is radiated while the heat is passed through the radiator pipes, the greenhouse is heated, and the groundwater that has undergone heat exchange with the heat pump is returned to the ground. The refrigerant is liquefied by a compressor, then heat exchanged with greenhouse heating river water to heat the greenhouse heating river water, and the refrigerant that has undergone heat exchange with the greenhouse heating water is passed through an expansion valve. The refrigerant is vaporized and heated by the groundwater by exchanging heat with the groundwater before or after rapid expansion through the step,
A method of heating a greenhouse, characterized in that the heating is then returned to the compressor described above.
冷媒を圧縮液化すると共に凝縮熱を発生せしめるための
圧縮機と、該凝縮熱を負荷側の熱媒体と熱交換してこれ
を加熱する第1の熱交換部と、上記の熱交換部を経た冷
媒を急膨張せしめてその膨張気化を開始させる膨張弁と
、この膨張気化を開始した冷媒を地下水と熱交換して該
冷媒の気化加温を行わせる第2の熱交換部とを順次設け
たことを特徴とするヒートポンプ。(2) In a circulation system for a refrigerant such as fluorocarbon gas, a compressor is used to compress and liquefy the refrigerant and generate heat of condensation, and a compressor that heats the refrigerant by exchanging the heat of condensation with a heat medium on the load side. a heat exchanger section 1; an expansion valve that rapidly expands the refrigerant that has passed through the heat exchanger section and starts its expansion and vaporization; and a heat exchanger that exchanges heat with groundwater to vaporize and heat the refrigerant that has started the expansion and vaporization. A heat pump characterized in that a second heat exchange section is sequentially provided.
冷媒を圧縮液化すると共に凝縮熱を発生せしめるための
圧縮機と、該凝縮熱を負荷側の熱媒体と熱交換してこれ
を加熱する納1の熱交換部と、上記の熱交換部を経た冷
媒を地下水と熱交換して該地下水を加温する予備的熱交
換部と、この予備的熱交換部を経た冷媒を急膨張せしめ
てその膨張気化を開始させる膨張弁とこの膨張気化を開
始した冷媒を予備的熱交換部を経て加温された地下水と
熱交換し’7該冷媒の気化加温を行わせる第2の熱交換
部を順次設けたことを特徴とするヒートポンプ。(3) In a refrigerant circulation system such as a FFC, there is a compressor that compresses and liquefies the refrigerant and generates condensation heat, and a storage unit that heats it by exchanging the condensation heat with the heat medium on the load side. a preliminary heat exchange section that heats the refrigerant that has passed through the heat exchange section and heats the ground water; and a preliminary heat exchange section that rapidly expands the refrigerant that has passed through the preliminary heat exchange section and an expansion valve that starts expansion and vaporization; and a second heat exchange section that exchanges heat with the heated groundwater through a preliminary heat exchange section to heat the refrigerant that has started expansion and vaporization, and performs vaporization and heating of the refrigerant. A heat pump characterized by being installed sequentially.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6576582A JPS58182066A (en) | 1982-04-20 | 1982-04-20 | Method of heating hothouse and heat pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6576582A JPS58182066A (en) | 1982-04-20 | 1982-04-20 | Method of heating hothouse and heat pump |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58182066A true JPS58182066A (en) | 1983-10-24 |
Family
ID=13296436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6576582A Pending JPS58182066A (en) | 1982-04-20 | 1982-04-20 | Method of heating hothouse and heat pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58182066A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4718624U (en) * | 1971-04-06 | 1972-11-01 | ||
JPS51131941A (en) * | 1975-05-12 | 1976-11-16 | Shigeo Tamura | Heating device |
JPS5645257B2 (en) * | 1976-04-13 | 1981-10-24 |
-
1982
- 1982-04-20 JP JP6576582A patent/JPS58182066A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4718624U (en) * | 1971-04-06 | 1972-11-01 | ||
JPS51131941A (en) * | 1975-05-12 | 1976-11-16 | Shigeo Tamura | Heating device |
JPS5645257B2 (en) * | 1976-04-13 | 1981-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4383419A (en) | Heating system and method | |
US20030014987A1 (en) | Thermal storage apparatus and method for air conditioning system | |
JPH0949669A (en) | Space air conditioner for building | |
WO1997026491A1 (en) | Remora ii refrigeration process | |
JPS58182066A (en) | Method of heating hothouse and heat pump | |
GB2081861A (en) | Solar heating system | |
JPS5829397Y2 (en) | Air conditioning equipment | |
JPS6343662B2 (en) | ||
JP4001025B2 (en) | Water heater | |
JPS5824077Y2 (en) | liquefied natural gas evaporation equipment | |
GB2125158A (en) | Heat-exchanger device | |
JPS58182068A (en) | Air conditioner utilizing underground water | |
JP2945973B1 (en) | Heat transport device | |
JP3316859B2 (en) | Chemical heat storage system | |
JP3996434B2 (en) | Interregional heat supplement system | |
JPS6150212B2 (en) | ||
JPH06174272A (en) | Space heating/cooling system by use of heat accumulation type heat pump | |
JPS59158507A (en) | Heat-exchanging equipment of transformer | |
JPS5935761A (en) | Water cooling type heat pump | |
JPS6029871B2 (en) | Groundwater restoration method | |
JP2533913B2 (en) | Thermal storage refrigeration system | |
JPS5927168A (en) | Heat pump | |
CA2038928A1 (en) | Heat machine | |
JPS63209526A (en) | Cooling and heating apparatus for culture of plant | |
JPS60223505A (en) | Snow melting apparatus of road |