JPS58181765A - Manufacture of zircon sand - Google Patents

Manufacture of zircon sand

Info

Publication number
JPS58181765A
JPS58181765A JP57062928A JP6292882A JPS58181765A JP S58181765 A JPS58181765 A JP S58181765A JP 57062928 A JP57062928 A JP 57062928A JP 6292882 A JP6292882 A JP 6292882A JP S58181765 A JPS58181765 A JP S58181765A
Authority
JP
Japan
Prior art keywords
zircon
binder
added
present
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57062928A
Other languages
Japanese (ja)
Inventor
榊 敏
合田 薫
山口 恒雄
古川 邦男
森重 一生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omura Refractories Co Ltd
Harima Refractories Co Ltd
Original Assignee
Omura Refractories Co Ltd
Harima Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omura Refractories Co Ltd, Harima Refractories Co Ltd filed Critical Omura Refractories Co Ltd
Priority to JP57062928A priority Critical patent/JPS58181765A/en
Publication of JPS58181765A publication Critical patent/JPS58181765A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、ジルコン微粉からジルコン粗角を製造する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing zircon rough angle from zircon fine powder.

ジルコンは、耐火材料として優れた諸性質を有している
が、天然に産出するものは殆んどが1−以下のジルコン
サンドであり、このままでは耐火原料として不可欠な粗
粒子が得られない。
Zircon has excellent properties as a refractory material, but most of the naturally occurring zircon sand is 1- or less, and as it is, coarse particles essential as a refractory raw material cannot be obtained.

そこで従来は、一般にジルコンサンドおよびそれを粉砕
したジルコンフラワーなどのジルコン微粉に結合剤とし
て、粘土あるいはMgO、CaO等の焼結剤を添加して
混線、成形、乾燥後、焼成して粗角とし、これを粉砕・
両分することによって粗粒子を得ている。
Conventionally, therefore, clay or a sintering agent such as MgO or CaO was added as a binder to zircon powder such as zircon sand and zircon flour obtained by crushing the zircon sand, mixed wire, formed, dried, and fired to form rough squares. , crush this
Coarse particles are obtained by dividing into two parts.

しかし、従来の方法では乾燥後、および焼成後の粗角と
もに、その強度が不充分な−ことから、この種の原料の
焼成に用いられるロータリーキルンあるいはシャフトキ
ルンで焼成すると、炉壁や原料同志の摩擦で一部粉化す
る。まな、粗角から任意の粒径を得るためには、粉砕・
噛分しなければならへいが、強度が不充分なために、こ
の粉砕の際に必要以上に微粉化し、目的とする粗粒子の
収率が低かった。
However, in the conventional method, the strength of the rough corners after drying and after firing is insufficient. Therefore, when firing in a rotary kiln or shaft kiln used for firing this type of raw material, the furnace wall and raw materials Part of it becomes powder due to friction. In order to obtain a desired particle size from rough squares, crushing and
However, due to insufficient strength, the powder was pulverized more than necessary during pulverization, resulting in a low yield of the desired coarse particles.

さらに、従来では成形体乾燥後の強度を付与するために
は結合剤でおる粘土の添加量を10重量−以上と多くせ
ざるを得なかったので、その分ジルコンの含有率を低下
させていた。
Furthermore, in the past, in order to impart strength to the molded product after drying, it was necessary to increase the amount of clay used as a binder by more than 10% by weight, so the zircon content was reduced accordingly. .

本発明者らは、ジルコンクリンカーの製造における結合
剤として従来全く用いられたことのないアルミナセメン
トおよびまたは消石灰を添加すると、成形体乾燥後の強
度付与と粗角の焼結促進に著しい効果を示すことに着目
し、粗粒子の収率とンルコン含有量の高いジルコン粗角
の製造方法を確立したのである。
The present inventors have shown that adding alumina cement and/or slaked lime, which have never been used as a binder in the production of zircon clinker, has a remarkable effect on imparting strength after drying the compact and promoting sintering of rough corners. Focusing on this, they established a method for producing coarse zircon with a high yield of coarse particles and a high content of zircon.

即ち本発明はジルコン微粉にアルミナセメントおよび、
/または消石灰を外掛で0.5〜10電量嘩以下添加し
て混線、成形、乾燥後、焼成することを特徴とするジル
コン粗角の製造方法でおる。
That is, the present invention combines fine zircon powder with alumina cement and
A method for producing zircon rough square is characterized in that slaked lime is added in an amount of 0.5 to 10 couls or less, mixed, formed, dried, and then fired.

本発明における骨材としてのジルコン微粉は、天然に産
出したそのままのジルコンサンドに、充填性および粘涜
性を目的としてジルコンサンドを100μ以下に粉砕し
、ジルコンフラワーを10重M%以上組合わせるのがよ
い。心安によっては、さらにボーキサイト、アンダリュ
サイト等を少tm加してもよい。
The zircon fine powder used as the aggregate in the present invention is obtained by combining naturally produced zircon sand as it is, pulverized to 100μ or less for the purpose of filling and viscosity, and zircon flour of 10% by weight or more. Good. Depending on the safety, a small amount of bauxite, andalusite, etc. may be added.

結合剤として使用するアルミナセメントおよび消石灰は
、工業材料としていずれもよく知られたもので、市販品
で得られ、その添υ口瀘は、前記のジルコン微粉に対し
て外掛で0.5〜10!皺チ以下であり、さらに好まし
くは1〜5重皺−でおる。
The alumina cement and slaked lime used as binders are both well-known industrial materials and can be obtained commercially. ! It should be less than wrinkles, more preferably 1 to 5 wrinkles.

本発明におけるこれらの結合剤は、いずれもその水硬性
によって成形・乾燥後の強度を大巾に向上させる。乾燥
後の強度は、粘土を結合剤としたものに比べ、アルミナ
セメントでは2.5〜3倍、消石灰では2〜2.5倍で
ある。
All of these binders in the present invention greatly improve the strength after molding and drying due to their hydraulic properties. The strength after drying is 2.5 to 3 times that of alumina cement and 2 to 2.5 times that of slaked lime, compared to those using clay as a binder.

また燐酸後粗角は、粘土を結合剤にしたものに比ベアル
ミナセメントでは2〜2.5倍、消石灰では2倍の強度
となる。これは結合剤中のAZ、OsあるいはCaOと
、骨材中のZrO,成分とが反応して生成した物質の液
相生成温度が低く、これが焼結促進に作用しているもの
と考えられる。
In addition, the roughness after phosphoric acid is 2 to 2.5 times stronger with bare alumina cement and twice as strong with slaked lime as compared to those using clay as a binder. This is thought to be due to the low liquid phase formation temperature of the substance produced by the reaction of AZ, Os or CaO in the binder with ZrO and components in the aggregate, which acts to promote sintering.

一方、従来使用している粘土は水硬性がなく、しかも液
相生成温度も高い。従って、本発明より得られる粗角は
焼成中および粉砕時の粉化がきわめて少なく目的とする
粗粒子の収率が火白い。
On the other hand, conventionally used clays do not have hydraulic properties and have a high liquid phase formation temperature. Therefore, the coarse particles obtained by the present invention are extremely less likely to be powdered during firing and pulverization, and the yield of the desired coarse particles is high.

以上の本発明の作用効果は、結合剤が10!Itチ以下
の少ない添加量で顕著であり、従来のように多量の添加
によってジルコンの含有率を低下させることもない。
The above-mentioned effects of the present invention are as follows: The binder is 10! This is noticeable when the addition amount is as small as 100% or less, and unlike conventional methods, the zircon content does not decrease when added in a large amount.

本発明は以上のようにアルミナセメントおよび消石灰を
単独、組合わせのいずれでもよいが、得られ九クリンカ
ーの緻密性、強度の点で灼熱減量の少ないアルミナセメ
ントを添加したものがよシ優れている。
In the present invention, as described above, alumina cement and slaked lime may be used alone or in combination, but in terms of the compactness and strength of the resulting clinker, the one to which alumina cement is added has less loss on ignition. .

原料および結合剤を用い、以後は常法どおり、水3〜7
重量%と、パルプ廃液、CMC(カルボキシ・メチル・
セルロース)、テキストリンなどの結合剤を加える。こ
の場合の結合剤は成形直後の保形性を付与するためのも
ので、焼成時には焼失する。前記し九アルミナセメント
、消石灰のように焼成後もクリンカー中に残留して、ク
リンカーの強度を付与するものとは別である。
Using the raw materials and binder, add 3 to 7 ounces of water as usual.
Weight%, pulp waste liquid, CMC (carboxy methyl
Add a binder such as cellulose) or texturin. The binder in this case is used to provide shape retention immediately after molding, and is burned away during firing. This is different from those mentioned above, such as alumina cement and slaked lime, which remain in the clinker even after firing and add strength to the clinker.

次いでプレス、造粒機等で成形し、100〜200C程
度で充分乾燥した後、1500〜1700C程度で焼成
して粗角とする。この焼成は、工業的に殖産する場合は
、一般にロータリーキルン、ンヤフトキルン等が用いら
れる。
Next, it is molded using a press, granulator, etc., sufficiently dried at about 100 to 200 C, and then fired at about 1,500 to 1,700 C to form rough squares. For this firing, in the case of industrial production, a rotary kiln, a shaft kiln, etc. are generally used.

こうして得られた粗角は、任意の組径に調螢するために
粉砕後、−分する。
The rough angle thus obtained is crushed and divided into pieces in order to adjust it to an arbitrary set diameter.

次に本発明実施例と従来例訃よび実験例を示す。Next, examples of the present invention, conventional examples, and experimental examples will be shown.

第1表は使用した原料と結合剤の化学分析値。Table 1 shows the chemical analysis values of the raw materials and binders used.

第2表は各側の配合割合と、それにより得られた成形体
、および粗角の物性を示す。
Table 2 shows the blending ratios on each side, the molded bodies obtained therefrom, and the physical properties of the rough corners.

各側はいずれも下記の条件で混線、成形および焼成を行
なった。
Each side was cross-wired, molded, and fired under the following conditions.

混練: 骨材に対して外掛でCMCをO,S S添加し
、ウェットパンを用いて1000−バッチ×10分混練
Kneading: CMC was added to the aggregate in an external manner, and the mixture was kneaded using a wet pan for 1000 batches for 10 minutes.

成形: フリクションプレスにより並形(114X13
0X60m)に成形。
Molding: Regular size (114 x 13
0x60m).

乾燥:  110CX20hr乾燥。Drying: 110CX20hr drying.

焼成二  1600Gでトンネルキルンによシ焼成。Firing 2: Fired in a tunnel kiln at 1600G.

注:第2表における試験方法 見II気孔率・カサ比重・・・ こ田R2205圧縮強
さ・・・・・・・・・・・・・・・・・・・・・JIS
 R2206粗粒の収率・・・ハンマーで予め、こぶし
大に粗砕した後、インペラーブレーカ−で一定時間粉砕
し、1閣の虜で篩分し、1闘以上の粒子を重iuで算出
し島 上記第2表の結果から明らかなように、結合剤としてア
ルミナセメントまたはおよび消石入音添加した本発明実
施例は、その添加量が10−以下でろっても、乾燥後・
焼成後の圧縮強さおよび緻密性にすぐれている。したが
って、粗粒の収率が多く、かつジルコン含有率が高い。
Note: Test method in Table 2 II Porosity/Bulk Specific Gravity... Koda R2205 Compressive Strength...JIS
Yield of R2206 coarse grains: After crushing the grains into fist-sized pieces with a hammer, crush them for a certain period of time with an impeller breaker, sieve them with a sieve, and calculate the particles with a size of 1 kg or more in weight IU. ShimaAs is clear from the results in Table 2 above, in the examples of the present invention in which alumina cement or silica silica was added as a binder, even if the amount added was less than 10-1, after drying.
Excellent compressive strength and compactness after firing. Therefore, the yield of coarse particles is high and the zircon content is high.

実験例1.2は、結合剤の添加量が10tIIを超える
本発明範囲を逸脱したもので、圧縮強さ、緻vIj性お
よび粗粒の収率のいずれもすぐれているが、結合剤の添
加量が多い分だけ、ジルコンの含有量を低下させ、耐火
原料としてジルコンの特性を充分発揮することができな
い。
Experimental example 1.2 deviates from the scope of the present invention in which the amount of binder added exceeds 10 tII, and the compressive strength, compactness, and yield of coarse particles are all excellent, but the addition of binder The larger the amount, the lower the zircon content, making it impossible to fully demonstrate the characteristics of zircon as a refractory raw material.

本発明実施例のうちでは、消石灰に比べてアルきナセメ
ントを使用し九ものが良好な結果が得られている。これ
Fi第1表の化学組成からも明らかなように両者の灼熱
減量に大巾な差異があるためである。
Among the examples of the present invention, good results were obtained in nine cases using alkina cement compared to slaked lime. This is because, as is clear from the chemical composition in Table 1 of Fi, there is a large difference in the loss on ignition between the two.

一方、粘土を結合剤とし九実験例3および従来例は、本
発明実施例に比べていずれの試験においても劣る。なお
、実験例1は結合剤を添加しなかつ九ために乾燥後の保
形性がなく、ジルコン含有量以外は測定できなかつ九。
On the other hand, Experimental Example 3 and the conventional example using clay as a binder were inferior to the inventive example in all tests. In addition, in Experimental Example 1, no binder was added, so there was no shape retention after drying, and it was impossible to measure anything other than the zircon content.

本発明方法は以上のとおり、ジルコン微粉からジルコン
粗粒を製造するにおいて、結合剤としてアルミナセメン
トおよびま九は消石灰を使用することにより、その水硬
性と焼結作用によって強■な組織強度とし、目的とする
ジルコン粗粒を高い収率で得ることかで色る。
As described above, the method of the present invention produces zircon coarse particles from zircon fine powder by using alumina cement and slaked lime as binders to achieve strong structural strength due to its hydraulic properties and sintering action. The key is to obtain the desired coarse zircon particles in a high yield.

また、本発明では使用する上記の結合剤は少ない添加量
でも効果的であることから、ジルコンの含有量を低下さ
せること本ない。
Further, in the present invention, the above-mentioned binder used is effective even in a small amount, so there is no need to reduce the zircon content.

Claims (1)

【特許請求の範囲】[Claims] ジルコン微粉にアルミナセメントおよび/を九は消石灰
を外掛で0.5〜lO重量s以下添加して混線、成形、
乾燥後、焼成することを%黴とするジルコン粗角の製造
方法。
Alumina cement and/or slaked lime are added to the zircon fine powder in an amount of 0.5 to 10 s by weight or less to cross wire, form,
A method for manufacturing zircon rough angle, which involves firing after drying.
JP57062928A 1982-04-15 1982-04-15 Manufacture of zircon sand Pending JPS58181765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57062928A JPS58181765A (en) 1982-04-15 1982-04-15 Manufacture of zircon sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57062928A JPS58181765A (en) 1982-04-15 1982-04-15 Manufacture of zircon sand

Publications (1)

Publication Number Publication Date
JPS58181765A true JPS58181765A (en) 1983-10-24

Family

ID=13214424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57062928A Pending JPS58181765A (en) 1982-04-15 1982-04-15 Manufacture of zircon sand

Country Status (1)

Country Link
JP (1) JPS58181765A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236197A (en) * 2008-03-26 2009-10-15 Suzuki Motor Corp Support structure of control cable
JP2020502024A (en) * 2016-12-14 2020-01-23 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Zircon-based sintered concrete

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236197A (en) * 2008-03-26 2009-10-15 Suzuki Motor Corp Support structure of control cable
JP2020502024A (en) * 2016-12-14 2020-01-23 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Zircon-based sintered concrete

Similar Documents

Publication Publication Date Title
WO1997006117A1 (en) Synthetic clay for ceramics and process for preparing the same
JPS61501908A (en) Lightweight ceramic materials for construction, their production methods and their uses
US3573940A (en) Fly ash based preformed support structures
CN103373856B (en) High-stress-strain low-creepage high-thermal-shock-resistance refractory brick and manufacturing method thereof
US2999759A (en) Magnesia bbick
US3360595A (en) Process for producing fused ceramic blocks
US2313746A (en) Process of making magnesia ceramics
US3008842A (en) Basic refractory insulating shapes
JPS6060972A (en) Refractories and low temperature baking method
CN1096503A (en) Compact high-alumina refractory brick
US3990901A (en) Method for the production of foam ceramics and shaped articles thereof
KR101444562B1 (en) Unfired carbon-containing agglomerate and production method therefor
JPS58181765A (en) Manufacture of zircon sand
SU1539185A1 (en) Ceramic composition for brick-making
JPS5988378A (en) Lightweight refractories and manufacture
US3264380A (en) Power press process for forming lightweight refractory articles, and articles so made
US3625721A (en) Permeable refractories
CN105461336A (en) Method for preparing firebricks
JPH0440095B2 (en)
US1713580A (en) of dayton
JPS59213669A (en) Manufacture of zircon-zirconia refrctories
US3778493A (en) Compacting refractory particles having a surface coating of gelled silicasol
JPH04367349A (en) Manufacture of spherical molding sand
US3345191A (en) Dolomite sinter and a process of its production
US2315198A (en) Heat resistive material, especially building material, and method of making same