JPS58181708A - Method for purifying boron nitride - Google Patents

Method for purifying boron nitride

Info

Publication number
JPS58181708A
JPS58181708A JP57063068A JP6306882A JPS58181708A JP S58181708 A JPS58181708 A JP S58181708A JP 57063068 A JP57063068 A JP 57063068A JP 6306882 A JP6306882 A JP 6306882A JP S58181708 A JPS58181708 A JP S58181708A
Authority
JP
Japan
Prior art keywords
heating
furnace
graphite
carbon
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57063068A
Other languages
Japanese (ja)
Other versions
JPS611362B2 (en
Inventor
Tadao Sato
佐藤 忠夫
Takashi Kuzuha
葛葉 隆
Kazushi Hirota
広田 和士
Akira Era
江良 皓
Toshihiko Ishii
石井 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP57063068A priority Critical patent/JPS58181708A/en
Publication of JPS58181708A publication Critical patent/JPS58181708A/en
Publication of JPS611362B2 publication Critical patent/JPS611362B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain superhigh purity BN without damaging heating furnaces by heating BN powder to a specified temp. in a heating furnace using a graphite furnace material and further heating it in a heating furnace using a furnace material generating no gas contg. carbon under specified conditions. CONSTITUTION:BN powder or a sintered BN body is heat treated at 2,000- 2,200 deg.C, preferably 2,050-2,150 deg.C in a heating furnace using a graphite furnace material such as a graphite heater to remove most of hydrogen, carbon impurities and oxygen. It is further heated to 2,000-2,200 deg.C, preferably 2,050-2,150 deg.C in an atmosphere having a higher partial pressure of nitrogen than the decomposition pressure of BN in a heating furnace using a furnace material generating no gas contg. carbon such as an Mo heater. Thus, superhigh purity BN can be manufactured over a long term without damaging the Mo heater, etc.

Description

【発明の詳細な説明】 ゛膚発明は窒化はう素の精製法、特に酸素及び炭素の不
純物を含まない窒化はう素の精製法に関する0 非晶質BN粉末には通常J−程度の酸素が含まれ、また
焼結体でも7〜l襲li度の酸素が含まれており、この
ほか少量の炭素も含まれている。また市販のhBN (
六方晶II BN 、以下hBNと記す)質の高純II
!BNでさえもO,S%程度の酸素が含まれている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for purifying boron nitride, particularly a method for purifying boron nitride that does not contain impurities of oxygen and carbon. In addition, the sintered body also contains oxygen with a strength of 7 to 1, and a small amount of carbon. In addition, commercially available hBN (
Hexagonal II BN (hereinafter referred to as hBN) high purity II
! Even BN contains oxygen at about O and S%.

、C:・本れらの酸素を含んだBNを原料として、高圧
厳木移によりOBN (立方晶型BN 、以下OBNと
記す)を製造すると、OBNの収率が悪いばかりで々く
、得られる製品の強度、光学的透明度も悪いものとなる
。また、この酸素が含有すると、高温においてBM材料
が金属材料と反応する。例えばコ襲の酸素を含むBNで
は1100℃以下でモリブデンと反応する。更に高温例
えば、zooo℃における電気絶縁性も悪い。BNは耐
熱性でありながら、−気絶練性がそれに比例して高くな
いのは、酸素炭素等の不純物を含有することに原因する
。超高一点材料便覧(日ソ通信社昭和5λ年発行)によ
ると、第1図に示す通りであり、従来のB N Fi3
00℃附框の温度では電気比抵抗値は高いが、1200
℃より急激に低下し、2000℃においては10Ωαを
下廻っている。
,C:・When OBN (cubic crystal type BN, hereinafter referred to as OBN) is produced by high-pressure wood transfer using these oxygen-containing BN as raw materials, the yield of OBN is very poor. The strength and optical clarity of the product will also be poor. Furthermore, when this oxygen is contained, the BM material reacts with the metal material at high temperatures. For example, BN containing oxygen reacts with molybdenum at temperatures below 1100°C. Furthermore, the electrical insulation properties at high temperatures, for example, zoooo°C, are also poor. Although BN is heat resistant, the -stunability is not proportionally high because it contains impurities such as oxygen and carbon. According to the Super High Single Point Material Handbook (published by Nisso Tsushinsha in 1939), as shown in Figure 1, the conventional B N Fi3
At a temperature of 00℃, the electrical resistivity value is high, but 1200℃
℃, and is below 10Ωα at 2000℃.

これらの欠点を防ぐためには、BN中に含まれている酸
素及び炭素等を可及的に除去することが必要である。
In order to prevent these drawbacks, it is necessary to remove oxygen, carbon, etc. contained in BN as much as possible.

従来、窒化はう素の精製法としては、窒化はう素粉末を
窒素雰囲気下で、モリブデンを炉材に用い九加熱炉を使
用して約コ/’00℃で加熱する方法が知られている。
Conventionally, as a method for purifying boron nitride, there is a known method in which boron nitride powder is heated in a nitrogen atmosphere using a 90°C heating furnace using molybdenum as the furnace material. There is.

該モリブデンを炉材に用い九加熱炉を使用するのはモリ
ブデンは、2≦OO℃程度の高温まで、炭素、酸素を発
生することがない高融点を持ち、加工性もよいためであ
る。しかし、原料BNに酸素を含有しているとモリブデ
ンと反応して加熱炉を短時間に劣化させる大きな欠点が
ある。
The reason why molybdenum is used as a furnace material and a nine-heating furnace is because molybdenum has a high melting point that does not generate carbon or oxygen up to a high temperature of about 2≦OO°C, and has good workability. However, if the raw material BN contains oxygen, it reacts with molybdenum and has a major disadvantage of causing the heating furnace to deteriorate in a short period of time.

4発明の目的は酸素及び炭素勢の不純物が検出限界以下
である超高純度のBN及びBN焼結体が得られる精製法
を提供するにある。
4. An object of the present invention is to provide a purification method capable of obtaining ultra-high purity BN and BN sintered bodies in which oxygen and carbonaceous impurities are below the detection limit.

本発明者はBNの粉末を加熱すると、C,111゜0等
の不純物はn2. B20 、 Co 、 co2. 
(32N、 。
The present inventor discovered that when BN powder is heated, impurities such as C, 111°0, etc. are n2. B20, Co, co2.
(32N, .

B20゜l B2O5等の気化物質となって脱出する状
況について研究して、次のことを明らかにし九。水素は
100℃の加熱により脱出し始め7200℃の加熱では
約7時間で、検出限界以下まで減少させることができる
。炭素は1900℃で1時間の処理で初期炭素濃度のl
Δ0以下まで、2時間で検出限界0.2重量襲以下にな
ると、減少速度は急に低下し、この微量の酸素を除去す
るには、2000℃以上であることが必要であり、B2
0.の沸点(20ダ3℃)の前後でほう素酸化物の気化
が急激に進行し率!素させる。
We studied the situation in which B20゜l escapes as a vaporized substance such as B2O5, and clarified the following.9. Hydrogen begins to escape when heated to 100°C, and can be reduced to below the detection limit in about 7 hours when heated to 7200°C. Carbon is treated at 1900°C for 1 hour to reduce the initial carbon concentration to l.
When the detection limit of 0.2% by weight falls below Δ0 in 2 hours, the rate of decrease suddenly decreases, and in order to remove this trace amount of oxygen, the temperature needs to be 2000°C or higher, and B2
0. The vaporization of boron oxide rapidly progresses around the boiling point (20 degrees Celsius) (3 degrees Celsius). Make it clear.

しかし、2200℃を超えるとBNの分解が起る。However, when the temperature exceeds 2200°C, decomposition of BN occurs.

高温加熱炉としては、黒鉛を炉材としたものと、毫、リ
ブデンを炉材としたものとがあり、黒鉛はJ200℃前
後の高温では、炭素を含む気化性物質を一生するので、
これを発生しないモリブデンを炉材とするものがよいと
されていた。
There are two types of high-temperature heating furnaces: those that use graphite as the furnace material, and those that use shell or livedenum as the furnace material.At high temperatures of around 200°C, graphite remains as a volatile substance containing carbon, so
It was thought that a furnace material made of molybdenum, which does not generate this, would be better.

しかし、不純物として酸素を含むBN粉末または焼結体
を、モリブデンヒーターで加熱すると、分解ガスとモリ
ブデンが反応してヒーターは短時間に損傷される。
However, when BN powder or a sintered body containing oxygen as an impurity is heated with a molybdenum heater, the cracked gas and molybdenum react and the heater is damaged in a short period of time.

本発明はこの欠点を改良し、予めBNの粉末まえは焼結
体を黒鉛ヒーター等の黒鉛炉材を用いた加熱炉を使用し
てコ000−λ200℃好ましくは、2030〜′Jl
jO℃で加熱処理して、水素、炭素の不純物久υ醗素の
大部分を除去し丸後、更に1モリブデンヒ一ター等炭素
を含むガスを発生しない炉材を用いた加熱炉により20
00〜2400℃好ましくはλoso Nalso℃に
加熱すると、超高純度のものが得られ、モリブデンヒー
ター等を損傷することなく、長期に亘って製造し得られ
ることが分った。
The present invention improves this drawback by preparing the BN powder in advance by heating the sintered body in a heating furnace using a graphite furnace material such as a graphite heater to
After heat treatment at 10℃ to remove most of hydrogen and carbon impurities, it was further heated for 20 minutes in a heating furnace using a furnace material that does not generate gases containing carbon, such as 1 molybdenum hysterer.
It has been found that when heated to 00 to 2400°C, preferably λosoNalso°C, an ultra-high purity product can be obtained and can be manufactured over a long period of time without damaging molybdenum heaters and the like.

炭素を含むガスを発生しない炉材としては、もちろんモ
リブデンの他にタングステン、安定化ジル→沖ア等も可
能であるが、モリブデンは加工性に外水・比較的安価で
ある点で好ましい。
In addition to molybdenum, tungsten, stabilized steel, etc. can also be used as a furnace material that does not generate carbon-containing gas, but molybdenum is preferable because it is easy to process, uses open water, and is relatively inexpensive.

−発明の方法で用いるモリブデンを炉材とした加熱炉の
実&態様を示すと第2図の通りである。
- The actual and embodiment of the heating furnace using molybdenum as the furnace material used in the method of the invention is shown in FIG. 2.

第、2図は加熱炉の縦断面図を示す。図において、/F
iBN焼結体るつば、コはモリブデン熱遮―板、3はモ
リブデン発熱体、参は原料のBHの粉末または焼結体、
jは高周波加熱コイル、これよりモリブデン発熱体3を
加熱する。乙は石英管、7は窒素ガス入口、lは測温用
ガラス窓、りは真空排気口、10はガス出口を示す。
2 shows a longitudinal sectional view of the heating furnace. In the figure, /F
iBN sintered body crucible, C is a molybdenum heat shield, 3 is a molybdenum heating element, 3 is a raw material BH powder or sintered body,
j is a high frequency heating coil which heats the molybdenum heating element 3; B is a quartz tube, 7 is a nitrogen gas inlet, l is a glass window for temperature measurement, li is a vacuum exhaust port, and 10 is a gas outlet.

黒鉛を炉材として用いた加熱炉は前記第2図に!けるモ
リブデンに代え黒鉛を使用したものである。
The heating furnace using graphite as the furnace material is shown in Figure 2 above! Graphite is used instead of molybdenum.

本発明の方法によると、得られるBNまたはその焼結体
は水素、炭素の不純物は勿論、酸素が殆んど含まれない
超高純度のものとなし得、またモリブデン等を炉材とす
る加熱炉も損傷することなく、長期に亘って使用可能で
ある。しかも、得られた絶縁比抵抗は、両加熱炉を使用
することにょ榊、単独炉使用では得られない。第1図に
示すように、 1too℃においてダ×104Ω1.コ
ooo℃においてコ×lθ4Ω国の高い値を示し、従来
このようう1 な高遵縁比抵抗の値を開示したものはなく、高純度のも
のであることを裏付けするものである。。
According to the method of the present invention, the obtained BN or its sintered body can be of ultra-high purity, containing almost no oxygen as well as impurities such as hydrogen and carbon. The furnace can also be used for a long time without being damaged. Moreover, the obtained insulation specific resistance cannot be obtained by using both heating furnaces or by using a single furnace. As shown in FIG. 1, at 1too°C, the resistance is 1. It exhibits a high value of 0×lθ4Ω at 00°C, and there has never been a disclosure of such a high specific resistance value, which confirms that it is a highly pure product. .

このように高純度であるため、高圧相転移によりOBN
を製造する原料として使用すると極めて好シ龜 収率でOBMが得られ、高、絶縁比抵抗が高いため、2
000℃附近の高温で使用する熱電対の絶縁;材孝して
も使用可能であり、更にまた反応性がないため溶融金属
を射出成形するノズル用材として使用し得られる等広く
高温産業分野において利用し得ら;れる優れた効果があ
る。
Due to this high purity, OBN
When used as a raw material for manufacturing OBM, OBM can be obtained with extremely good yield, and has a high insulation resistivity.
Insulation for thermocouples used at high temperatures around 000℃; can be used even if it is a material, and is also non-reactive, so it can be used as a nozzle material for injection molding of molten metal, and is widely used in high-temperature industrial fields. There are excellent effects that can be achieved.

実施例 第2図において、黒鉛を炉材としたものにおいて、BN
焼結体参をBN焼結体るつff/に入れ、加熱炉内を/
 torr以下の減圧下で高周波加熱フィルjにより黒
鉛を加熱して焼結体の温度を1700℃とし、2時間保
持して未反応のB1合成原料や焼結助剤として加え九酸
化物を殆んど除来した。次回に示す加熱炉で、雰囲気を
窒素ガス雰囲気きし、λ/jO℃で2時間加熱して、冷
却後、焼結体を取り出した。
In Fig. 2 of the embodiment, in the furnace material made of graphite, BN
Put the sintered body into the BN sintered body melter ff/, and heat the inside of the heating furnace.
Graphite was heated with a high-frequency heating filter under reduced pressure below torr to bring the temperature of the sintered body to 1700°C, and held for 2 hours to remove most of the nona-oxide, which was added as an unreacted B1 synthesis raw material and sintering aid. It was removed. In the heating furnace described next, the atmosphere was made into a nitrogen gas atmosphere and heated at λ/jO°C for 2 hours, and after cooling, the sintered body was taken out.

得られた焼結体は不純物が検出限界以下であり、その絶
縁比抵抗は2000℃において2x/θ4Ω1であった
The obtained sintered body contained impurities below the detection limit, and its insulation specific resistance was 2x/θ4Ω1 at 2000°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種の高融点材料の電気比抵抗と温度図である
。 / : BN焼結体るつホ、コニモリブデン熱遮蔽板、
J:モリブデン発熱体、 参:原料のBMの粉末また#′!焼結体、j:高周波加
熱コイル、6:石英管、 7:窒素ガス入口、l:fIA温用ガラス窓、り:真空
排気口、   /θ:ガス出0゜特許出願人  科学技
術庁無機材質新究所最1) 中  廣  吉 第2図
FIG. 1 shows electrical resistivity and temperature diagrams of various high melting point materials. / : BN sintered body melt, Konimolybdenum heat shielding plate,
J: Molybdenum heating element, Reference: Raw material BM powder and #'! Sintered body, j: high frequency heating coil, 6: quartz tube, 7: nitrogen gas inlet, l: glass window for fIA heating, ri: vacuum exhaust port, /θ: gas output 0° Patent applicant Science and Technology Agency Inorganic material Shinkyusho No. 1) Hiroyoshi Nakahiro Diagram 2

Claims (1)

【特許請求の範囲】 窒化ほう素の粉末または焼結体を、黒鉛を発熱体とし九
加熱炉を用いてコ0OONココOO℃で加熱し・:て1
.。 含有不純物を除去した後、更に炭素を含むガスを発生し
ない加熱炉で、窒化はう素の分解圧以上の窒素分圧を持
つ雰囲気中でJooo〜ココ00℃に加熱・?1擾こと
を特徴とする窒化はう素の精製法。
[Claims] Boron nitride powder or sintered body is heated at 0°C using a heating furnace using graphite as a heating element.
.. . After removing impurities, the nitriding is heated to 00°C in an atmosphere with a nitrogen partial pressure higher than the decomposition pressure of boron in a heating furnace that does not generate carbon-containing gas. A method for purifying boron nitride, which is characterized by the following steps:
JP57063068A 1982-04-15 1982-04-15 Method for purifying boron nitride Granted JPS58181708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57063068A JPS58181708A (en) 1982-04-15 1982-04-15 Method for purifying boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57063068A JPS58181708A (en) 1982-04-15 1982-04-15 Method for purifying boron nitride

Publications (2)

Publication Number Publication Date
JPS58181708A true JPS58181708A (en) 1983-10-24
JPS611362B2 JPS611362B2 (en) 1986-01-16

Family

ID=13218652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57063068A Granted JPS58181708A (en) 1982-04-15 1982-04-15 Method for purifying boron nitride

Country Status (1)

Country Link
JP (1) JPS58181708A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100403A (en) * 1985-10-28 1987-05-09 Kawasaki Steel Corp Production of fine powder of hexagonal boron nitride having high purity
JP2000042823A (en) * 1998-05-26 2000-02-15 Sumitomo Electric Ind Ltd Milling cutter and manufacture thereof
WO2014049955A1 (en) * 2012-09-28 2014-04-03 水島合金鉄株式会社 Hydrophilic and highly oil-absorbent boron nitride powder, production method therefor, and cosmetic

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100403A (en) * 1985-10-28 1987-05-09 Kawasaki Steel Corp Production of fine powder of hexagonal boron nitride having high purity
JP2000042823A (en) * 1998-05-26 2000-02-15 Sumitomo Electric Ind Ltd Milling cutter and manufacture thereof
WO2014049955A1 (en) * 2012-09-28 2014-04-03 水島合金鉄株式会社 Hydrophilic and highly oil-absorbent boron nitride powder, production method therefor, and cosmetic
JPWO2014049955A1 (en) * 2012-09-28 2016-08-22 水島合金鉄株式会社 Hydrophilic and oil-absorbing boron nitride powder for cosmetics, method for producing the same, and cosmetics
US9433565B2 (en) 2012-09-28 2016-09-06 Mizushima Ferroalloy Co., Ltd. Hydrophilic and highly oil absorbent boron nitride powder, method for manufacturing the same, and cosmetic

Also Published As

Publication number Publication date
JPS611362B2 (en) 1986-01-16

Similar Documents

Publication Publication Date Title
Slack et al. Ain single crystals
US4676968A (en) Melt consolidation of silicon powder
JPS6112844B2 (en)
JPH02188412A (en) Manufacture of crystal silicon nitride powder
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
JPS58181708A (en) Method for purifying boron nitride
KR20200100256A (en) Apparatus for manufacturing aluminum nitride single crystal and manufacturing method thereof
DeVries et al. Growth of aluminum oxide whiskers by vapor deposition
JPS6283306A (en) Transparent bn type ceramic material
CN110937605B (en) Boron carbide purification method
JPS6111886B2 (en)
JPS6059166B2 (en) Manufacturing method of boron nitride
US4806330A (en) Process for preparing high purity aluminum nitride
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
JPH04246136A (en) Method for refining high purity titanium
JPS58156521A (en) Manufacture of silicon for solar cell
JPS63103814A (en) Apparatus for producing sio fine powder
JPS602244B2 (en) Manufacturing method of rhombohedral boron nitride
JPS62143805A (en) Removal of chlorine and/or fluorine from silicon nitride powder
JP2003183076A (en) Method for manufacturing pyrolytic carbon or graphite- coated carbon material
Ellis Jr Vitreous Phosphorus
JPS6338541A (en) Refining method for indium
JP3907515B2 (en) Method for producing high-purity silicon nitride fine powder
JPS63147814A (en) Production of silicon
Akimoto et al. Preparation of uranium carbonitride by reaction of UC with ammonia