JPS58181545A - Tool damage detection controller - Google Patents

Tool damage detection controller

Info

Publication number
JPS58181545A
JPS58181545A JP6277482A JP6277482A JPS58181545A JP S58181545 A JPS58181545 A JP S58181545A JP 6277482 A JP6277482 A JP 6277482A JP 6277482 A JP6277482 A JP 6277482A JP S58181545 A JPS58181545 A JP S58181545A
Authority
JP
Japan
Prior art keywords
tool
time
breakage
pulse
cutting feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6277482A
Other languages
Japanese (ja)
Inventor
Takakatsu Honda
本多 隆勝
Toshihiko Shirai
白井 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enshu Ltd
Original Assignee
Enshu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enshu Ltd filed Critical Enshu Ltd
Priority to JP6277482A priority Critical patent/JPS58181545A/en
Publication of JPS58181545A publication Critical patent/JPS58181545A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50249Tool, probe, pen changer

Abstract

PURPOSE:To turn on an indicating light and simultaneously surely and automatically exchange tools of identical kind when a tool is damaged, by using a timer to change the displacement of the tool. CONSTITUTION:When a tool is damaged, an indicating light PL is turned on and a stop signal OUT is generated to send an identical-kind tool exchange instruction signal tc from a microcomputer CPU to a numerical controller NC. At that time, an identical-kind tool exchange instruction signal t'c is sent out from the numerical controller NC to a tool exchange arm 15 and a tool magazine to exchange tools of identical kind. After the exchange of the tools, a completion signal (h) is sent to the numerical controller NC and a flip-flop FF to reinstate it to turn off the indicating light PL and remove the stop signal OUT. After that, it is detected whether the new tool is damaged or not.

Description

【発明の詳細な説明】 本発明は自動工具交換装置付の工作機械において、工具
折損の有無を速やかに検出する工具折損検出の技術に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tool breakage detection technique for quickly detecting the presence or absence of tool breakage in a machine tool equipped with an automatic tool changer.

工具折損の検出技術には、特開昭54−37976号に
見るよう、各加工箇所における工具の切削送り開始位置
を前記各加工箇所の工作物加工面から所定量だけ後退し
た位置に定め、工具がこの切削送り開始位置から工作物
加工面に接触するまでに移動した移動量を各加工箇所ご
とに検出し、この移動量によって工具の折損を検出する
ものが提供されている。上記工具の移動量検出は、各加
工箇所ごとにプリセットカウンタでカウントし、このプ
リセットカウンタの計数値が零から設定値を越えて負に
なった時に、即ち設定値以上の移動量が検出された時に
、プリセットカウンタから出力信号を発してフリップ7
pツブをセットし、工具折損表示灯を点灯する。プリセ
クトカウンタのカウント数によって工具移動量を検出す
る技術における欠点は、プリセットカウンタの動作移動
状態を索引する回路を必要とし、これがために回路構成
を複雑にするばかりか、工具交換に伴って工具寸法に変
化を来し、この度に移動量設定器により新たな移動量に
設定しなおさなければならない。また、上記工具折損検
出方法では、工具折損した場合に表示灯が点灯して工具
折損を報知するにすぎない。
As shown in Japanese Patent Application Laid-Open No. 54-37976, the tool breakage detection technique involves setting the cutting feed start position of the tool at each machining location at a position that is retreated by a predetermined amount from the workpiece surface at each machining location, and There has been proposed a method in which the amount of movement of the tool from the cutting feed start position to the time it contacts the workpiece surface is detected for each machining location, and breakage of the tool is detected based on this amount of movement. The amount of movement of the tool described above is detected by counting with a preset counter for each machining location, and when the count value of this preset counter goes from zero to negative beyond the set value, that is, the amount of movement greater than the set value is detected. At the same time, an output signal is generated from the preset counter to flip 7.
Set the P knob and turn on the broken tool indicator light. The disadvantage of the technique of detecting the amount of tool movement based on the count number of the preset counter is that it requires a circuit that indexes the operational movement state of the preset counter, which not only complicates the circuit configuration but also causes the tool to change when the tool is replaced. Whenever a change occurs in the dimensions, the movement amount setting device must be set to a new movement amount. Moreover, in the tool breakage detection method, when a tool breaks, an indicator light is only turned on to notify that the tool is broken.

このため、工具折損が発生すると工作機械は停台してし
まい、同種工具の交換作用とこれによる工作機械の運転
続行が期待できない。
For this reason, when a tool breaks, the machine tool stops, and it is impossible to expect that the same type of tool will be replaced and that the machine tool will continue to operate.

本発明は上記従来技術がもつ工具折損検出の欠点に鑑み
てなされたもので、工具の移動量をタイマによって行い
、更に工具交換に伴う移動量の変更は予め設定した複数
個のタイマによって自動的に行うことを目的とする。そ
して、工具折損が生じろと同種工具の自動交換を行い工
作機械の運転続行を可能とすることに成功したものであ
る。
The present invention was made in view of the above-mentioned shortcomings in detecting tool breakage in the prior art.The amount of tool movement is determined by a timer, and changes in the amount of movement associated with tool replacement are automatically performed using a plurality of preset timers. The purpose is to Furthermore, we succeeded in automatically replacing tools of the same type in the event of tool breakage, allowing the machine tool to continue operating.

次に、本発明の工具折損検出制御装置を図面に示す実施
例で説明する。第1図において、DEは本発明工具折損
の検出制御装置であり、模型マシニングセンタHMの工
具折損検出を司る。横型マシニングセンタ囮は、ベッド
10.テーブル11、円テーブル12、コラム13、コ
ラムに係合して上下動する主軸14、工具交換アーム1
5及び工具貯蔵マガジン(図示ナシ)等から構成されて
おり、各軸のパルスモー タPMX、  PMY、  
PMZは数値制御装置NCがらの指令を各軸ドライブ回
路DX、 DY、 DZを介して入力し、テーブル(X
軸方向)11、円テーブル(Z軸方向)12、工具Tを
もつ主軸(Y軸方向)14を各々駆動する。2oは主軸
頭16に取付けられた接触検出器であり、工具Tの先端
がワークWK接触すると信号を発信し、この出方は接触
検出回路21で立ち上がりパルスとなってこの状態を維
持し、不接触状態になるとパルスが立ち下がる。22は
接触検出回路21の出力側に結ばれたインバータで、工
具Tの接触時にパルスが消滅し、不接触時にパルス(こ
れを接触パルスという)を次のアンド素子ANDに出力
する。23は複数時間設定器(多数組のタイマ)で、数
値制御装置NCから発信されるZ軸の送り信号fzと工
具種別信号teとにより作動すべきタイマと予め設定し
た時間が自動選択される。
Next, the tool breakage detection control device of the present invention will be explained with reference to embodiments shown in the drawings. In FIG. 1, DE is a tool breakage detection control device of the present invention, which controls tool breakage detection in the model machining center HM. The horizontal machining center decoy is bed 10. Table 11, rotary table 12, column 13, main shaft 14 that engages with the column and moves up and down, tool exchange arm 1
5, a tool storage magazine (not shown), etc., and each axis has a pulse motor PMX, PMY,
PMZ inputs commands from the numerical controller NC through each axis drive circuit DX, DY, and DZ, and outputs the command from the table (X
axial direction) 11, a rotary table (Z-axis direction) 12, and a main shaft (Y-axis direction) 14 having a tool T, respectively. 2o is a contact detector attached to the spindle head 16, which sends a signal when the tip of the tool T comes into contact with the work WK, and this output becomes a rising pulse in the contact detection circuit 21 to maintain this state and prevent failure. The pulse falls when it comes into contact. Reference numeral 22 denotes an inverter connected to the output side of the contact detection circuit 21. When the tool T makes contact, the pulse disappears, and when there is no contact, the inverter 22 outputs a pulse (referred to as a contact pulse) to the next AND element AND. Reference numeral 23 designates a multiple time setter (multiple sets of timers), which automatically selects the timer to be operated and a preset time based on the Z-axis feed signal fz and the tool type signal te sent from the numerical control device NC.

即ち、第3図に示すよう工具の切削送り速度νは工具の
種別(T1. T2+ ’r3 @ e ・T?L) 
Kよって各々異なり、一定に定められた切削送り開始位
置PiからワークWの接触位置(切削位置)P2までの
工具の移動時間も各々異なったものとなる。図示では、
工具T1において21〜22間の移動時間がtl’、工
具T2でt2′、工具T3でt3’、工具Tnでtn’
に定めている。上記工具種別T1〜Tnに対する移動時
間t1’〜tn’の設定は、第2図に示す複数時間設定
器23の詳細回路で行う。即ち、多数組のタイマt1.
 t2. t3・・・tnは、時間設定器24に備える
ツマミによって個々にタイムアツプする時間が自由に設
定できる。そして、どのタイマt1〜tnを作動させる
かは、数値制御装置NCがらの2軸の切削送り信号ft
と工具種別信号tsとを入力する選択回゛路26によっ
て行い、タイマの作動開始は工具Tが切削送り開始位置
P1に到達したとき発信するZ軸切削送り信号fzによ
って行う。上記多数組のタイマt1〜tnは、オア素子
ORを介してタイムアツプ7711回路(ワンショット
マルチパイプレーク)25に結ばれており、この回路2
5は、タイマからのタイムアツプ信号をトリガにして短
時間だけパルス電圧をアンド素子ANDに出力する。而
して、2つの信号(工具の接触パルス、タイムアツプパ
ルス)を入力するアンド素子ANDは、同時に2つのパ
ルスを入力しないとき(工具折損なし)には次段のフリ
ップフロップFFをセットすることができないので、こ
の出方側に結んだ折損表示ランプPLを点灯させたり、
機械停台信号OUTを出力しない。他方、アンド素子A
NDはタイムアツプパルスの発振時よりも遅れて工具の
接触検出がなされると(工具折損)、2つのパルスを重
合して入力し、フリップフロップFFをセットすること
となり、表示ランプPLを点灯すると共に停台信号OU
Tを出力する回路構成となっている。27はリセットス
イッチで、インか一夕28を介してフリップフロップF
Fをリセットする。
That is, as shown in Fig. 3, the cutting feed rate ν of the tool is determined by the type of tool (T1. T2 + 'r3 @ e ・T?L)
The moving time of the tool from the fixed cutting feed start position Pi to the contact position (cutting position) P2 of the workpiece W also differs depending on K. In the illustration,
The moving time between 21 and 22 is tl' for tool T1, t2' for tool T2, t3' for tool T3, and tn' for tool Tn.
stipulated in The travel times t1' to tn' for the tool types T1 to Tn are set by a detailed circuit of the multiple time setting device 23 shown in FIG. That is, multiple sets of timers t1.
t2. For t3...tn, individual time-up times can be freely set using knobs provided in the time setting device 24. Which timers t1 to tn are activated is determined by the two-axis cutting feed signal ft from the numerical controller NC.
and the tool type signal ts, and the operation of the timer is started by the Z-axis cutting feed signal fz that is transmitted when the tool T reaches the cutting feed start position P1. The multiple sets of timers t1 to tn are connected to a time-up 7711 circuit (one-shot multipipe rake) 25 via an OR element OR, and this circuit 2
5 outputs a pulse voltage to the AND element AND for a short time using the time-up signal from the timer as a trigger. Therefore, the AND element AND which inputs two signals (tool contact pulse, time-up pulse) should set the next stage flip-flop FF when the two pulses are not input at the same time (no tool breakage). Since this is not possible, turn on the broken indicator lamp PL connected to this exit side,
Machine stop signal OUT is not output. On the other hand, AND element A
When the ND detects contact with the tool later than the oscillation of the time-up pulse (tool breakage), the two pulses are superimposed and input, the flip-flop FF is set, and the indicator lamp PL is lit. Along with the stop signal OU
It has a circuit configuration that outputs T. 27 is a reset switch, which connects the flip-flop F via input or 28.
Reset F.

次に、工具折損が発生すると同種工具の交換作用を行わ
せる部分の構成を説明する。第1図において、工具折損
によりフリップフロップFFがセントされて停台信号O
UTが出方されると、この出方はマイコンCPUによっ
て数値制御装置NCR1同種工具交換指令tcとなって
入力する。そして、数値制御装置NCから工具交換7−
ム15及び工具貯蔵マガジン(図示なし)に対して同種
工具の交換指令tc’が発信せられるように構成され、
同種工具の交換後は工具交換アーム15等から発せられ
る完了信号長により、数値制御装置NCからドライブ回
路DZへまた、Z軸の送り信号fzと工具種別信号tg
とを複数時間設定器23に発信する。一方、上記完了信
号★はフリップフロップFFのリセット端子にも入力し
て再び工具折損検出ができる体制となるよう結線されて
いる。
Next, a description will be given of the configuration of a portion that performs the function of replacing a tool of the same type when a tool breaks. In Fig. 1, the flip-flop FF is turned off due to tool breakage, and the stop signal O
When UT is output, this output is input as a similar tool exchange command tc to the numerical control device NCR1 by the microcomputer CPU. Then, tool exchange 7- is performed from the numerical control device NC.
The same type of tool exchange command tc' is transmitted to the system 15 and the tool storage magazine (not shown),
After exchanging the same type of tool, the length of the completion signal issued from the tool exchange arm 15 etc. is used to send the Z-axis feed signal fz and tool type signal tg from the numerical controller NC to the drive circuit DZ.
is transmitted to the multiple time setting device 23. On the other hand, the completion signal ★ is also input to the reset terminal of the flip-flop FF, so that it is possible to detect tool breakage again.

本発明は上述の如くの実施態様であり、以下その作用を
第1〜3図のほか第4図のタイムチャート図で説明する
The present invention is an embodiment as described above, and its operation will be explained below with reference to the time chart of FIG. 4 in addition to FIGS. 1 to 3.

先ず、工具折損検出の技術を説明する。工具T1をワー
クWの加工に先立ってその折損を検出するには、第3図
の如く工具T1をPoから切削送り開始位置plK早送
りで進める。工具T1の先端が予め設定した切削送り開
始位置P1に到達すると、数値制御装置NCからZ軸の
ドライブ回路DZに予め定めた切削送り指令(工具T1
に対応した値)を出力すると共に、複数時間設定器23
に・は2軸の送り信号fgと工具種別信号teとが出力
される。これで複数時間設定器23は工具種別信号to
を受ける選択回路26により該当するタイマt1が作動
をはじめ、ワークWをのせたテーブル11が工具T1の
方向に切削送りをはじめる。そして、第4図に見るよう
、tl′後に発生するタイマt1のタイムアンプパルス
αよりも一瞬早く接触検出器20がワークWへの工具T
1の接触を感知すると(工具折損なし)、インノ・−夕
22のパルスbが消滅してアンド素子ANDに2つのパ
ルスα、bが重合入力しない。このため、クリッププロ
ップFFはセットされず、工具折損の表示ランプPLや
機械停台信号OUTの出力がない。続いて、工具T1に
よるワークWの加工後、工具交換アーム。
First, the technique for detecting tool breakage will be explained. In order to detect breakage of the tool T1 before machining the workpiece W, the tool T1 is advanced from Po to the cutting feed start position plK in rapid traverse as shown in FIG. When the tip of tool T1 reaches the preset cutting feed start position P1, a preset cutting feed command (tool T1
), and the multiple time setter 23
A two-axis feed signal fg and a tool type signal te are output. Now, the multiple time setter 23 is set to the tool type signal to
The selection circuit 26 that receives this starts the operation of the corresponding timer t1, and the table 11 on which the workpiece W is placed starts cutting feed in the direction of the tool T1. Then, as shown in FIG. 4, the contact detector 20 detects the tool T on the work W a moment earlier than the time amplifier pulse α of the timer t1 generated after tl'.
1 is sensed (no tool breakage), the pulse b of the inno-contact 22 disappears, and the two pulses α and b do not overlap and input to the AND element AND. Therefore, the clip prop FF is not set, and the tool breakage indicator lamp PL and machine stop signal OUT are not output. Subsequently, after machining the workpiece W with the tool T1, the tool exchange arm.

15によって新しい工具T2に交換され、この後工具T
2の先端が原点Poから切削送り開始位置P1へ早送り
tIQでtoの時間を要して送られる。工具T2の先端
が予め設定した切削送り開始位置P1に到達すると、前
回と同様に数値制御装置NCから2軸のドライブ回路D
Zに予め定めた切削送り指令(工具T2に対応した値)
を出力すると共に、複数時間設定器23には2軸の送り
信号fzと工具種別信号tgとが出力されろ。これで複
数時間設定器23は該当するタイマt2が作動をはじめ
、ワークWをのせたテーブル11が工具T2の方向へ切
削送りをはじめる。そして、t2’後に発生するタイマ
t2のタイムアツプパルスα′よりも早くワークWへの
工具T2の接触でインバータ22のパルスbが消滅して
アンド素子AND K 2つのパルスα′、bが重合入
力しない。これで、工具の折損が生じていないことを認
識させる。引き続いて、工具T3に交換されてこの先端
が切削送り開始位置P1に到達すると、Z軸のドライブ
回路DZに予め定めた切削送り指令(工具T3に対応し
た値)を出力すると共に、複数時間設定値23に2つの
信号fz、 teが出力される。これで、複数時間設定
器23は該当するタイマt3力諷作動をはじめ、ワーク
Wをのせたチーフル11が工具T3の方向へ切削送りを
はじめる。そして、t3′後にタイマt3のタイムアツ
プパルスα″が発生しても工具T3の先端がワークWに
接触しないと(工具の折損発生)、インバータ22のパ
ルスbとタイムアツプパルスα′カアント素子ANDに
重合出力してフリップフロップFFをセットする。これ
で、工具折損の表示ランプPLが点灯されると共に、工
作機械の停台信号OUTの発生で工作機械の運転がとめ
られる。
15, the tool is replaced with a new tool T2, and then the tool T
2 is fed from the origin Po to the cutting feed start position P1 by rapid traverse tIQ, taking a time of to. When the tip of the tool T2 reaches the preset cutting feed start position P1, the two-axis drive circuit D is sent from the numerical controller NC as before.
Cutting feed command predetermined for Z (value corresponding to tool T2)
At the same time, a two-axis feed signal fz and a tool type signal tg are output to the multiple time setter 23. As a result, the corresponding timer t2 of the multiple time setter 23 starts operating, and the table 11 on which the workpiece W is placed starts cutting and feeding in the direction of the tool T2. When the tool T2 comes into contact with the workpiece W earlier than the time-up pulse α' of the timer t2, which occurs after t2', the pulse b of the inverter 22 disappears, and the two pulses α' and b are superimposed into the AND element AND K. do not. This will make it clear that the tool has not broken. Subsequently, when the tip is replaced with tool T3 and reaches the cutting feed start position P1, a predetermined cutting feed command (value corresponding to tool T3) is output to the Z-axis drive circuit DZ, and multiple time settings are performed. Two signals fz and te are output at the value 23. As a result, the multiple time setter 23 starts to operate the corresponding timer t3, and the chiffle 11 carrying the workpiece W starts cutting and feeding in the direction of the tool T3. If the tip of the tool T3 does not come into contact with the work W even if the time-up pulse α'' of the timer t3 is generated after t3' (tool breakage occurs), the pulse b of the inverter 22 and the time-up pulse α' counter element AND A superimposed output is made to set the flip-flop FF.As a result, the broken tool indicator lamp PL is lit, and the operation of the machine tool is stopped by generation of the machine tool stop signal OUT.

次に、工具折損検出から同種工具の交換を行わせる技術
を説明する。前項で折損を生じた工具T3によって表示
ランプPLと停台信号OUTが発せられ、これがマイコ
ンCPUから数値制御装置NCへ同種工具交換指令tc
として出力する。同種工具交換指令tcは数値制御装置
NCからも同種工具交換指令tc’として工具交換アー
ム15及び工具マガジン(図示なし)に送られ、同種の
工具交換を行わせる。工具交換が終ると完了信号長を数
値制御装置NC及びクリッププロップFFへ送り込み、
フリップフロップをリセットして表示ランプPLの点灯
と停台信号01JTを消滅する。この後、新たに交換さ
れた工具T3の折損状態の検出動作が前記と同様に行わ
れる。即ち、その検出動作は、第4図の右側に示す線図
のタイムチャートとなる。この検出では、タイマt3の
タイムアンプパルスα”の発生時期よりも早く工具接触
を生じてパルスbが消滅し、従って工具折損が生じてい
ないので、ワークWの切削送り加工に移行する。
Next, a technique for replacing tools of the same type based on tool breakage detection will be described. The tool T3 that broke in the previous section generates an indicator lamp PL and a stop signal OUT, which sends a similar tool replacement command tc from the microcomputer CPU to the numerical controller NC.
Output as . The same type tool exchange command tc is also sent from the numerical control device NC as a similar type tool exchange command tc' to the tool exchange arm 15 and a tool magazine (not shown) to cause the same type tool exchange to be performed. When the tool change is completed, the completion signal length is sent to the numerical controller NC and clipprop FF,
The flip-flop is reset to turn on the display lamp PL and extinguish the stop signal 01JT. Thereafter, the operation for detecting the broken state of the newly replaced tool T3 is performed in the same manner as described above. That is, the detection operation is as shown in the time chart shown on the right side of FIG. In this detection, tool contact occurs and the pulse b disappears earlier than the generation timing of the time amplifier pulse α'' of the timer t3, and therefore no tool breakage has occurred, so the process moves on to cutting and feeding the workpiece W.

本発明によるときは工具の接触検出器をアンド素子に結
ぶ一方、数値制御装置から出力されるZ軸の切削送り信
号と工具種別信号とを入力する複数時間設定器は、多数
のタイマを備えて各工具ごとに定めた切削送りに対応し
たタイマを選択回路で作動させるようになし、上記複数
時間設定器からのタイムアンプパルスを前記アンド素子
に入力させて接触検出器からの接触パルスとの重合入力
状態により工具折損を検出する構成としたから、従来の
プリセットカウンタによるカウント数によって工具移動
量を検出する技術における欠点であったプリセットカウ
ンタの動作移動状態を索引する回路が不要となり、これ
がために回路構成が簡素化されるほか、工具が変化して
もこれに対応してタイマが自動的に選択され、新しい工
具に対する工具折損を確実に実行できる効果がある。ま
た、工具折損が生じると同種工具の自動交換を確実に行
い工作機械の運転続行を可能とすることができる。
According to the present invention, the contact detector of the tool is connected to the AND element, while the multi-time setting device that inputs the Z-axis cutting feed signal and tool type signal output from the numerical control device is equipped with a large number of timers. A timer corresponding to the cutting feed determined for each tool is activated by a selection circuit, and the time amplifier pulse from the multiple time setting device is input to the AND element to overlap with the contact pulse from the contact detector. Since the structure detects tool breakage based on the input state, there is no need for a circuit to index the operational movement state of the preset counter, which was a drawback in the conventional technique of detecting the tool movement amount based on the count number of the preset counter. In addition to simplifying the circuit configuration, even if the tool changes, the timer is automatically selected in response to the change, which has the effect of reliably executing tool breakage for a new tool. Furthermore, when a tool breaks, it is possible to automatically replace a tool of the same type with certainty, allowing the machine tool to continue operating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明工具折損の検出制御装置のブロック線図
、第2図は複数時間設定器23の詳細構成を示すブロッ
ク線図、第3図は工具刃先の早送り・切削送りとこの時
間の関係を示す部分図、第4図はタイムチャート図であ
る。 DE・・・工具折損の検出制御装置、HM −−−横型
マシニングセンタ、T(Tl〜T?l)・・・工り、D
z・・・Z軸のドライブ回路、NC・・・数値制御装置
、15・・・工具交換アーム、20・・・接触検出器、
21・・・接触検出回路、22.28・・・イソハータ
、23・・・複数時間設定器、24・・・時間設定器、
25・・・タイムアンプパルス回路、26・・・選択回
路、OR・・・オフ素子、AND・・・アンド素子、t
1\tn・1タイマ、Pl・・・切削送り開始位置、P
2・・・接触位置、FF・・・フリップフロップ回路、
PL・・・折損表示ランプ、OUT・・・機械停台信号
、fz・・・2軸く切削送り信号、te・・・工具種別
信号、tc−tc′・・・同種工具交換指令、k・・・
完了信号、27・・・リセットスイッチ、CPU・・・
マイコン。 男 l 肥 DE 第 2 側 4 男 3 N
Fig. 1 is a block diagram of the tool breakage detection control device of the present invention, Fig. 2 is a block diagram showing the detailed configuration of the multiple time setting device 23, and Fig. 3 is a block diagram showing the rapid traverse/cutting feed of the tool cutting edge and this time. A partial diagram showing the relationship, FIG. 4 is a time chart diagram. DE...Tool breakage detection control device, HM---Horizontal machining center, T (Tl~T?l)...Machining, D
z...Z-axis drive circuit, NC...numerical control device, 15...tool exchange arm, 20...contact detector,
21... Contact detection circuit, 22.28... Isoharter, 23... Multiple time setter, 24... Time setter,
25... Time amplifier pulse circuit, 26... Selection circuit, OR... Off element, AND... AND element, t
1\tn・1 timer, Pl...Cutting feed start position, P
2...Touch position, FF...Flip-flop circuit,
PL...Breakage indicator lamp, OUT...Machine stop signal, fz...2-axis cutting feed signal, te...Tool type signal, tc-tc'...Similar tool replacement command, k.・・・
Completion signal, 27...Reset switch, CPU...
Microcomputer. Male l Fat DE 2nd side 4 Male 3 N

Claims (1)

【特許請求の範囲】[Claims] 所定量に定めた工具刃先の切削送り開始位置からワーク
面までの工具移動量を検出して工具折損を検出するよう
にした工具折損検出において、工具の接触検出器をアン
ト素子に結ぶ一方、数値制御装置から出力されるZ軸の
切削送り信号と工具種別信号とを入力する複数時間設定
器は、多数のタイマを備えて各工具ごとに定めた切削送
りに対応したタイマを選択回路で作動させるようになし
、」1記複数時間設定器からのタイムアツプパルスを前
記アンド素子に入力させて接触検出器からの接触パルス
との重合人力状態により工具折損を検出することを特徴
とする工具折損の検出制御装置。
In tool breakage detection, which detects tool breakage by detecting the amount of tool movement from the cutting feed start position of the tool cutting edge to the workpiece surface, which is determined by a predetermined amount, while connecting the contact detector of the tool to the ant element, The multi-time setting device that inputs the Z-axis cutting feed signal and tool type signal output from the control device is equipped with a large number of timers, and a selection circuit operates the timer corresponding to the cutting feed determined for each tool. 1. A method for detecting tool breakage, characterized in that a time-up pulse from a plurality of time setters is input to the AND element, and the tool breakage is detected based on the manual state of superimposition with the contact pulse from the contact detector. Detection control device.
JP6277482A 1982-04-15 1982-04-15 Tool damage detection controller Pending JPS58181545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6277482A JPS58181545A (en) 1982-04-15 1982-04-15 Tool damage detection controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6277482A JPS58181545A (en) 1982-04-15 1982-04-15 Tool damage detection controller

Publications (1)

Publication Number Publication Date
JPS58181545A true JPS58181545A (en) 1983-10-24

Family

ID=13210051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6277482A Pending JPS58181545A (en) 1982-04-15 1982-04-15 Tool damage detection controller

Country Status (1)

Country Link
JP (1) JPS58181545A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164763A (en) * 1985-01-11 1986-07-25 Omron Tateisi Electronics Co Detecting system of tool breakage
JPS632647A (en) * 1986-06-19 1988-01-07 Dai Showa Seiki Kk Tool breakage/damage detecting method
JP2007038141A (en) * 2005-08-03 2007-02-15 Toppan Printing Co Ltd Coating method and coating apparatus
US7396511B2 (en) 2002-07-26 2008-07-08 Seiko Epson Corporation Dispensing device, dispensing method and method of detecting defective discharge of solution containing biological sample

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164763A (en) * 1985-01-11 1986-07-25 Omron Tateisi Electronics Co Detecting system of tool breakage
JPS632647A (en) * 1986-06-19 1988-01-07 Dai Showa Seiki Kk Tool breakage/damage detecting method
JPH0555269B2 (en) * 1986-06-19 1993-08-16 Daishowa Seiki
US7396511B2 (en) 2002-07-26 2008-07-08 Seiko Epson Corporation Dispensing device, dispensing method and method of detecting defective discharge of solution containing biological sample
JP2007038141A (en) * 2005-08-03 2007-02-15 Toppan Printing Co Ltd Coating method and coating apparatus

Similar Documents

Publication Publication Date Title
US4288849A (en) Machine tool control systems
JPH046001B2 (en)
EP0171435B1 (en) Numerical control method
JPS58181545A (en) Tool damage detection controller
JPH05150818A (en) Method and device or diagnosing fault of numerical control machine tool
JPS5721247A (en) Determination of retracting and returning path for tool in machine tool
JPH04244347A (en) Life tool change method during machining
US4839817A (en) Numerically controlled apparatus including shunting controller
JPS5766845A (en) Nc work apparatus
JP2894653B2 (en) Clamping machine for automatic sewing machine by sewing program
CN209486505U (en) Control system for sheet metal cutting production line
JPS61178155A (en) Machining control method of machine tool
JPS61214947A (en) Nc controller having automatic return function
JP4341118B2 (en) Tool changing device and tool changing method
JPH07112348A (en) Numerically controlled machine tool
JP2586128B2 (en) Automatic arc welding method using robot
JPH06344247A (en) Nc machine tool
SU1155402A1 (en) Apparatus for monitoring the welding duties of automatic arc-welding machine
KR880002542B1 (en) Machine tool
JPS5565047A (en) Method for resuming machining by numerical-controlled machine tool
JPH01115696A (en) Method of detecting writing utensil for pen head in x-y plotter
JP2002014708A (en) Operation area monitor device for machine tool
KR100240935B1 (en) Home position return control system of automatic tool exchanger
JPS62224556A (en) Monitoring method for cutting edge
JPH0337905Y2 (en)