JPS58181426A - Forming method of dieless plate utilizing thermal stress - Google Patents

Forming method of dieless plate utilizing thermal stress

Info

Publication number
JPS58181426A
JPS58181426A JP6404582A JP6404582A JPS58181426A JP S58181426 A JPS58181426 A JP S58181426A JP 6404582 A JP6404582 A JP 6404582A JP 6404582 A JP6404582 A JP 6404582A JP S58181426 A JPS58181426 A JP S58181426A
Authority
JP
Japan
Prior art keywords
heating
plate
cooling
metal plate
dieless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6404582A
Other languages
Japanese (ja)
Other versions
JPH038850B2 (en
Inventor
Masaru Kobayashi
小林勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6404582A priority Critical patent/JPS58181426A/en
Publication of JPS58181426A publication Critical patent/JPS58181426A/en
Publication of JPH038850B2 publication Critical patent/JPH038850B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D1/00Straightening, restoring form or removing local distortions of sheet metal or specific articles made therefrom; Stretching sheet metal combined with rolling
    • B21D1/06Removing local distortions
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering

Abstract

PURPOSE:To execute forming without using a die, by providing a heat cycle of local heating and cooling to a metallic plate from the surface and the reverse side. CONSTITUTION:Both end parts of a test piece 11 are supported on a heat resisting glass round rod 13 placed on a supporting base 12 with a lifter, having a heat resisting brick base, in a linear contact state so as to be freely movable without being restricted from the outside. Thermo-electromotive force of a CA thermocouple 18 spot-welded in the center of the reverse side of the test piece 11 repeats a heat cycle of heating and cooling by a prescribed number of times by controlling the opening and closing of a valve 20 of a water cooling pipe 16 by a heating and cooling waveform control device 19 connected to the thermocouple 18. In this regard, the number of times of the heat cycle, a heat cycle upper limit temperature, a heating speed and a holding time are selected suitably in accordance with a kind and plate thickness of a metallic plate material to be worked.

Description

【発明の詳細な説明】 本発明は熱応力を利用したタイレス板成形方法に関する
ものである、。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tieless plate forming method using thermal stress.

非M産性の大形構造物及び中小11:生産品等のプレス
成形では、全型代の加J−費に占める割合は大きい。も
し、これらの生産品が金型なしくタイレス)で成形でき
れば、非常に大きな利点があることは明らかである。し
かし、このような生産品のダイレス成形に関する研究報
告は少ない。
In press forming of non-manufacturing large structures and small and medium-sized products, etc., the total mold cost accounts for a large proportion of the additional J-cost. It is clear that there would be great advantages if these products could be molded without molds (tieless). However, there are few research reports on dieless molding of such products.

そのうちの一つに、線状加熱板曲加l−法(石用島・I
¥1−業株式会社造船部;船舶、第29巻、第12シ)
(+956 )第1037頁〜第1044頁)がある。
One of them is the linear heating plate bending method (Ishiyōjima/I).
¥1-Gyo Co., Ltd. Shipbuilding Department; Ships, Volume 29, No. 12)
(+956) pages 1037 to 1044).

この方法は、酸素アセチレ/ノ・−ナーを熱源とし、こ
の熱源を適当な速度で直線的に、または曲線を描かせて
鋼板の表面を移動させると共に撒水装置で加熱1部の周
辺を急冷することによって、鋼板の板厚方向に熱歪差を
生ぜしめ、加熱線を折線として鋼板を加熱面側に曲げ加
1−シようとするものである。
This method uses an oxygen acetylene/no-ner as a heat source, moves this heat source over the surface of the steel plate at an appropriate speed in a straight line or in a curved line, and rapidly cools the area around the heated part using a water sprinkler. By doing so, a thermal strain difference is produced in the thickness direction of the steel plate, and the steel plate is bent toward the heating surface side using the heating line as a broken line.

例えば、第1図Falに示すように、゛14鋼板1の表
面を矢印2で示すように、一定間隔て直線状加熱線を順
次移動すると、第1図ft)lに示すように、・ト鋼板
は加熱線であまた一点鎖線3を折線としてわすかすつ加
熱面側に湾曲して円弧状の鋼板4を得ることができると
いうものである。しかし、本方法の場合、液加]二鋼板
にはあらかしめ成る程度の荷重(弾性範囲内のモーメン
ト)を与えておいて加工をすることが必要である。
For example, as shown in Fig. 1 Fal, when the linear heating wire is moved sequentially at regular intervals as shown by the arrow 2 on the surface of the steel plate 1, as shown in Fig. 1 ft)l, The steel plate is curved along the heating line along the dotted chain line 3 to the heating surface side to obtain an arc-shaped steel plate 4. However, in the case of this method, it is necessary to apply a certain amount of load (moment within the elastic range) to the steel plate before processing.

また、他の一つに、金属材料の加熱・冷却時に現われる
相変態点を中間温度として金属材料に日用波形の温度サ
イクルを与えながら低荷重のもとにプレス成形するとい
う、変態超塑性現象を利用した薄板金属材料のプレス加
工方法がある(特公昭56−44132号公報参照)。
Another example is the transformation superplastic phenomenon, in which the metal material is press-formed under a low load while being subjected to daily waveform temperature cycles with the phase transformation point that appears during heating and cooling of the metal material as an intermediate temperature. There is a method of pressing a thin sheet metal material using the method (see Japanese Patent Publication No. 44132/1983).

しかも、この加を方法は、場合によっては、」ニダイス
の負荷前爪を必要とせずに、材料の自重だけで充分この
ような成形を行ない得る・ものであることも述べられて
いる。
Moreover, it is also stated that this method of forming can, in some cases, make it possible to perform such forming using only the material's own weight, without requiring the pre-loading claw of the die.

すなわち、この加に方法は、被加工薄板金属材料の全体
に相変態点を中間温度とする三角波形の加熱・冷却サイ
クルを与えると同時に下ダイのみを用い、液加−[−材
料の自重のみの荷重によってダイレス加I−類似の成形
加1−を行なうというものである。
In other words, this addition method applies a triangular waveform heating/cooling cycle with the phase transformation point at an intermediate temperature to the entire thin sheet metal material to be processed, and at the same time uses only the lower die, and only the self-weight of the material is added. Dieless processing I--similar forming processing 1--is carried out under a load of .

本発明は、以1−のような従来のタイレス成形加1、方
法と異なり、あらかじめ倚IFを加えることな(、液加
1−金属板の加熱・冷却の際に生ずる熱応力のみを利用
してタイレス仮成形を行なう方法を提供しようとするも
のである。。
The present invention differs from the conventional tieless forming process 1, as described in 1-1 below, in that it does not apply a IF in advance (it uses only the thermal stress generated during heating and cooling of the metal plate). The present invention aims to provide a method for performing tieless temporary forming.

本発明者らは、金属板の゛塑性加1.について種々の実
験、検討を行なっている過程で、金属拐料板の周辺部を
該金属板が外部から拘束されることなく、自11目こ動
きうるように支持した状態で、該金属板の表面に点状、
直線状、または曲線状の断続的な加熱サイクルを加える
と同時に該金属板の裏面の+iif記表面加熱位置に対
応する位置に前記加熱サイクル間の非加熱時に冷却サイ
クルを加え、+1i1)記金属板の表・表両面間になる
へ(幅が狭く、かつ急峻な局部的温度勾配を繰返しI7
.えることにより、前記従来技術のように成る程度の荷
重を加えることなしに、前記金属板が前記表面加熱部を
中心として加熱面側に曲がることを見出し、本発明に到
達したものである。
The present inventors have discovered that ``plastic modification of metal plates 1. In the process of conducting various experiments and studies on the metal removal plate, we found that while the peripheral part of the metal plate was supported so that the metal plate could move freely without being restrained from the outside, the metal plate was dots on the surface,
At the same time as applying linear or curved intermittent heating cycles, a cooling cycle is applied during non-heating between the heating cycles to the position corresponding to the surface heating position marked +iif on the back side of the metal plate, and +1i1) the metal plate (Narrow and steep local temperature gradient repeats I7)
.. The inventors have discovered that the metal plate can be bent toward the heating surface around the surface heating portion without applying a load to the extent required in the prior art, and have arrived at the present invention.

つぎに、本発明の加熱・冷却の熱サイクル中における液
加I′、金属板の変形挙動の概略を第2図により説明す
る。図(a)は加−]―前の状態を示し、11は短冊状
の平板試験片、14は試験片11の表面中央に幅方向に
設置された高周波加熱コイルで、このコイル14により
、試験片11は幅方向に狭い幅で直線状に加熱される。
Next, an outline of the liquid addition I' and the deformation behavior of the metal plate during the heating/cooling thermal cycle of the present invention will be explained with reference to FIG. Figure (a) shows the state before addition. 11 is a strip-shaped flat test piece, 14 is a high-frequency heating coil installed in the width direction at the center of the surface of the test piece 11. The piece 11 is heated linearly with a narrow width in the width direction.

図fblは高周波加熱コイル14により、試験片11の
表面中央を直線状に急速加熱した状態を示し、熱膨張だ
けであれば試験片11は破線で示す位置まで下方に曲が
るが、実際には試験片の板厚剛性のために曲りは実線で
示す位置で留り、試験片11は加熱線を中心として下方
に曲かっていることを示す。図tc+は試験片11の裏
面側直線4ノ済0却時の状態を示し、表面からの加熱を
止めて、裏・而から試験片11の裏面の前記表面加熱線
に対応する位置を水冷すると、その際に試験片11の加
熱線部分は板長手方向に圧縮応力を受けるためと考えら
れるが、図示のように、試験片11は前記表面加熱線を
中心として−1一方に曲げられることになる。
FIG. The bending remains at the position shown by the solid line due to the thickness and rigidity of the piece, indicating that the test piece 11 is bent downward around the heating line. FIG. At that time, it is thought that this is because the heating wire portion of the test piece 11 receives compressive stress in the longitudinal direction of the plate, but as shown in the figure, the test piece 11 is bent in one direction by -1 around the surface heating wire. Become.

なお、本発明において、曲げ角度((1)は図fclに
示したようにとるものとする。
In the present invention, the bending angle ((1) is assumed to be as shown in Figure fcl.

以ドに本発明を実験例によって詳細に説明する。The present invention will be explained in detail below using experimental examples.

(lン供試材 供試材は、5IOC圧延磨鋼板の厚さく1)が?及び3
mmのものであり、その化学成分は第3図に人間で示し
た。試験片は、これらの素材から切り出し、幅5 mm
 、長さI/IOmmに機械加1−シだものである。
(The sample material is a 5IOC rolled polished steel plate with a thickness of 1)? and 3
mm, and its chemical composition is shown in Figure 3 for humans. Test pieces were cut from these materials and had a width of 5 mm.
, is machined to a length of I/IOmm.

(2)実験方法 第4図は本実験に用いた実験装置の概略図であり、図(
alは11:、面図、図中)は側面図である。
(2) Experimental method Figure 4 is a schematic diagram of the experimental equipment used in this experiment.
al is 11:, a top view, and (in the figure) is a side view.

図において、11は試験片で、その両端部は耐熱レノ力
台を有するリフター付支持台121−に載置さ    
゛れた耐熱カラス丸棒I;31−に外部からの拘束を受
けず、自由に動きうるように線接触状態で支持されてい
る。
In the figure, 11 is a test piece, and its both ends are placed on a support stand 121- with a lifter equipped with a heat-resistant pressure stand.
It is supported in line contact with the bent heat-resistant glass round rod I; 31- so that it can move freely without being restrained from the outside.

14は試験片11の表面中央にその長手方向に直角に試
験片11に近接して(間隔約0.7mm)で設けられた
U字状の水冷式高周波加熱コイル(管径5mm・・1中
心間隔6.2 mm )であり、高周波加熱電源(出力
5kW、周波数430 kHz) 15に接続されてお
り、試験片11は高周波加熱コイル14により、その幅
方向に直線状(加熱軸釣2〜3mm)に加熱される。
Reference numeral 14 denotes a U-shaped water-cooled high-frequency heating coil (tube diameter 5 mm, 1 center) installed in the center of the surface of the test piece 11 at right angles to the longitudinal direction and close to the test piece 11 (with a spacing of about 0.7 mm). The test specimen 11 is heated in a straight line in its width direction (with a heating axis of 2 to 3 mm) by the high frequency heating coil 14. ).

16は水冷用管で、間管からの噴出水17により、試験
片11の裏面のiif記表面表面直線状加熱線応する位
置を水冷する。
Reference numeral 16 denotes a water-cooling tube, and water-cools the position corresponding to the surface linear heating line iif on the back surface of the test piece 11 using water 17 ejected from the intermediate tube.

試験片11の温度制御は、試験片11の裏面中央にスポ
ット溶接されたCA熱電対18の熱起電力を熱電対18
に接続された加熱・冷却波形制御装置19にフィートバ
ンクすると同時にこの制御装置19によって水冷用管1
6のバルブ20の開閉も制御するようにして、0〜90
 deg/sec間の任意の加熱速度のもとて加熱・冷
却の熱サイクルを所定回数繰り返した°3、なお、サイ
クル数の影響を調べるもの以外の繰返Iし熱サイクル回
数(N)はすべて20回で行なった。
To control the temperature of the test piece 11, the thermoelectromotive force of the CA thermocouple 18 spot-welded to the center of the back surface of the test piece 11 is transferred to the thermocouple 18.
At the same time, the control device 19 controls the water cooling pipe 1.
0 to 90 by controlling the opening and closing of the valve 20 of 6.
Thermal cycles of heating and cooling were repeated a predetermined number of times at an arbitrary heating rate between deg/sec. I did it 20 times.

(3)実験結果 (31)熱Yイクル数の影響 第5図に曲げ角度(α)と繰返し熱サイクル回数(N)
の関係を示す。同図は熱サイクル上限保持l!o!度(
Th )を950 Cと ・定にして、比較的大きな曲
げ角度が得られる加熱条件のうち、加熱速度(Ilr)
、保持時間(n、’r、)、 H反厚(1)の各パラメ
ータが異なる場合の曲げ角度と熱サイクル回数の関係を
示したものであり、同図から、曲げ角度と熱サイクル同
数の間には比例関係が成\′fしていることかわかる。
(3) Experimental results (31) Effect of thermal Y cycle number Figure 5 shows the bending angle (α) and the number of repeated thermal cycles (N).
shows the relationship between The figure shows the thermal cycle upper limit maintained! o! Every time(
Among the heating conditions that can obtain a relatively large bending angle, the heating rate (Ilr) is
, holding time (n, 'r,), and H-thickness (1) are different, and the relationship between the bending angle and the number of thermal cycles is shown from the same figure. It can be seen that there is a proportional relationship between them.

すなわち、何れの条件の場合にも熱サイクル回数の増加
と共に曲げ角度も増加する。
That is, under any conditions, as the number of thermal cycles increases, the bending angle also increases.

(32)  加熱速度の影響 加熱・冷却条件は曲げ角度に著しい影響を及ぼlすもの
と考えられる。第6図は保持時間(H,T、)一定条件
ドでの曲げ角度(α)と加熱速度(Hr)の関係を熱サ
イクル1−限保持11.A度(Th)をパラメータとし
て示したものである。同図がら、熱サイクル1−限保持
d11(度(Th )が高いはとよく曲ることがオ)か
る。そして、熱サイクル1−限保持1jIA度(Th 
)750 ’Cの場合に比へて、Thが950 ’Cの
ときは明確な最大値が現われる。すなわち、最適な成形
条件が存在することがわかる。
(32) Effect of heating rate It is thought that the heating and cooling conditions have a significant effect on the bending angle. FIG. 6 shows the relationship between the bending angle (α) and the heating rate (Hr) at constant holding times (H, T,) for thermal cycles 1-11. The degree A (Th) is shown as a parameter. As shown in the same figure, it can be seen that the higher the temperature (Th) is, the better the bending is. Then, thermal cycle 1-limit holding 1jIA degrees (Th
) A clear maximum value appears when Th is 950'C compared to the case of 750'C. In other words, it can be seen that optimal molding conditions exist.

(3,3)  保持時間の影響 相変態の速度は加熱速度と大体比例関係にあり、保持時
間も変態の進行に影響するので、両者の間には密接な関
係があるはずであり、この点について調へた。
(3, 3) Influence of holding time The rate of phase transformation is roughly proportional to the heating rate, and holding time also affects the progress of transformation, so there should be a close relationship between the two, and this point I researched about it.

第7図は熱サイクル」−眼保持温度(Th)一定の条件
ドての曲げ角度(a)と保持時間(H,T、)の関係を
加速度(Hr)をパラメータとして示したものである。
FIG. 7 shows the relationship between the bending angle (a) and the holding time (H, T,) under the condition of "thermal cycle" where the eye holding temperature (Th) is constant, using the acceleration (Hr) as a parameter.

加熱速度(H,T、)−5secにおいて最大の曲げ角
度が得られる。これはHr == 40.8Q deg
/seeのいずれの加熱速度でも同様の傾向を示した。
The maximum bending angle is obtained at a heating rate of (H,T,)-5 seconds. This is Hr == 40.8Q deg
A similar tendency was observed at any heating rate of /see.

保持時間か長(なると曲げ角度が小さくなるのは、試験
片の加熱線幅の広がり、及び試験片の゛14均!i!度
のL昇に基づいて変形への加熱の効果が低下するためで
あると思われる。
The reason why the bending angle becomes smaller when the holding time is longer is because the heating line width of the test piece widens and the effect of heating on deformation decreases based on the increase in L of the test piece. It seems to be.

(34)板厚の影響 試験片・j−法の−っである板厚の変化か、このタイレ
ス曲げに及ぼす影響を第8図及び第9図に示す。第8図
は熱サイクル1−限保持l!lIt度(Th)=950
℃、保持時間(H,T、)−5secの一定条イ′I下
ての曲げ角度(α)と加熱速度(If T、 )の関係
を板j−ノ(+)をパラメータとして示したものである
(34) Effect of Plate Thickness The effect of the change in plate thickness on test piece J-method on tie-less bending is shown in FIGS. 8 and 9. Figure 8 shows thermal cycle 1 - limited hold l! degree (Th) = 950
The relationship between the bending angle (α) and the heating rate (If T, ) under a constant strip A'I of a holding time (H, T, )-5 sec at ℃, with the plate j-no(+) as a parameter. It is.

また、第9図は熱サイクル1−限保持温度(q”h)=
415(I C1加熱速度(Ilr ) = 40 d
egA;ecの・定条件下での曲げ角度(a)と保持時
間(11,T、)の関係を’tM厚(1)をパラメータ
として/Jζしたものである。
In addition, Figure 9 shows thermal cycle 1-limit holding temperature (q”h)=
415 (I C1 heating rate (Ilr) = 40 d
The relationship between the bending angle (a) and the holding time (11, T,) under constant conditions of egA; ec is expressed as /Jζ with 'tM thickness (1) as a parameter.

両図から、板厚の小さい力かよく曲ることかわかる。、
しかし、板厚が異なってもほぼ同様な挙動を/l<すこ
とが明らかとなった。
From both figures, it can be seen that the plate bends well due to the small force due to the plate thickness. ,
However, it has become clear that the behavior is almost the same even if the plate thickness is different.

第10図は板厚が3 mmの場合、保持時間(H,’I
”、 )=、5secの条件下での曲げ角度(cz)と
加熱速度(I(r)の関係を熱サイクル1−限保持d1
ル度(’t”h )を・ぐラメータとして示したもので
あり、第11図は板厚が3 mmの場合、熱サイクル1
ユ限保持温度(Th )−950℃の条件ドでの曲げ角
度(α)と保持時間(11,T、)の関係を加熱速度(
’r”h )をパラメータとして示したものである。両
図から、板厚が2mmの場合と同様な傾向が見られるこ
とがわかる。
Figure 10 shows the holding time (H,'I
The relationship between the bending angle (cz) and heating rate (I(r) under the conditions of
Fig. 11 shows thermal cycle 1 when the plate thickness is 3 mm.
The relationship between the bending angle (α) and the holding time (11, T,) under the condition of -950°C is expressed as the heating rate (
'r''h) is shown as a parameter. From both figures, it can be seen that the same tendency as in the case where the plate thickness is 2 mm is observed.

(’:3,5)  熱サイクル1−限保持温度の影響第
12図は板厚2mmの場合、保持時間(H,T)−10
secの・定条件下での曲げ角度(a)と熱サイクル1
−限保持温度(Th )の関係を加熱速度()−1r 
)をパラメータとして示したものである。同図がら明ら
かなように、各曲線ともTh = 400℃では加熱・
冷却を繰返してもほとんと曲りは発生しない。しかし、
変態温度区間に対応する750℃、950t)  の場
合、すなわち、加熱・冷却がAI変態点、A;1変態点
を通るような熱サイクルでは、大きい曲げ角度が得られ
た。この事実から、熱応力による曲げ変形と相変態とは
関連性があることがわかる。
(': 3, 5) Thermal cycle 1 - Influence of limit holding temperature Figure 12 shows the holding time (H, T) - 10 when the plate thickness is 2 mm.
sec. Bending angle (a) under constant conditions and thermal cycle 1
- The relationship between the holding temperature (Th) and the heating rate () - 1r
) is shown as a parameter. As is clear from the figure, each curve has a heating effect at Th = 400°C.
Even after repeated cooling, almost no bending occurs. but,
In the case of 750° C. and 950 t corresponding to the transformation temperature section, that is, in a thermal cycle in which heating and cooling pass through the AI transformation point, A;1 transformation point, a large bending angle was obtained. This fact shows that there is a relationship between bending deformation due to thermal stress and phase transformation.

(36)曲げ部の性状 試験片と同じ軟鋼板をV型開げ(α−20’)  した
もの、素材及び本発明のダイレス板曲げをしたものにつ
いて、それらの曲げ部の断面組織(5%ナイタル液で腐
食)を第13図に示した。図tc+はVQIJ曲げ(a
 = 20°)加lニジたものの組織であるが、図(C
1)の加1: +’+:iの組織と比へてはっきりした
組織の変化は認められなかった。図(alはダイレス板
曲げ成形(Th = 950℃)の組織で、図td)の
加工+iifのものと比へて結晶微細化の傾向が著しい
。この組織がら、パーライト部のA、変態とそれに続く
フェライト地へのオーステナイト化が認められる。なお
、図中)のダイレス板曲げ成形(Th = 750℃)
の組織にはこの微細化は見られなかった。
(36) Properties of bent parts The cross-sectional structures of the bent parts of the same mild steel plates as the test specimens, which were opened in a V-shape (α-20'), and those subjected to the dieless plate bending of the material and the present invention, were examined. (corrosion with nital liquid) is shown in Figure 13. Figure tc+ shows VQIJ bending (a
= 20°), but the structure shown in Figure (C
Addition of 1) 1: +'+: No clear tissue change was observed compared to the tissue of i. Figure (al) shows the structure of dieless plate bending (Th = 950°C), which shows a remarkable tendency for crystal refinement compared to that of Figure td) processed + iif. In this structure, A transformation of the pearlite part and subsequent austenitization to ferrite area is recognized. In addition, dieless plate bending (Th = 750℃) shown in the figure)
This refinement was not observed in the microstructure.

第14図は曲げ断面部の微小硬さくマイクロヒラカース
Hv = 200 g )の分布を示す図である。同図
から、ダイレス板曲げはV型開げにおける力u I硬化
による硬さの1−昇と同程度もしくはそれ以−1−の組
織の微細化による硬さの1−昇を生じる。すなわち、曲
げ部の強化が期待できる。
FIG. 14 is a diagram showing the distribution of microhardness (Hv = 200 g) in the bent cross section. From the figure, dieless plate bending causes a 1-increase in hardness due to the refinement of the structure, which is comparable to or greater than the 1-increase in hardness due to the force u I hardening in V-shaped opening. In other words, the bending portion can be expected to be strengthened.

以りにおいては相変態点を有する°軟鋼板に本発明を適
用した場合について説明したが、本発明は相変態点を有
しないオーステナイト・ステンレス鋼板に対しても同様
な効果を!j、えるものである。
In the following, we have explained the case where the present invention is applied to a mild steel plate that has a phase transformation point, but the present invention has the same effect on an austenitic stainless steel plate that does not have a phase transformation point! j, it is something that can be obtained.

その−例を第15図に示す。同図は、板厚(し)−2m
mのS U S 304ステンレス鋼試験片について、
加熱速度(Hr ) −40deg/sec 、保持時
間(H,T、)−5secの条件下での曲げ角度(α)
と熱サイクル−1−限保持温度(Th )の関係を求め
た結果である。同図から、この場合も第12図に示した
軟鋼板の場合・とほぼ同様な結果を示すが、軟鋼に比べ
て熱伝導の悪いSUSの方かむしろよく曲ることを示し
ている。
An example thereof is shown in FIG. The figure shows plate thickness -2m
For the SUS 304 stainless steel specimen of m,
Bending angle (α) under the conditions of heating rate (Hr) -40 deg/sec and holding time (H, T,) -5 sec
These are the results of determining the relationship between and thermal cycle-1 limit holding temperature (Th). The figure shows that in this case as well, the results are almost the same as in the case of the mild steel plate shown in FIG. 12, but it is shown that SUS, which has poor thermal conductivity compared to mild steel, bends better.

熱伝導のよい金属材料、例えば銅板についても熱サイク
ル等を適当に選べば曲げることができる。
Even metal materials with good thermal conductivity, such as copper plates, can be bent by appropriately selecting the thermal cycle.

なお、加熱法としては、高周波誘導加熱以外に赤外線加
熱、レーザー加熱などでもよく、また、冷却法も水冷以
外に空冷、油冷なとでもよい。
In addition, the heating method may be infrared heating, laser heating, etc. other than high-frequency induction heating, and the cooling method may be air cooling or oil cooling instead of water cooling.

以上説明したところから明らかなように、金属板に表面
及び裏面から局部的な加熱・冷却の熱サト”イクルを加
えることにより、ダイレス板成形が可能であり、この方
法による曲げ角度に及ぼす影響は、熱サイクル回数につ
いては線形則が成立し、所望の曲げ角度を得るためには
、熱サイクル回数、熱サイクル−1一限温度、加熱速度
、保持時間を液加1工金属板材料の種類、板厚により適
宜に選択すればよい。
As is clear from the above explanation, dieless plate forming is possible by applying heat particles for local heating and cooling to a metal plate from the front and back sides, and the effect of this method on the bending angle is , a linear law holds true for the number of thermal cycles, and in order to obtain the desired bending angle, the number of thermal cycles, thermal cycle-1 limit temperature, heating rate, and holding time must be adjusted according to the type of liquid processed metal sheet material, It may be selected appropriately depending on the plate thickness.

さらに、点状、直線状または曲線状の局部的な熱サイク
ルを板材の所定複数個所に加えることにより、より複雑
な曲面加工が本発明のダイレス成形によって可能である
ことは明らかである。
Furthermore, it is clear that more complex curved surface processing is possible by the dieless forming of the present invention by applying point-like, straight-line, or curved local thermal cycles to a plurality of predetermined locations of the plate material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の線状加熱板曲加1−法の説明図、第2図
は本発明における試験片の変形挙動の概略説明図、第3
図は本発明の実験に用いたSI○C圧延磨鋼板の化学成
分を示す大国、第4図は本発明の実験に使用した高周波
誘導加熱方式による実験装置を示す概略図、第5図〜第
15図は本発明を裏付けるための実験結果を示す図であ
る。 図において 11・試験片12・・リフター付支持台13・耐熱カラ
ス棒  14・・高周波加熱コイル15・・高周波電源
   16・・・水冷用管17・・・噴出水     
18・・CA熱電対19・加熱・冷却波形制御装置 20・・・バルブ 代理人弁理士 中村純之助 す 1 図 第3図 1−4図 1−2図 加熱 (C) 水ンくシN 才5 図 オ6181 加熱速度HY(deg/5ec) 一? 7 PJl 1−8図 刀0熱せ2度 )−b(deg/c;ec)′!F9図 矛10図 力nh財 )1r(deg/5ec) 卆13図 )F11図 才12図 上水イ影侍づ星度Th(’C) L14図 中1υη゛らめ記動 ズ(〆mn) !15図 手続補正書(方式) 昭和57年8月26日 t11許庁長官 殿 +j畦例の表示  昭和57年特許願第64045号発
明の名称  熱応力利用ダイレス板成形方法補市をする
者 事件との関係     特許出願人 氏名     小 林    勝 代  理  人 袖+liの対象   明細書の図面の簡単な説明の欄及
び添付図面。 補正の内容 1 明細書第11頁第15行目の1示した。jと1−図
(C)−1の間に1図(d)は素(し510C鋼机、図
に1)及び(1))は、それぞれN=20サイクル、T
h−950℃及び750℃トシタモノ、I”21(C)
i1通常の■型開げ加工をしたものの組織を示す。jを
加入する。 2、 明細書第14頁第8行目〜第9行目の[卯、5図
・・・・図であ°る。−1を1第5図は熱ザイクル上限
保持温度(Th)を950℃と一定にし、加熱速度(l
lr )、保持時間(Il、 T、 )、板厚(t)が
異なる場合の曲げ角度(α)と熱サイクル回数(N)の
関係を示す図、第6図は保持時間(II、 ’I”、 
)を5秒と一定にし、熱ザイクル上限保持温度(Th 
)を変えたときの曲げ角度(α)と加熱速度(llr)
の関係を示す図、第7図は熱サイクル上限保持温度(T
h )を950℃と一定にし、加熱速度(llr )を
変えたときの曲げ角度(α)と保持時間(Il、 i”
)の関係を示す図、第8図は熱サイクル上限f+Aj 
+、S温度(’l”h ) = 950℃、保持時間−
53(ICと一定にしたときの曲げ角度(α)と加熱速
度(Ilr )の関係を示す図、第9図は熱ザイクルー
lx限保持温度(1’h ) −950℃、加熱速度(
llr ) −4[1dcg/ ’iC(と一定にし、
板厚(+)を変えたときの曲げ角度((t)と保持時間
(II、 T、 )の関係を示す図、第10区は板厚(
+、 ) −3nun、保持時間(Il、 T、 ) 
−5secとし、熱ザイクル上限保持温度(1″h)を
変えた場合の曲げ角度(α)と加熱速度(llr )の
関係を示す図、第11図は板厚−3mm、熱ヤイクル上
限保持温度(TI+ ) −950℃とし、加熱速度(
Ilr )を変えたときの曲げ角度(α)と保持時間(
Il、 ’l”、 )の関係を示す図、第12図は板厚
−2mm、保持時間(Il、 T、 ) −19sec
とし加熱速度(山)を変えたときの曲げ角度(α)と熱
サイクル上限保持温度(Th )の関係を示す図、第1
6図は本発明のダイレス曲げ加工をしたもの(図・1及
び1))、従来の■型開げ加工をしだもの(図()およ
び素拐(図C)の顕微鏡組織を示す図、第14図はダイ
レス板曲げ加工材及びV−7]、1曲げ加圧4′Aの曲
げ断面γlISの微小硬さの分布を示す同第15 図r
、r ST、JS 304ステンレス鋼板における加熱
速度(llr ) −43dcg / sec、保持時
間(+1. T、 )−5secとしたときの曲げ角度
(α)と熱サイクル」1限保持温度(Th )の関係を
示す図である。lに訂正する。 6、明細書添付の第16図を本書添伺の図面のとおり訂
正する。 t13 ((11) (C) (b) C(J) 0tpt幽朔
Fig. 1 is an explanatory diagram of the conventional linear hot plate bending method 1, Fig. 2 is a schematic explanatory diagram of the deformation behavior of a test piece in the present invention, and Fig. 3 is an explanatory diagram of the deformation behavior of a test piece in the present invention.
The figure shows the chemical composition of the SI○C rolled polished steel plate used in the experiments of the present invention, Figure 4 is a schematic diagram showing the experimental equipment using the high-frequency induction heating method used in the experiments of the present invention, and Figures 5 to 5 FIG. 15 is a diagram showing experimental results for supporting the present invention. In the figure, 11. Test piece 12. Support stand with lifter 13. Heat-resistant glass bar 14. High frequency heating coil 15. High frequency power supply 16. Water cooling pipe 17. Spouting water.
18... CA thermocouple 19 - Heating/cooling waveform control device 20... Valve attorney Junnosuke Nakamura 1 Figure 3 Figure 1-4 Figure 1-2 Heating (C) Water pump N Sai 5 Figure 6181 Heating rate HY (deg/5ec) 1? 7 PJl 1-8 Illustration 0 Heat 2 degrees )-b (deg/c; ec)'! F9 figure spear 10 figure power nh goods ) 1r (deg/5ec) Volume 13 figure) F11 figure age 12 figure Josui I shadow attendant star degree Th ('C) L14 figure 1υη )! Figure 15 Procedural Amendment (Method) August 26, 1980 t11 Commissioner of the Licensed Agency Mr. + Relationship Patent applicant name: Osamu Katsuyo Kobayashi Subject of Hitosode+li: Brief description of drawings in the specification and attached drawings. Contents of amendment 1: 1 shown on page 11, line 15 of the specification. Between j and 1-Fig. (C)-1, 1-Fig.
h-950℃ and 750℃ Toshita Mono, I”21 (C)
i1 Shows the structure of a product subjected to normal ■ mold opening processing. Add j. 2. Figure 5 on page 14, lines 8 to 9 of the specification. -1 to 1 Figure 5 shows the thermal cycle upper limit holding temperature (Th) constant at 950°C and the heating rate (l
Figure 6 shows the relationship between the bending angle (α) and the number of thermal cycles (N) when the holding time (Il, T, ), and plate thickness (t) are different. ”,
) is kept constant at 5 seconds, and the thermal cycle upper limit holding temperature (Th
) when changing the bending angle (α) and heating rate (llr)
Figure 7 shows the relationship between the thermal cycle upper limit holding temperature (T
Bending angle (α) and holding time (Il, i” when heating rate (llr) is varied while holding h ) constant at 950 °C
), Figure 8 shows the thermal cycle upper limit f+Aj
+, S temperature ('l”h) = 950℃, holding time -
53 (A diagram showing the relationship between the bending angle (α) and the heating rate (Ilr) when the IC is kept constant.
llr) -4[1dcg/'iC(,
A diagram showing the relationship between the bending angle ((t) and holding time (II, T, ) when the plate thickness (+) is changed. The 10th section is the plate thickness (+).
+, ) -3nun, retention time (Il, T, )
Figure 11 shows the relationship between the bending angle (α) and the heating rate (llr) when the thermal cycle upper limit holding temperature (1″h) is changed at −5 sec, and the thermal cycle upper limit holding temperature is −3 mm. (TI+) -950℃, heating rate (
Bending angle (α) and holding time (Ilr) when changing
Figure 12 shows the relationship between Il, 'l'', ), and the plate thickness is -2 mm, and the holding time (Il, T, ) -19 sec.
Figure 1 shows the relationship between the bending angle (α) and the thermal cycle upper limit holding temperature (Th) when the heating rate (mountain) is changed.
Figure 6 shows the microscopic structure of the dieless bending process of the present invention (Figures 1 and 1)), and the conventional dieless bending process (Figure () and Figure C). Figure 14 shows the microhardness distribution of the bending section γlIS of dieless plate bent material and V-7], 1 bending and pressing 4'A.
, r ST, JS 304 stainless steel plate: Heating rate (llr) -43 dcg/sec, holding time (+1. It is a figure showing a relationship. Correct to l. 6. Figure 16 attached to the specification is corrected to match the drawing attached to this document. t13 ((11) (C) (b) C(J) 0tpt Yushuo

Claims (1)

【特許請求の範囲】 1、 外部からの拘束を受けず、自由に動きうるように
支持された金属板の表面に点状、直線状または曲線状の
断続的な加熱サイクルを加えると同時に前記金属板の裏
面の前記表面加熱位置に対応する位置に前記加熱サイク
ル間の非加熱時に冷却サイクルを加え、前記金属板の表
・裏画面間に局部的な温度勾配を繰返し与えることによ
り、前記金属板を前記表面加熱位置を中心として前記金
属板の表面側に曲げることを特徴とする熱応力利用ダイ
レス板成形方法。 2、特許請求の範囲第1項記載の熱応力利用タイレス板
成形方法において、前記金属板の加熱、冷却位置を順次
所定方向に所定間隔で移動させることにより、所定の曲
面をもった金属板をうろことを特徴とする熱応力利用ダ
イレス板成形方法。
[Claims] 1. Applying intermittent heating cycles in the form of dots, straight lines, or curves to the surface of a metal plate supported so that it can move freely without being restrained from the outside, and at the same time A cooling cycle is applied to a position corresponding to the surface heating position on the back side of the plate during the non-heating period between the heating cycles, and a local temperature gradient is repeatedly applied between the front and back surfaces of the metal plate. A dieless plate forming method using thermal stress, characterized in that the metal plate is bent toward the surface side of the metal plate around the surface heating position. 2. In the method for forming a tieless plate using thermal stress according to claim 1, a metal plate having a predetermined curved surface is formed by sequentially moving the heating and cooling positions of the metal plate in a predetermined direction at a predetermined interval. A method for forming dieless plates using thermal stress, which features scales.
JP6404582A 1982-04-19 1982-04-19 Forming method of dieless plate utilizing thermal stress Granted JPS58181426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6404582A JPS58181426A (en) 1982-04-19 1982-04-19 Forming method of dieless plate utilizing thermal stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6404582A JPS58181426A (en) 1982-04-19 1982-04-19 Forming method of dieless plate utilizing thermal stress

Publications (2)

Publication Number Publication Date
JPS58181426A true JPS58181426A (en) 1983-10-24
JPH038850B2 JPH038850B2 (en) 1991-02-07

Family

ID=13246737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6404582A Granted JPS58181426A (en) 1982-04-19 1982-04-19 Forming method of dieless plate utilizing thermal stress

Country Status (1)

Country Link
JP (1) JPS58181426A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100677465B1 (en) * 2005-08-10 2007-02-07 이영화 Linear Induction Heating Coil Tool for Plate Bending
JP2015050045A (en) * 2013-09-02 2015-03-16 富士電子工業株式会社 Deformation method for steel plate
CN105033513A (en) * 2015-06-25 2015-11-11 大连理工大学 Auxiliary stamping forming method with welding technique locally modified

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100677465B1 (en) * 2005-08-10 2007-02-07 이영화 Linear Induction Heating Coil Tool for Plate Bending
JP2015050045A (en) * 2013-09-02 2015-03-16 富士電子工業株式会社 Deformation method for steel plate
CN105033513A (en) * 2015-06-25 2015-11-11 大连理工大学 Auxiliary stamping forming method with welding technique locally modified

Also Published As

Publication number Publication date
JPH038850B2 (en) 1991-02-07

Similar Documents

Publication Publication Date Title
Fetene et al. Numerical and experimental study on multi-pass laser bending of AH36 steel strips
Yau et al. Laser bending of leadframe materials
Furushima et al. Effects of oxidation and surface roughening on drawing limit in dieless drawing process of SUS304 stainless steel microtubes
Maeno et al. Hot stamping of titanium alloy sheets using partial contact heating
Sajan et al. A novel method for the spring-back analysis of a hot stamping steel
Löbbe et al. Mechanisms for controlling springback and strength in heat-assisted sheet forming
Bataev et al. Ultrahigh cooling rates at the interface of explosively welded materials and their effect on the formation of the structure of mixing zones
JPS58181426A (en) Forming method of dieless plate utilizing thermal stress
Chan et al. Laser bending of an Al6013/SiCp aluminium matrix composite sheet
AU596743B2 (en) Variable strength steel, formed by rapid deformation
Maeno et al. Hot stamping of titanium alloy sheets into U shape with concave bottom and joggle using resistance heating
AU1626188A (en) Variable strenth materials by rapid deformation
Adaskin Use of the effect of stress relaxation for changing the shape of articles from nonplastic steels and alloys
Xie et al. Investigation on transient electrically-assisted stress relaxation of QP980 advanced high strength steel
Wiewiorowska et al. The influence of hot dip galvanizing process on TRIP steel wire structure and properties
Chan et al. Deformation behaviour of chromium sheets in mechanical and laser bending
Wen et al. Mathematical modelling of joint temperature during linear friction welding of dissimilar Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3 Si and Ti-5Al-2Sn-2Zr-4Mo-4Cr alloys
Male et al. Processing effects in plasma forming of sheet metal
Capello et al. Enhancing dual phase steel formability by diode laser heat treatment
Wang et al. Tailored properties of hot stamping steel by resistance heating with local temperature control
Khandandel et al. Effect of cooling on bending angle and microstructure in laser tube bending with circumferential scanning
Hamasaki et al. Biaxial deformation on AA5182-O aluminium alloy sheet at warm temperature
Lunev et al. Heat Criterion of the Change of Strain-Hardening Stages in Austenitic Stainless Steel
KUMAR et al. Empirical modelling for work piece temperature during end milling of inconel 625 using a green’s function approach based on dirac delta function
Drozd et al. Study of development of strain in plane strain compression test