JPS5818134B2 - Carbon dioxide absorption method in distribution system pipes - Google Patents

Carbon dioxide absorption method in distribution system pipes

Info

Publication number
JPS5818134B2
JPS5818134B2 JP52008794A JP879477A JPS5818134B2 JP S5818134 B2 JPS5818134 B2 JP S5818134B2 JP 52008794 A JP52008794 A JP 52008794A JP 879477 A JP879477 A JP 879477A JP S5818134 B2 JPS5818134 B2 JP S5818134B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
flow
liquid
dioxide gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52008794A
Other languages
Japanese (ja)
Other versions
JPS5394270A (en
Inventor
山口昇吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP52008794A priority Critical patent/JPS5818134B2/en
Publication of JPS5394270A publication Critical patent/JPS5394270A/en
Publication of JPS5818134B2 publication Critical patent/JPS5818134B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Non-Alcoholic Beverages (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

【発明の詳細な説明】 清涼飲料水を製造する場合に、従来では第1図に図示の
ような炭酸ガス吸収装置が用いられていた。
DETAILED DESCRIPTION OF THE INVENTION In the production of soft drinks, conventionally, a carbon dioxide absorption device as shown in FIG. 1 has been used.

前記装置において、炭酸ガス吸収タンクaは断熱材すに
て保冷され、該タンクaには炭酸ガス配管Cより調圧し
た炭酸ガスが供給されるようになっている。
In the above device, the carbon dioxide absorption tank a is kept cool by a heat insulating material, and the pressure-regulated carbon dioxide gas is supplied to the tank a from the carbon dioxide gas pipe C.

また前記炭酸ガス吸収タンクaの頂部にはタンク内圧力
測定用圧力計dと製品液供給パイプeが設けられている
Furthermore, a pressure gauge d for measuring the pressure inside the tank and a product liquid supply pipe e are provided at the top of the carbon dioxide absorption tank a.

さらに前記炭酸ガス吸収タンクa内において、前記製品
液供給パイプeの下端下方に分配混合器fが配設され、
その下方に冷却板gが配置されており、該冷却板gは冷
媒供給パイプhから送られ冷媒排出パイプiに気化して
排出される冷媒で冷却されるようになっている。
Furthermore, within the carbon dioxide absorption tank a, a distribution mixer f is disposed below the lower end of the product liquid supply pipe e;
A cooling plate g is arranged below it, and the cooling plate g is cooled by the refrigerant sent from the refrigerant supply pipe h and vaporized and discharged to the refrigerant discharge pipe i.

さらにまた前記炭酸ガス吸収タンクa内において、前記
冷却板gの下方に集合皿jが配設され、前記タンクaの
底部にバッフル板kが設けられ、該タンクaの底部から
製品液を排出する出口配管1が連結されている。
Furthermore, in the carbon dioxide absorption tank a, a collecting plate j is disposed below the cooling plate g, and a baffle plate k is provided at the bottom of the tank a to discharge the product liquid from the bottom of the tank a. An outlet pipe 1 is connected.

なおmは液温度測定装置である。Note that m is a liquid temperature measuring device.

第1図に図示の炭酸ガス吸収装置においては、炭酸ガス
配管Cよりタンクa内に調圧した炭酸ガスを供給すると
ともに、製品液供給パイプeより製品液を分配混合器f
に供給し、かつ冷却供給パイプhから冷却板gに液化冷
媒を供給すると、前記分配混合器f内の製品液は混合さ
れ、該混合液は冷却板gの表面に均一に分配されて液膜
に形成され、該液膜は炭酸ガス雰囲気中にて冷却されつ
つ炭酸ガスを吸収する。
In the carbon dioxide absorption device shown in FIG. 1, carbon dioxide gas is supplied with a controlled pressure into a tank a from a carbon dioxide pipe C, and a product liquid is supplied to a distribution mixer f from a product liquid supply pipe e.
When the liquefied refrigerant is supplied from the cooling supply pipe h to the cooling plate g, the product liquid in the distribution mixer f is mixed, and the mixed liquid is uniformly distributed on the surface of the cooling plate g to form a liquid film. The liquid film absorbs carbon dioxide while being cooled in a carbon dioxide atmosphere.

そして冷却板2表面にて炭酸ガスを吸収した製品液は集
合皿jに落下して混合され、均質化された後、タンクa
の底部に静かに貯溜される。
The product liquid that has absorbed carbon dioxide gas on the surface of the cooling plate 2 falls into the collection pan j, is mixed, and is homogenized before being transferred to the tank a.
is stored quietly at the bottom of the

このように第1図に図示の装置では、タンクa内の炭酸
ガス圧力の制御と冷却板での冷却温度の制御とで、製品
液の炭酸ガス吸収濃度を制御するようになっているため
、系の制御応答性が低く、炭酸ガス吸収量の自動制御化
には不適当であった3しかも冷却板1枚当りの製品液処
理量に、冷却上および炭酸ガス吸収上に限度があるため
、必要な冷却板の枚数は、製品液の処理量に比例し、定
形の冷却板を収容するタンクaは製品液の増加に対応し
て大型化し、さらにタンクaは第2種圧力容器に搬車し
、空間使用効率が悪く、経済的に不利であった。
In this way, in the device shown in FIG. 1, the carbon dioxide absorption concentration of the product liquid is controlled by controlling the carbon dioxide pressure in tank a and the cooling temperature on the cooling plate. The control response of the system was low, making it unsuitable for automatic control of the amount of carbon dioxide absorbed.3Moreover, there was a limit to the amount of product liquid processed per cooling plate in terms of cooling and carbon dioxide absorption. The number of cooling plates required is proportional to the amount of product liquid to be processed, and tank a, which accommodates regular cooling plates, becomes larger to accommodate the increase in product liquid. However, the space usage efficiency was poor and it was economically disadvantageous.

また第1図に図示の装置を改良した第2図に図示のよう
な清涼飲料製造用炭酸ガス吸収装置においては、配管A
より装置に液を導入し、ガス配管Cより送られる炭酸ガ
スを減圧弁りで所定の圧力に減圧調整し、炭酸ガス流量
計Eにて注入炭酸ガス流量を計測しつつ流量調節弁Fで
注入炭酸ガスの流量を調節した後、炭酸ガス注入装置B
において、液に炭酸ガスを直接注入し、これより下流側
の配管Gにて炭酸ガスを液に吸収させていた。
In addition, in the carbon dioxide absorbing device for producing soft drinks as shown in FIG. 2, which is an improved version of the device shown in FIG.
Introduce the liquid into the device, adjust the pressure of the carbon dioxide sent from the gas pipe C to a predetermined pressure with the pressure reducing valve, and inject it with the flow rate adjustment valve F while measuring the flow rate of the injected carbon dioxide gas with the carbon dioxide flow meter E. After adjusting the flow rate of carbon dioxide gas, carbon dioxide injection device B
In this method, carbon dioxide gas was directly injected into the liquid, and the carbon dioxide gas was absorbed into the liquid through a pipe G downstream from this.

そして配管Gにて充分に吸収されない液と炭酸ガスとの
混合物は、第1図に図示と同様な構造のガス吸収タンク
Hに供給され、また配管Cより分岐された配管Iより炭
酸ガス圧力調節装置Jで圧力調節され流量調節弁Kを通
って炭酸ガス供給口りを介して炭酸ガスが前言弓ガス吸
収タンクHに供給され、該ガス吸収タンクH内において
、第1図に図示した装置と同様な原理で製品液に炭酸ガ
スが吸収される。
The mixture of liquid and carbon dioxide that is not sufficiently absorbed in the pipe G is supplied to a gas absorption tank H having the same structure as shown in FIG. The pressure is regulated by the device J, and carbon dioxide gas is supplied to the gas absorption tank H through the flow rate control valve K and the carbon dioxide gas supply port, and in the gas absorption tank H, the device shown in FIG. Carbon dioxide gas is absorbed into the product liquid using the same principle.

第2図に図示の清涼飲料製造用炭酸ガス吸収装置は、冷
却板1枚当りの液処理量の向上と、炭酸ガス吸収のため
の加圧圧力の低下とを図るようにしたものであるが、配
管G内でガス吸収効率を100%にすることができない
ので、装置的に第1図に図示の装置と大差がない。
The carbon dioxide absorption device for soft drink production shown in Fig. 2 is designed to improve the liquid throughput per cooling plate and reduce the pressurizing pressure for carbon dioxide absorption. Since the gas absorption efficiency cannot be made 100% in the pipe G, there is no major difference in terms of the device from the device shown in FIG.

さらに第1図および第2図に図示の装置内を殺菌もしく
は洗浄しようとしても、前記装置内の構造が複雑である
ために、分解洗浄に不利であり、また液化冷媒を用いて
いる冷却板を内蔵しているため、熱湯殺菌をするのに冷
媒の回収が必要であり、容易なことではない。
Furthermore, even if an attempt is made to sterilize or clean the inside of the apparatus shown in FIGS. 1 and 2, the complicated structure of the apparatus makes it difficult to disassemble and clean it, and the cooling plate uses liquefied refrigerant. Since it is built-in, it is necessary to recover the refrigerant to sterilize boiling water, which is not an easy task.

本発明は前記したような難点を克服した炭酸ガス吸収方
法の改良に係り、液処理流量が流量計による計測等によ
って行われ、ポンプで十分に加圧された液の流れとし、
かつ該流れに対し一定の比率、流量の炭酸ガスを注入し
て流通系管内を流過せしめ、前記流通系管内における流
過中に固定攪拌翼とオリフィスとになる2重攪拌によっ
て気液混合を行ない安定せしめたのち圧力タンクへ流入
せしめることを特徴とするもので、その目的とする処は
、極めて能率良く低コストで液に炭酸ガスを吸収させる
ことができる方法を供する点にある1本発明は前記した
ように液処理流量が流量計による計測等によって行われ
ポンプで十分に加圧された液の流れとし、かつ該流れに
対し一定の比率流量の炭酸ガスを注入して流通系管内を
流過せしめ、前記流通系管内における流過中に固定攪拌
翼とオリフィスとによる2重攪拌によって気液混合を行
ない安定せしめたのち圧力タンクへ流入せしめるので、
流通系管内に流過される流れの量および炭酸ガスの混合
比率が常に所定の正確なものに制御されるとともに所定
加圧状態で流過され、かつ、前記流過中に固定攪拌翼に
よって炭酸ガス気泡が烈しく攪拌され細分化されたのち
さらにオリフィスによって再度一層攪拌されて気液混合
されるため、格別の圧力低下を必要としないで十分な炭
酸ガス吸収量が確保され、高炭酸ガス吸収量かつ高精度
の製品を極めて高能率にて量産できる。
The present invention relates to an improvement of a carbon dioxide absorption method that overcomes the above-mentioned difficulties, in which the liquid processing flow rate is measured by a flow meter, etc., and the liquid flow is sufficiently pressurized by a pump,
Then, carbon dioxide gas is injected at a certain ratio and flow rate into the flow and allowed to flow through the flow system pipe, and gas-liquid mixing is performed by double stirring using a fixed stirring blade and an orifice during the flow inside the flow system pipe. The present invention is characterized in that the liquid is allowed to absorb carbon dioxide gas efficiently and at low cost. As mentioned above, the liquid processing flow rate is measured by a flowmeter, etc., the liquid is sufficiently pressurized by a pump, and carbon dioxide gas is injected at a certain ratio to the flow to flow inside the flow system pipes. During the flow in the flow system pipe, gas-liquid mixing is stabilized by double stirring by a fixed stirring blade and an orifice, and then the mixture is allowed to flow into the pressure tank.
The amount of flow passing through the flow system pipe and the mixing ratio of carbon dioxide gas are always controlled to a predetermined and accurate value, and the flow is carried out under a predetermined pressurized state. After the gas bubbles are vigorously stirred and fragmented, they are further stirred again by the orifice to mix gas and liquid, so a sufficient amount of carbon dioxide gas is absorbed without the need for a particular pressure drop, resulting in a high carbon dioxide absorption amount. Moreover, high-precision products can be mass-produced with extremely high efficiency.

さらに不発明の炭酸ガス吸収方法によれば、液に炭酸ガ
スを吸収させる過程が連続的であり、かつ単純であるた
め、本発明の方法を適用した装置は頗る小型化、簡略化
され、しかも装置の分解洗浄や熱湯殺菌が容易である。
Furthermore, according to the uninvented carbon dioxide gas absorption method, the process of absorbing carbon dioxide gas into the liquid is continuous and simple, so the device to which the method of the present invention is applied can be significantly downsized and simplified. It is easy to disassemble and clean the device and sterilize it with boiling water.

以下本発明の一実施例を適用した第3図に図示の装置に
ついて説明すると、1は液流量計2にその一端が接続さ
れた配管で、予め必要な温度に冷却された製品液は前記
配管1の他端から該配管1、液流量計2および逆止弁4
を介してポンプ5に導入されるようになっている。
The apparatus shown in FIG. 3 to which an embodiment of the present invention is applied will be explained below. Reference numeral 1 denotes a pipe whose one end is connected to a liquid flow meter 2, and the product liquid cooled in advance to a required temperature is passed through the pipe. 1 to the other end of the pipe 1, the liquid flow meter 2, and the check valve 4.
It is designed to be introduced into the pump 5 via.

なお3は前記液流量計2で測定された流量を表示する流
量指示計である。
Note that 3 is a flow rate indicator that displays the flow rate measured by the liquid flow meter 2.

また前記ポンプ5で加圧された予冷却製品液は炭酸ガス
注入装置6に供給され、さらに炭酸ガス供給配管7より
送られ圧力計付減圧弁8にて調圧され電磁弁9を通過し
炭酸ガス流量計10で流量を計測されかつ流量調節弁1
1にて必要な量だけ調節された炭酸ガスも前記炭酸ガス
注入装置6に供給されるようになっている。
Further, the pre-cooled product liquid pressurized by the pump 5 is supplied to a carbon dioxide gas injection device 6, further sent from a carbon dioxide gas supply pipe 7, pressure regulated by a pressure reducing valve 8 with a pressure gauge, passed through a solenoid valve 9, and then carbonated. The flow rate is measured by the gas flow meter 10 and the flow rate control valve 1
The carbon dioxide gas adjusted in the required amount in step 1 is also supplied to the carbon dioxide gas injection device 6.

そして前記電磁弁9はポンプ5と連動しており、液が流
れている時のみ、炭酸ガス注入装置6に炭酸ガスを供給
するようになっている。
The electromagnetic valve 9 is linked with the pump 5, and supplies carbon dioxide gas to the carbon dioxide injection device 6 only when liquid is flowing.

さらに前記炭酸ガス注入装置6の下流側に図示されない
固定攪拌翼を具えた炭酸ガス吸収配管12、オリフィス
13、炭酸ガス吸収配管14およびオリフィス15を介
して圧力タンク16が接続され、該圧力タンク16には
圧力計19と浮子式液面制御装置20とが設けられ、該
圧力タンク16は液面制御弁20を介して貯蔵タンク2
2に接続されており、前記圧力タンク16内の液面は浮
子式液面制御装置20にて検出され液面制御弁21と連
動して一定液位に保持されるようになっている。
Furthermore, a pressure tank 16 is connected to the downstream side of the carbon dioxide gas injection device 6 via a carbon dioxide gas absorption pipe 12 equipped with a fixed stirring blade (not shown), an orifice 13, a carbon dioxide gas absorption pipe 14, and an orifice 15. is equipped with a pressure gauge 19 and a float type liquid level control device 20, and the pressure tank 16 is connected to a storage tank 2 via a liquid level control valve 20.
2, the liquid level in the pressure tank 16 is detected by a float type liquid level control device 20 and maintained at a constant liquid level in conjunction with a liquid level control valve 21.

さらにまた前記圧力タンク16は弁17および圧力調節
弁18を介して前記炭酸ガス供給配管7に接続され、前
記貯蔵タンク22は炭酸ガス減圧弁23と炭酸ガス供給
弁24とを介し、て前記炭酸ガス供給配管7に接続され
ている。
Furthermore, the pressure tank 16 is connected to the carbon dioxide gas supply pipe 7 via a valve 17 and a pressure regulating valve 18, and the storage tank 22 is connected to the carbon dioxide gas supply pipe 7 via a carbon dioxide gas pressure reducing valve 23 and a carbon dioxide gas supply valve 24. It is connected to the gas supply pipe 7.

しかして前記貯蔵タンク22の液面は、製品液出口配管
29から流出する量により変動するので、圧力制御装置
を必要とし、該圧力制御装置は圧力。
Since the liquid level in the storage tank 22 varies depending on the amount flowing out from the product liquid outlet pipe 29, a pressure control device is required, and the pressure control device controls the pressure.

計25と貯蔵タンク22の圧力を電気出力に変換する変
換装置26と圧力制御器27 、(a力調節弁28とよ
りなっている。
It consists of a converter 26 that converts the pressure in the total 25 and storage tank 22 into electrical output, a pressure controller 27, and a force control valve 28.

第3図に図示の実施例は前記したよやに構成されている
ので、ポンプ5を運転開始すると、予冷。
The embodiment shown in FIG. 3 is constructed as described above, so that when the pump 5 starts operating, it is pre-cooled.

却製品液は炭酸ガス注入装置6に供輪潰れるとと−もに
、電磁弁9が開放されて、前記予冷却製品液の流量に対
して一定の比率の流量の炭゛酸ガスが前記炭酸ガス注入
装置6に供給され、炭酸ガス吸収配管12内の固定攪拌
翼により前記予冷却製品液シは烈しく撹乱され、また前
記注入炭酸ガス気泡は細分化され、次にその下流のオリ
フィスにより前記予冷却製品液と炭酸ガスとはさらに一
層撹乱混合され、炭酸ガスの吸収が促進される。
The pre-cooled product liquid is fed to the carbon dioxide gas injection device 6, and the solenoid valve 9 is opened to inject the carbon dioxide gas at a certain ratio to the flow rate of the pre-cooled product liquid. The pre-cooled product liquid stream is supplied to the gas injection device 6 and is violently agitated by a fixed agitating blade in the carbon dioxide absorption pipe 12, and the injected carbon dioxide gas bubbles are fragmented, and then the pre-cooled product liquid stream is broken up by the downstream orifice. The cooled product liquid and carbon dioxide gas are mixed with further turbulence, and the absorption of carbon dioxide gas is promoted.

そして炭酸ガス吸収配管14の管径に対して約120〜
30倍の距離たけ離れた所に設けられたオリフィス15
で前記予冷却製品液と炭酸ガスとが再び撹乱混合され、
流通系管内においてポンプ5による圧力下で前記予冷却
製品液に炭酸ガスが略完全に吸収される。
And about 120~ for the pipe diameter of the carbon dioxide absorption piping 14
Orifice 15 located 30 times farther away
The pre-cooled product liquid and carbon dioxide gas are stirred and mixed again.
Carbon dioxide gas is almost completely absorbed into the pre-cooled product liquid under the pressure of the pump 5 in the flow system pipe.

また前記流通系管を流過して圧力タンク16に流入した
製品液は、炭酸ガス雰囲気下で加圧され、より完全に炭
酸ガスの吸収が遂行される。
Further, the product liquid that has passed through the flow system pipe and entered the pressure tank 16 is pressurized in a carbon dioxide atmosphere, so that carbon dioxide gas can be absorbed more completely.

そして圧力タンク16内で完全に炭酸ガスを吸収した製
品液は必要な圧力に調圧された貯蔵タンJり22内に静
かに貯溜され、飯の攪拌が充分に静められて、必要量の
製品液が出口配管29より取り出される。
The product liquid that has completely absorbed carbon dioxide gas in the pressure tank 16 is then quietly stored in the storage tank 22, which is regulated to the required pressure. The liquid is taken out from the outlet pipe 29.

このように前記実施例においては、炭酸ガス吸収誉は、
予冷却製品液と炭酸ガスとの注入比で決定されるので、
製品液の炭酸ガス吸収濃度を一定に保つことが容易であ
り操作が簡単である。
In this way, in the above embodiment, the carbon dioxide absorption is
It is determined by the injection ratio of pre-cooled product liquid and carbon dioxide gas, so
It is easy to keep the carbon dioxide absorption concentration of the product liquid constant and the operation is simple.

また炭酸ガスの吸収は殆んど配管中で行なわれるので、
系の応答性が頗る良好である。
Also, most of the absorption of carbon dioxide gas takes place in the pipes, so
The responsiveness of the system is extremely good.

さらにタンク類は必要最小限度のものでよ(、装置は小
型となり、大量処理も容易である。
In addition, tanks are kept to the minimum necessary (the equipment is small and mass processing is easy).

さらにまた装置は複雑な機構を有する所がなく、分解洗
浄および薬液による殺菌洗浄が容易であり、熱湯殺菌も
可能である。
Furthermore, the device does not have any complicated mechanism, and can be easily disassembled and cleaned and sterilized with a chemical solution, and can also be sterilized with boiling water.

以上本発明を実施例について説明したが、勿論本発明は
このような実施例にだけ局限されるものではなく、本発
明の精神を逸脱しない範囲内で線種の改変を施しうるも
のである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments, and the line types may be modified without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の炭酸ガス吸収装置の縦断側面図、第2図
は従来の他の炭酸ガス吸収装置の概略配管図、第3図は
本発明に係る流通系管内炭酸ガス吸収方法の一実施例を
適用した装置の概略配管図である。 1・・−・・・予冷却製品液配管、2・・・・・・液流
置針、3・・・・・・流量指示計、4・・・・・・逆止
弁、5・・・・・・ポンプ、6・・・・・・炭酸ガス注
入装置、7・・・・・・炭酸ガス供給配管、8・・・・
・・圧力計付減圧弁、9・・・・・・電磁弁、10・・
・・・・炭酸ガス流量計1.11・・・・・・流量調節
弁、12・・・・・・炭酸ガス吸収配管、13・・・・
・・オリフィス、14・・・・・・炭酸ガス吸収配管、
15・・・・・・オリフィス、16・・・・・・圧力タ
ンク、17・・・・・・弁、18・・・・・・圧力調節
弁、19・・・・・・圧力計、20・・・・・・浮子式
液面制御装置、21・・・・・・液面制御弁、22・・
・・・・貯蔵タンク、23・・・・・・炭酸ガス減圧弁
、24・・・・・・炭酸ガス供給弁、 ゛
Fig. 1 is a vertical sectional side view of a conventional carbon dioxide absorption device, Fig. 2 is a schematic piping diagram of another conventional carbon dioxide absorption device, and Fig. 3 is an implementation of the method for absorbing carbon dioxide in a distribution system pipe according to the present invention. It is a schematic piping diagram of the apparatus to which an example is applied. 1...Pre-cooled product liquid piping, 2...Liquid flow needle, 3...Flow rate indicator, 4...Check valve, 5... ... Pump, 6 ... Carbon dioxide gas injection device, 7 ... Carbon dioxide gas supply piping, 8 ...
...Reducing valve with pressure gauge, 9...Solenoid valve, 10...
... Carbon dioxide flow meter 1.11 ... Flow control valve, 12 ... Carbon dioxide absorption piping, 13 ...
... Orifice, 14 ... Carbon dioxide absorption piping,
15... Orifice, 16... Pressure tank, 17... Valve, 18... Pressure control valve, 19... Pressure gauge, 20 ...Float type liquid level control device, 21...Liquid level control valve, 22...
... Storage tank, 23 ... Carbon dioxide gas pressure reducing valve, 24 ... Carbon dioxide gas supply valve, ゛

Claims (1)

【特許請求の範囲】[Claims] 1 液処理流量が流量計による計測等によって行われポ
ンプで十分に加圧された液の流れとし、かつ該流れに対
し一定の比率、流量の炭酸ガスを注入して流通系管内を
流過せしめ、前記流通系管内における流過中に固定攪拌
翼とオリフィスとによる2重攪拌によって気液混合を行
ない安定せしめたのち圧力タンクへ流入せしめることを
特徴とする流通系管内炭酸ガス吸収方法。
1 The liquid processing flow rate is measured by a flow meter, etc., the liquid is sufficiently pressurized by a pump, and carbon dioxide gas is injected at a certain ratio and flow rate into the flow to allow it to flow through the pipes of the distribution system. A method for absorbing carbon dioxide gas in a flow system pipe, characterized in that gas-liquid mixing is stabilized by double stirring using a fixed stirring blade and an orifice during the flow in the flow system pipe, and then the mixture is allowed to flow into a pressure tank.
JP52008794A 1977-01-31 1977-01-31 Carbon dioxide absorption method in distribution system pipes Expired JPS5818134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52008794A JPS5818134B2 (en) 1977-01-31 1977-01-31 Carbon dioxide absorption method in distribution system pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52008794A JPS5818134B2 (en) 1977-01-31 1977-01-31 Carbon dioxide absorption method in distribution system pipes

Publications (2)

Publication Number Publication Date
JPS5394270A JPS5394270A (en) 1978-08-18
JPS5818134B2 true JPS5818134B2 (en) 1983-04-11

Family

ID=11702764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52008794A Expired JPS5818134B2 (en) 1977-01-31 1977-01-31 Carbon dioxide absorption method in distribution system pipes

Country Status (1)

Country Link
JP (1) JPS5818134B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923280U (en) * 1972-05-29 1974-02-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923280U (en) * 1972-05-29 1974-02-27

Also Published As

Publication number Publication date
JPS5394270A (en) 1978-08-18

Similar Documents

Publication Publication Date Title
US6260477B1 (en) Autofill system with improved automixing
US5403088A (en) Apparatus and method for the dispersion of minute bubbles in liquid materials for the production of polymer foams
JPH06258207A (en) Continuous-flow microwave heating and digenstion system for digestion of substance to be analyzed
US9980505B2 (en) Variable pressure device for solubilizing carbon dioxide in a beverage
JPH1043774A (en) Method for cooling and co2 enriching potable water and device therefor
JP2009039717A (en) Carbonation system and method
CN110248890B (en) Water dispenser and method for dispensing carbonated water
US11572534B2 (en) System for controlling the concentration of single and multiple dissolved gases in beverages
AU780237B2 (en) Plant for transferring a gas into a liquid
CN1319858C (en) Method of quantitatively producing ammonia from urea
CN107271644B (en) CO (carbon monoxide) 2 Device and method for testing separation foaming performance of flooding crude oil
Bauer et al. Influence of crystal size on the rate of contact nucleation in stirred‐tank crystallizers
US2348791A (en) Carbonator
US2455681A (en) Method of preparing carbonated beverages
GB1589306A (en) Method and apparatus for mixing polyurethane foam
JPS5818134B2 (en) Carbon dioxide absorption method in distribution system pipes
JPS5889177A (en) Apparatus for continuously breaking bacterial cell
JPH08206212A (en) Method and equipment to manufacture gas mixture containing vector gas and additive steam
EP0657772A1 (en) Modified passive liquid in-line segmented blender
CN207468207U (en) A kind of efficient liquefied ammonia of safety and environmental protection prepares the device of ammonium hydroxide
US5141011A (en) Liquid proportioner apparatus and method
JPH082415B2 (en) Carbonated beverage manufacturing equipment
Laari et al. Gas‐liquid mass transfer in bubble columns with a T‐junction nozzle for gas dispersion
JP2001521440A (en) Method for starting a liquid dispensing facility with in-line properties, especially during the production of soft drinks consisting of water, syrup and carbon dioxide
US474413A (en) joseph schneible