JPS58181227A - Polarized electromagnetic relay - Google Patents
Polarized electromagnetic relayInfo
- Publication number
- JPS58181227A JPS58181227A JP6520982A JP6520982A JPS58181227A JP S58181227 A JPS58181227 A JP S58181227A JP 6520982 A JP6520982 A JP 6520982A JP 6520982 A JP6520982 A JP 6520982A JP S58181227 A JPS58181227 A JP S58181227A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- iron core
- contact spring
- force
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明に電磁継電器に関[7、特に電流保持形の自他′
m出継1!&E器pc関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electromagnetic relays [7, particularly current-holding type relays]
m transfer 1! &E equipment PC related.
従来、第1図に示すようなコの字形ヨーク1゜2とコの
字形鉄心4を組合せて、鉄心4の両端部に十h4それ一
極部を形成し、鉄心40両端に発生する磁気吸引力と磁
気反撥力がそh4″ね同一方向に働くような冨磁石構造
を有する電磁継電器におい)では、鉄心4が磁石3の磁
束路を閉磁路に構成する働きを持つため、一般に、磁石
3の残留磁気吸引力で保持するいわゆる自己保持形継電
器は容易に得られるが、駆動重圧が印加されコイルに電
流が流れた時のみ保持されるいわゆる電流保持形継電器
を得ることは構造上難かしい場合が多かった。Conventionally, a U-shaped yoke 1゜2 and a U-shaped iron core 4 as shown in FIG. In an electromagnetic relay having a multi-magnet structure in which force and magnetic repulsion act in the same direction, the iron core 4 has the function of configuring the magnetic flux path of the magnet 3 into a closed magnetic path. Although it is easy to obtain so-called self-holding relays that are held by residual magnetic attraction, it is structurally difficult to obtain so-called current-holding relays that are held only when heavy driving pressure is applied and current flows through the coil. There were many.
本発明は上記の欠点に鑑み、大小2つのコの字形ヨーク
を、それぞれのヨークの両端vc 14なった磁極が発
生するように磁石會挾んで対向させるとともに、コの字
形の鉄心をその両端がヨークの両端に発生する異なった
磁極間に挿入されるように配設した′―磁気系において
、指定された磁極側に吸引保持される吸引力より他方に
保持される吸引力の方が大きくなるよう磁気吸引力に差
を生じさせて構成した′醒磁気系と、指定された側の磁
気吸引力より復旧させる方向に働く接点ばねによる復旧
力の方が大きくなるように構成された接点げね系とで構
成し、1′流が駆動コイルに流rrた時のみに復旧され
る市、流保持形継電器を提供しようとするものである。In view of the above-mentioned drawbacks, the present invention has two U-shaped yokes, one large and one small, facing each other through magnets so that magnetic poles of VC14 are generated at both ends of each yoke. In a magnetic system arranged to be inserted between different magnetic poles generated at both ends of the yoke, the attractive force held on the other side is greater than the attractive force held on the designated magnetic pole side. A magnetic system is configured to create a difference in the magnetic attraction force, and a contact spring is configured so that the recovery force from the contact spring acting in the recovery direction is greater than the magnetic attraction force on the designated side. The present invention attempts to provide a current-holding type relay that is configured with a current flow system and is restored only when a 1' current flows into the drive coil.
以下、図面に示す実施例に基づいて本発明を説明する。The present invention will be described below based on embodiments shown in the drawings.
ta2図は本発明の有極形電磁継電器に用いる電磁石構
造の一実施例である。図において、l及び2は大小一対
の磁極用のヨークで、3はこれらのヨーク1.2間に挾
持された磁石である。ヨーク1ルび2け磁石3によりS
極52はN極に磁化されている両端部會、各N&から各
S極に向う磁束の方向が磁石3の磁極間を結ぶ線と垂直
になるようにコの字形に折り曲げて形成しである。4は
鉄心で、この鉄心4の両端部はヨーク1.2と同様に折
り曲げられヨーク1.2の磁極部間にはさまれて配設さ
れている。また鉄心4にはコイル5が巻回されている。Figure ta2 is an example of an electromagnet structure used in the polarized electromagnetic relay of the present invention. In the figure, 1 and 2 are yokes for a pair of large and small magnetic poles, and 3 is a magnet held between these yokes 1 and 2. S by yoke 1 and 2 magnets 3
The pole 52 is formed by bending both ends magnetized to N poles into a U-shape so that the direction of magnetic flux from each N & to each S pole is perpendicular to the line connecting the magnetic poles of the magnet 3. . Reference numeral 4 denotes an iron core, and both ends of the iron core 4 are bent in the same way as the yoke 1.2 and are sandwiched between the magnetic pole parts of the yoke 1.2. Further, a coil 5 is wound around the iron core 4.
さらに各ヨーク1.2は、磁極部のうち指定さねた側の
磁極面檀ケ小さくシ、ここにヨーク1,2と鉄心4が接
する磁極面上に磁気空隙が構成されるようレシジャル2
2が配設しである。Furthermore, each yoke 1.2 has a magnetic pole face on the designated side of the magnetic pole part, which is made smaller so that a magnetic gap is formed on the magnetic pole face where the yokes 1, 2 and the iron core 4 are in contact with each other.
2 is installed.
次に第3図によって第2図に示す実施例の動作原理を説
明する。第2図及び第3図は鉄心4と、コイル5が固定
さh1磁石3とヨーク1.2から成る接極部が変位する
実施例である。第3図(a)は、コイル5の電流方向を
鉄心40両端がそれぞれ吸引されているヨーク1,2の
極性と同一になる方向に印加した状態ケ示す。その結果
、鉄心4の両端には、同極間の反撥力が働くとともに異
極間の吸引力がυ0わるため、吸引力が接点ばね23の
負荷に打ち克って接極部を同図中変位方向に移動する。Next, the principle of operation of the embodiment shown in FIG. 2 will be explained with reference to FIG. FIGS. 2 and 3 show an embodiment in which the iron core 4 and the coil 5 are fixed, and the armature consisting of the h1 magnet 3 and the yoke 1.2 is displaced. FIG. 3(a) shows a state in which a current is applied to the coil 5 in the same direction as the polarity of the yokes 1 and 2 to which both ends of the iron core 40 are attracted. As a result, the repulsive force between the same poles acts on both ends of the iron core 4, and the attraction force between the different poles decreases by υ0, so that the attraction force overcomes the load of the contact spring 23 and causes the armature to move as shown in the figure. Move in the direction of displacement.
第3図(b)は移動した接極部が他側の磁極へ吸引され
変位した後の状態を示し、コイル5による励磁4束と磁
石3による磁束とが合成されるため大きな磁気吸引力が
得られる。コイル50實流が断たれると励磁4束が消磁
し、接&部は磁石3の残留吸引力のみで保持されようと
するが、磁極面積が小さくしかもレシジャル22による
磁気空隙が存在するため、接極部は接点ばね23の負荷
により幀旧し第3図(a)の状態に戻る。この動作時の
接点ばね23の負荷と磁気吸引力との関係を第5図に示
す。Figure 3(b) shows the state after the moved armature is attracted and displaced by the other magnetic pole, and the four excitation fluxes from the coil 5 and the magnetic flux from the magnet 3 are combined, so a large magnetic attraction force is generated. can get. When the current in the coil 50 is cut off, the four excitation fluxes are demagnetized, and the contact area attempts to be held only by the residual attractive force of the magnet 3. However, since the magnetic pole area is small and there is a magnetic gap due to the reciprocal 22, The armature is bent by the load of the contact spring 23 and returns to the state shown in FIG. 3(a). FIG. 5 shows the relationship between the load on the contact spring 23 and the magnetic attraction force during this operation.
第4図は本発明の他の実施例で、ヨーク1,2および磁
石3會固定し、コイル5中で鉄心4が移動する構造とし
たものである。この実施例における動作時の力の関係は
相対的なものであるため、第2図及び第3図に示す実施
例の説明と同一となる。したがって、説明は省略する。FIG. 4 shows another embodiment of the present invention, in which the yokes 1, 2 and 3 magnets are fixed, and the iron core 4 moves within the coil 5. Since the force relationship during operation in this embodiment is relative, it is the same as the description of the embodiment shown in FIGS. 2 and 3. Therefore, the explanation will be omitted.
第6図に本発明の基本構造を用すた、4回路分の切換形
接点を有するINN縦継電器具体的実施例の半断面図を
示す。本図Fi構造會理解し易くするため接極部は移動
して込ない状態で示しであるが、平常状態における接極
部は、鉄心4の両端4A。FIG. 6 shows a half-sectional view of an embodiment of an INN vertical relay device having switching contacts for four circuits, using the basic structure of the present invention. In order to make it easier to understand the Fi structure in this figure, the armature is shown without moving, but the armature in a normal state is at both ends 4A of the iron core 4.
4Bは大小のヨーク1,2の肉端IA、IB、2A、2
Bのうち磁気吸引力の大きい2A、IBと接し磁力3の
残留磁気吸引力で保持さねでいる。4B are the flesh ends IA, IB, 2A, 2 of the large and small yokes 1 and 2.
Of B, it is in contact with 2A and IB, which have a large magnetic attraction force, and is held by a residual magnetic attraction force of 3 magnetic force.
以下、この電磁継電器を第6図及び第7図に基づいて具
体的に説明する。基台7には切換信号端子16.18と
共通信号端子17が4IP!回路、及び駆動コイル端子
19と復旧コイル端子20が固定されている。鉄心4の
中央mは、基台7に固定さh外周VC駆動・復旧コイル
5全巻回したスプール8に挿入さねている。信号端子1
6.17.18にはそれぞれ可動接点はね9,10.1
1が設けてあり、これら口1動接点ばね9,10.11
の他端には接点12,13.14が浴接等で固定さtr
でいる。共通信号端子17に支持されている可動接点ば
ね10Fi切換信号端子に支持される可動接点ばね9.
11より長く、その先端部15ri接極部21を一体化
しているモールド6のばね支持部24で貫通固定されて
いる。このような態様で口■動接点ばね10は接極@2
1の4ケ所で固定されており、その結果接極部21’を
遊動自在に支持している。モールド6はヨーク1.2お
よび磁石3全一体化している。コイル5に電流が流れる
と、接極部21Vi前述した作動原理によりコイル5の
中心軸に36行に移動しヨーク1.2に衝突して吸引保
持される。このとき接点13は接点12r Q4全変位
させ、可動接点ばね9,0υのばね圧力で接点の導通変
倚るものである。なお、m7図は可動接点ばねと接極部
モールド6との構成の一例を判り易くモデル図にしたも
のである。可動接点ばね10V!モールド6のばね支持
部24にて固定されているため、磁気吸引力により接極
s21は磁気吸引力の作用する方向に変位可能となり、
磁極での片当り現象かはとんとない。Hereinafter, this electromagnetic relay will be specifically explained based on FIGS. 6 and 7. The base 7 has switching signal terminals 16, 18 and common signal terminal 17 with 4 IP! The circuit, drive coil terminal 19, and recovery coil terminal 20 are fixed. The center m of the iron core 4 is fixed to the base 7 and inserted into a spool 8 around which the outer VC drive/recovery coil 5 is fully wound. Signal terminal 1
6.17.18 have movable contact springs 9 and 10.1, respectively.
1 are provided, and these mouth 1 moving contact springs 9, 10, 11
At the other end, contacts 12, 13, and 14 are fixed with bath contacts, etc.
I'm here. Movable contact spring 10 supported by common signal terminal 17. Movable contact spring 9 supported by Fi switching signal terminal.
11, and is penetrated and fixed by a spring support part 24 of a mold 6, which has a distal end part 15ri and an armature part 21 integrated therein. In this manner, the movable contact spring 10 is connected to the contact pole @2.
1, and as a result supports the armature portion 21' in a freely movable manner. The mold 6 has the yoke 1.2 and the magnet 3 all integrated. When a current flows through the coil 5, the armature portion 21Vi moves to the center axis of the coil 5 in the 36th row according to the operating principle described above, collides with the yoke 1.2, and is attracted and held. At this time, the contact 13 is completely displaced by the contact 12r Q4, and the contact is changed into conduction by the spring pressure of the movable contact spring 9,0υ. Note that Figure m7 is a model diagram of an example of the configuration of the movable contact spring and the armature mold 6 for easy understanding. Movable contact spring 10V! Since it is fixed by the spring support part 24 of the mold 6, the armature s21 can be displaced by the magnetic attraction force in the direction in which the magnetic attraction force acts.
I wonder if it's a one-sided hit phenomenon at the magnetic poles.
木兄#!Aは以上の如く、磁石VtJさんで対向して設
けた大小2つのコの字形ヨークの両端にtiiimを発
生させ、このヨークの両端の磁極間に鉄心の両端が挿入
できるようにコの字形の鉄心を配設することにより、接
極部に両端の磁極間2ケ所で吸引力および反撥力全作用
させ、しかもその吸引力と反撥力の合成力は同一方向と
なるので大きな磁気吸引力を得ることができる。また、
鉄心の両端に発生する磁気吸引力に差を持たせ、小さい
磁気吸引力側より接点ばね負荷の復旧力を大きくさせる
ことにより、比較的接点開閉容置の大きな電流保持形の
有極電磁継電器に得ることができる。さらに、ヨーク、
鉄心をコの字形にすることにより吸引接触面が祠料衣血
となるため、吸引力のばらつきがほとんど無視できる。Wood brother #! As described above, A generates tiiim at both ends of two large and small U-shaped yokes set opposite each other using magnets VtJ, and creates a U-shaped yoke so that both ends of the iron core can be inserted between the magnetic poles at both ends of the yokes. By arranging the iron core, the attractive force and repulsive force are fully applied to the armature at two locations between the magnetic poles at both ends, and the combined force of the attractive force and repulsive force is in the same direction, resulting in a large magnetic attractive force. be able to. Also,
By creating a difference between the magnetic attraction forces generated at both ends of the iron core, and increasing the recovery force of the contact spring load from the side with the smaller magnetic attraction force, it is possible to create a polarized electromagnetic relay of the current holding type with a relatively large contact opening/closing capacity. Obtainable. Furthermore, York,
By making the iron core U-shaped, the suction contact surface becomes a sacrificial blood, so variations in suction force can be almost ignored.
さらにまた、接極部は接点ばねの一端を一体化構造とす
ることにより磁気吸引力の働く方向と平行に移動できる
ため、接極部の接極[1[iは片当りすることなぐ面接
触するので安定し友磁気吸引力特性が得られる。Furthermore, by making one end of the contact spring into an integrated structure, the armature part can move parallel to the direction in which the magnetic attraction force acts. Therefore, stable magnetic attraction characteristics can be obtained.
第1図は従来の1[磁石構造斜視図、第2図は本発明の
一実施例の基本的な電磁石構造81視図、第3図はヨー
クが移動する1!磁石構造例の断面図を用いた動作原理
の説明図、第4図は鉄心が移動する!磁石横°造例の断
面図音用いた動作原理の説明図、m5図は本発明による
w縦継電器の磁気吸引力特性とはね負#特性の一例を示
す特性図、第6図rま基本的なw磁石mihの一例ケ用
いた電磁継電器の一具体的構造例會ボす説明図、第7図
rま可動接点げね負荷系の一実施例を示す概略図。
1.2・・・ヨーク IA、 IB、 2A
、 2B・・・磁極3・・・磁石 4・・・鉄心
4A、4B・・・鉄心端部5・・・コイル 6・・・
モールド 7・・・基台8・・・スプール 9,
10.11・・・n丁動接点ばね12.13.14・・
・接点 16.18・・・切換信号端子17・・
・共通信号端子 19.20・・・コイルi子21
・・・接極部 22・・・レシジャル23・
・接点ばね
第3図
第4図
第7図
24FIG. 1 is a perspective view of a conventional 1 magnet structure, FIG. 2 is a perspective view of a basic electromagnet structure 81 according to an embodiment of the present invention, and FIG. 3 is a 1! magnet structure in which the yoke moves. An explanatory diagram of the operating principle using a cross-sectional view of an example of the magnet structure, Figure 4 shows the iron core moving! An explanatory diagram of the operating principle using a cross-sectional diagram of an example of horizontal magnet construction, Figure M5 is a characteristic diagram showing an example of the magnetic attraction force characteristics and repulsive negative characteristic of the vertical relay according to the present invention, and Figure 6 is the basic diagram. FIG. 7 is an explanatory diagram showing a specific structural example of an electromagnetic relay using an example of a magnet MIH; FIG. 7 is a schematic diagram showing an embodiment of a movable contact spring load system. 1.2...Yoke IA, IB, 2A
, 2B...Magnetic pole 3...Magnet 4...Iron core
4A, 4B... Core end 5... Coil 6...
Mold 7...Base 8...Spool 9,
10.11...n pivoting contact spring 12.13.14...
・Contact 16.18...Switching signal terminal 17...
・Common signal terminal 19.20...Coil i-coil 21
... Arming part 22 ... Religious 23.
・Contact spring Fig. 3 Fig. 4 Fig. 7 Fig. 24
Claims (1)
に形成される磁極部にコの字形鉄心の両端部を配設し、
前記コの字形鉄心に巻回したコイルにより前記磁極部に
同一方向の磁気吸引力と磁気反撥力を生[;させる冨磁
石構造と、それぞれが少なくとも二組以上の接点全有し
た接点はね群全1つの基台に支持し、前記接点ばね肝の
各接点ばね端子をそれぞれ絶縁して一体的に設け、さら
に前記接点ばね群が変位することにより前記接点の開閉
を行なうばね構造とを有するv4I!!*ei継電器に
おいて、前記コの字形ヨークと前記コの字形鉄心が前記
磁極m全変位した際に発生する磁気吸引力に差をもたせ
るとともに、前記接点ばね群のばね復旧力が前記磁気吸
引力の小さいものより大きいカとなるよう、前記コの字
形ヨークとFl+I記コの字形鉄心の端部の磁極面檀會
小さくしかっこの端部VC磁気空隙を形成した有極電磁
継電器。 (2)前記コの字形ヨークと8+J mIX!磁石が前
記はね構造と固ずして設けらtrた特許請求の範囲第1
項記載の有極電磁継電器。 (3) 前記鉄心が前記ばね構造と固定して設けられ
次特於d〜氷の範囲第1項記載の有極電磁継電器。[Claims] (11) Both ends of a U-shaped iron core are arranged in magnetic pole parts formed at both ends of two large and small U-shaped yokes that hold magnets,
a multi-magnet structure that generates a magnetic attraction force and a magnetic repulsion force in the same direction in the magnetic pole part by a coil wound around the U-shaped iron core; and a contact spring group each having at least two or more sets of contacts. v4I has a spring structure that is supported on a single base, insulated and integrally provided with each contact spring terminal of the contact spring group, and further opens and closes the contacts by displacing the contact spring group. ! ! *In the ei relay, the U-shaped yoke and the U-shaped iron core have a difference in the magnetic attraction force generated when the magnetic pole m is fully displaced, and the spring recovery force of the contact spring group is equal to the magnetic attraction force. A polarized electromagnetic relay in which a magnetic gap is formed at the end of the U-shaped yoke and the U-shaped iron core written by Fl+I, and a small VC magnetic gap is formed at the end of the bracket so that the force is larger than that of a smaller one. (2) The U-shaped yoke and 8+J mIX! Claim 1, wherein a magnet is provided integrally with the spring structure.
Polarized electromagnetic relay as described in section. (3) The polarized electromagnetic relay according to item 1, wherein the iron core is fixed to the spring structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6520982A JPS58181227A (en) | 1982-04-19 | 1982-04-19 | Polarized electromagnetic relay |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6520982A JPS58181227A (en) | 1982-04-19 | 1982-04-19 | Polarized electromagnetic relay |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58181227A true JPS58181227A (en) | 1983-10-22 |
Family
ID=13280291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6520982A Pending JPS58181227A (en) | 1982-04-19 | 1982-04-19 | Polarized electromagnetic relay |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58181227A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60190013U (en) * | 1984-05-25 | 1985-12-16 | 松下電工株式会社 | Slide type polar electromagnet |
JPS61107627A (en) * | 1984-10-30 | 1986-05-26 | 武井 信子 | Electromagnetic driver |
EP1953785A2 (en) | 2007-01-31 | 2008-08-06 | Fujitsu Component Limited | Polarized electromagnetic relay and coil assembly |
JP2010033965A (en) * | 2008-07-30 | 2010-02-12 | Fujitsu Component Ltd | Polarized electromagnetic relay |
JP2012253044A (en) * | 2007-01-31 | 2012-12-20 | Fujitsu Component Ltd | Polarized electromagnetic relay and coil assembly |
-
1982
- 1982-04-19 JP JP6520982A patent/JPS58181227A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60190013U (en) * | 1984-05-25 | 1985-12-16 | 松下電工株式会社 | Slide type polar electromagnet |
JPS61107627A (en) * | 1984-10-30 | 1986-05-26 | 武井 信子 | Electromagnetic driver |
EP1953785A2 (en) | 2007-01-31 | 2008-08-06 | Fujitsu Component Limited | Polarized electromagnetic relay and coil assembly |
JP2008210776A (en) * | 2007-01-31 | 2008-09-11 | Fujitsu Component Ltd | Polarized electromagnetic relay and coil assembly |
EP1953785A3 (en) * | 2007-01-31 | 2008-10-15 | Fujitsu Component Limited | Polarized electromagnetic relay and coil assembly |
EP2031624A1 (en) | 2007-01-31 | 2009-03-04 | Fujitsu Component Limited | Polarized electromagnetic relay and coil assembly |
US7679476B2 (en) | 2007-01-31 | 2010-03-16 | Fujitsu Componenet Limited | Polarized electromagnetic relay and coil assembly |
CN102509672A (en) * | 2007-01-31 | 2012-06-20 | 富士通电子零件有限公司 | Polarized electromagnetic relay and coil assembly |
JP2012253044A (en) * | 2007-01-31 | 2012-12-20 | Fujitsu Component Ltd | Polarized electromagnetic relay and coil assembly |
JP2010033965A (en) * | 2008-07-30 | 2010-02-12 | Fujitsu Component Ltd | Polarized electromagnetic relay |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58181227A (en) | Polarized electromagnetic relay | |
JPH05174691A (en) | Seesaw balance type polarized relay | |
JPH0347298Y2 (en) | ||
JPH0347296Y2 (en) | ||
JP2003016882A (en) | Operating device for power switchgear | |
JPH0343683Y2 (en) | ||
JPH06283088A (en) | Electromagnetic relay | |
JP2630098B2 (en) | Seesaw balance type polarized relay | |
JPH0347295Y2 (en) | ||
US4673908A (en) | Polarized relay | |
JPH0446357Y2 (en) | ||
JPS61127105A (en) | Electromagnet device | |
JP3409382B2 (en) | Polarized relay | |
JPS6247925A (en) | Polar relay | |
JPS6237836A (en) | Electromagnetic relay | |
JPH0243077Y2 (en) | ||
JPH0521295B2 (en) | ||
JPH0442884Y2 (en) | ||
JPH11260231A (en) | Polarized magnetic circuit in polarized electromagnetic relay | |
JPS6027170B2 (en) | Polarized magnetic circuit configuration | |
JPH0119305Y2 (en) | ||
JPH0316264Y2 (en) | ||
JPS6247924A (en) | Electromagnet apparatus | |
JPS60136123A (en) | Electromagnetic relay | |
JPH03236135A (en) | Polarized electromagnetic relay |