JPS58181126A - Controlling method of reactive power - Google Patents

Controlling method of reactive power

Info

Publication number
JPS58181126A
JPS58181126A JP57064415A JP6441582A JPS58181126A JP S58181126 A JPS58181126 A JP S58181126A JP 57064415 A JP57064415 A JP 57064415A JP 6441582 A JP6441582 A JP 6441582A JP S58181126 A JPS58181126 A JP S58181126A
Authority
JP
Japan
Prior art keywords
reactive power
turbine
reactive
straight line
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57064415A
Other languages
Japanese (ja)
Inventor
Masaru Shimomura
勝 下村
Masanori Shimizu
正憲 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57064415A priority Critical patent/JPS58181126A/en
Publication of JPS58181126A publication Critical patent/JPS58181126A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To distribute the reactive electric energy on the average, by performing such adjustment that the operation state of each turbine is moved into the optimum operation state zone if the imbalance of the reactive electric energy is caused in combined cycle power generation. CONSTITUTION:If some turbine is stopped to cause the imbalance of the reactive power, the operation state of each turbine is moved to a zone GHI indicating a proper reactive electric energy. Thus, partial charges of the reactive power in all turbines are equal.

Description

【発明の詳細な説明】 この発明は、コンバインドサイクル発電における無効電
力を、各種の運転パターンに対して効率よく制御する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently controlling reactive power in combined cycle power generation for various operating patterns.

コンバインドサイクル発電は、ガスタービンと蒸気ター
ビンを組み合わせて、従来のものよりも効率向上を図ろ
うとするものである。第1図は。
Combined cycle power generation combines a gas turbine and a steam turbine to achieve higher efficiency than conventional power generation. Figure 1 is.

コンバインドサイクル発電の一例を示す単線図である。It is a single line diagram showing an example of combined cycle power generation.

この例では、1台の蒸気タービン(1)と3台のガスタ
ービン(2)+ (3) 、 (4)を組み合わせて発
電システムを構成している。そして蒸気タービン(1)
とガスタービン(2)はひとつの母線(5)に接続され
ておシ。
In this example, a power generation system is configured by combining one steam turbine (1) and three gas turbines (2) + (3) and (4). and steam turbine (1)
and gas turbine (2) are connected to one busbar (5).

またガスタービン(3)とガスタービン(4)は他の母
線(6)に接続されている。この2つの母線(51、(
6)は三相変圧器(7)を通して主母鰻(8)に接続さ
れている。
Further, the gas turbine (3) and the gas turbine (4) are connected to another bus bar (6). These two bus lines (51, (
6) is connected to the main mother eel (8) through a three-phase transformer (7).

なおCBI〜CB4は主回路しゃ断器、(9)は所内変
圧器である。
Note that CBI to CB4 are main circuit breakers, and (9) is a station transformer.

ここで例にあげたコンバインドサイクルは、3台のガス
タービンとひとつの蒸気タービンが組み合わされており
、ひとつのガスタービンの定格出力に対し、蒸気タービ
ンは1/3の定格出力な出す。
In the combined cycle example given here, three gas turbines and one steam turbine are combined, and the steam turbine outputs 1/3 of the rated output of one gas turbine.

すなわち3台のガスタービンが全て定格出力な出すとき
・蒸気タービンも定格出力を出すわけである。今3台の
ガスタービンが定格出力運転のとき、各タービンの有効
電力と無効電力で表わされる運転状態は第2図の点aυ
〜α4で示される。またガスタービン(2)が停止状態
のときの他の各タービンの運転状態は第3図の点(21
〜(241で、ガスタービン(3〕が停止状態のときの
ものは第4図の点fBll〜−で示される。なお曲線(
16)〜賭は各タービンの運転能力曲線で、各タービン
はこの範囲内で運転が可能となっている。全てのタービ
ンが定格運転のときは、第2図に示すようにどのタービ
ンも能力曲線内にはいっているが、ガスタービンを1台
停止させると、第3図、第4図のように能力曲線を超え
るものがでてきて、運転不可能な状態に達たり、無効電
力の不均衡な状態が続くという欠点がでてくる。
In other words, when all three gas turbines produce rated output, the steam turbine also produces rated output. When the three gas turbines are operating at rated output, the operating state expressed by the active power and reactive power of each turbine is at point aυ in Figure 2.
~α4. Also, when the gas turbine (2) is in a stopped state, the operating states of the other turbines are at point (21) in Figure 3.
~(241, when the gas turbine (3) is in a stopped state is shown by the point fBll~- in FIG. 4. Note that the curve (
16) ~ The bet is the operating capability curve of each turbine, and each turbine can be operated within this range. When all turbines are in rated operation, all turbines are within the capacity curve as shown in Figure 2, but when one gas turbine is stopped, the capacity curve changes as shown in Figures 3 and 4. However, there are disadvantages such as reaching a state where it is impossible to operate, or a state where the reactive power is unbalanced.

この発明は、上記のような無効電力の不均衡を取シのぞ
き、運転可能な状態にもどすためになされたもので、有
効電力、無効電力線図において、タービンな一台運転停
止したときに、能力曲線及び各タービンの運転状態を考
えに含めることにより、有効に無効電力を配分できる制
一方法を提供することを目的としている。
This invention was made in order to eliminate the imbalance in reactive power as described above and return it to an operable state. The objective is to provide a control method that can effectively allocate reactive power by taking into account the curve and the operating state of each turbine.

以下、この無効電力料一方法の一実施例を図について説
明する。第5図は、運転能力曲線を示す。
An embodiment of this reactive power charge method will be described below with reference to the drawings. FIG. 5 shows the driving ability curve.

すべてのタービンの有効電力、無効電力の平均を求め、
これを示す点をEとする。また運転能力曲線の上111
11の両端A、Bを結び有効電力軸と交わった点をFと
する。そしてEとFを結ぶ直線なlとyる。まfc運転
能力曲線の右側の曲線BCとlが交わった点をGとし、
Gを通シ有効電力軸に平行な直線なmとする。ま′ft
Cmと無効電力軸との交点&I、無効電力軸と直線eと
の交点をHとする。
Find the average of the active power and reactive power of all turbines,
Let the point showing this be E. Also above the driving ability curve 111
Let F be the point where both ends A and B of 11 are connected and intersect with the active power axis. Then, there are straight lines l and y that connect E and F. Let G be the point where l intersects the curve BC on the right side of the mafc driving ability curve,
Let G be a straight line m parallel to the active power axis. Ma'ft
The intersection point &I between Cm and the reactive power axis and the intersection point between the reactive power axis and straight line e are assumed to be H.

今、いずれかのタービ/が停止して、無効電力の不均衡
が生じた場合、無効電力を各タービンについて調整する
ことが必要となる。すなわち各タービンの無効電力量す
それぞれの有効電力量に応じた適切な11σにしなけれ
ばならない。この適切な無効電力量を示すものが、if
L線e、直線m、無効電力軸で囲まれた斜線のゾーンQ
HIである。無効電力の不均衡が生じたときに、それぞ
れのタービンの適切な無効電力線図、最゛太無効電力量
に対しである比率にあればよいのでその目安としてGH
Ivゾーンを設けた。よって無効電力の不均衡が生じた
場合、各タービンの運転状態をこのゾーンに移すことに
よって、どのタービンに対しても無効電力の分担が同じ
になる。
Now, if any turbine/turbine is shut down and a reactive power imbalance occurs, the reactive power will need to be adjusted for each turbine. That is, the reactive power amount of each turbine must be set to an appropriate value of 11σ depending on the respective active power amount. What indicates this appropriate amount of reactive power is if
Diagonal line zone Q surrounded by L line e, straight line m, and reactive power axis
It is HI. When an imbalance in reactive power occurs, the appropriate reactive power diagram for each turbine should be at a certain ratio to the maximum amount of reactive power, so use GH as a guideline.
An IV zone was established. Therefore, if an imbalance in reactive power occurs, by shifting the operating state of each turbine to this zone, the share of reactive power will be the same for all turbines.

以上のように、この発明によれば無効電力の制御を、能
力曲線と各タービンの平均値を考慮して行なうので、一
台のタービンが停止しても、他のタービンに無効電力な
平均してふりわけることができ、6夕・−ビンの負担を
平均化できる効果がある。
As described above, according to the present invention, reactive power is controlled by considering the capacity curve and the average value of each turbine, so even if one turbine stops, the average reactive power will not be applied to other turbines. This has the effect of making it possible to even out the burden of six months.

【図面の簡単な説明】[Brief explanation of drawings]

第11.、コンバインドサイクルの一例を示す単線図、
第2図は、全てのタービンの運転状態な示す有効電力無
効電力線図、第3図、第4図はタービン発電機を一台停
止したときの他のタービンの運転状態を示す有効電力、
無効電力線図、第5図はこの発明の制御方法を示すため
の有効電力、無効電力線図である。 なお1図中Eは各タービンの有効電力と無効電力の平均
を表わす点、直線lは能力曲線の上側の両側A、Bを結
び有効電力軸と交わった点FとEを結んだ直線、直線m
は能力曲線右側の曲線BCと直線lとの交点Gを通り有
効電力軸に平行な直線、曲線AB CDは運転能力曲線
を示す。 代理人 葛野信−
11th. , a single line diagram showing an example of a combined cycle,
Figure 2 is an active power/reactive power diagram showing the operating status of all turbines, and Figures 3 and 4 are active power diagrams showing the operating status of other turbines when one turbine generator is stopped.
Reactive Power Diagram FIG. 5 is an active power and reactive power diagram showing the control method of the present invention. Note that in Figure 1, E represents the average of the active power and reactive power of each turbine, and straight line l is the straight line connecting points F and E, which connect both sides A and B on the upper side of the capacity curve and intersect with the active power axis. m
is a straight line passing through the intersection G of the curve BC on the right side of the capacity curve and the straight line 1 and parallel to the active power axis, and the curve AB CD indicates the driving capacity curve. Agent Makoto Kuzuno

Claims (1)

【特許請求の範囲】[Claims] (1)複数のタービンを使用するコンバインドサイクル
発電の能力曲線において、各タービンの有効電力、無効
電力の平均を示わす点Eと、能力曲線の上側の両側A、
Bを結び有効電力軸と交わった点FとEとを結んだ直線
lと、能力曲線右側の曲線BCと直線lとの交点Gを通
り有効電力軸に平行な直線m及び、無効電力軸で囲まれ
た最適運転状態ゾーンを有し、無効の不均衡が生じた場
合、上記ゾーン内に各タービンの運転状態が来るように
無効電力量な調整するようにしたことを特徴とする無効
電力制御方法。
(1) In the capacity curve of combined cycle power generation using multiple turbines, point E indicates the average of the active power and reactive power of each turbine, and both sides A on the upper side of the capacity curve,
A straight line l connecting points F and E that connect B and intersect with the active power axis, a straight line m parallel to the active power axis passing through the intersection G of the curve BC on the right side of the capacity curve and the straight line l, and a straight line m parallel to the active power axis, and the reactive power axis. Reactive power control having an enclosed optimal operating state zone, and when reactive imbalance occurs, reactive power amount is adjusted so that the operating state of each turbine is within the zone. Method.
JP57064415A 1982-04-15 1982-04-15 Controlling method of reactive power Pending JPS58181126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57064415A JPS58181126A (en) 1982-04-15 1982-04-15 Controlling method of reactive power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57064415A JPS58181126A (en) 1982-04-15 1982-04-15 Controlling method of reactive power

Publications (1)

Publication Number Publication Date
JPS58181126A true JPS58181126A (en) 1983-10-22

Family

ID=13257630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57064415A Pending JPS58181126A (en) 1982-04-15 1982-04-15 Controlling method of reactive power

Country Status (1)

Country Link
JP (1) JPS58181126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9134033B2 (en) 2008-01-18 2015-09-15 Garland Commercial Industries L.L.C. Open loop gas burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9134033B2 (en) 2008-01-18 2015-09-15 Garland Commercial Industries L.L.C. Open loop gas burner

Similar Documents

Publication Publication Date Title
CN108847680B (en) Alternating current-direct current hybrid power distribution network layered control method based on flexible ring network device
CN109638897A (en) A kind of cooperative control method suitable for alternating current-direct current mixing power distribution network
CN106505641A (en) The AC/DC decoupling control method of modularization multi-level converter and its application
JP2001268800A (en) Solar light power generation control method and apparatus
CN103875147A (en) A multilevel converter and a method for controlling multilevel converter including balancing cell voltages
Huang et al. Analysis and control of a modular multilevel cascaded converter-based unified power flow controller
CN112072697B (en) Modular direct-current microgrid structure reconstruction method and operation control method
CN106849089A (en) A kind of electric energy conversion and switching system, method and its application
CN107453383A (en) A kind of flexible direct current collocation method and device for power supply zone interconnection
WO2015143744A1 (en) Multi-port dc-dc autotransformer and application therefor
CN110247421A (en) A kind of double active bridge converter systems of modularization and electrical balanced amount control method
CN105470993B (en) A kind of grid-connected stable control method for turning isolated network of micro-grid system
CN106712068A (en) Parallel hybrid DC power transmission system and reactive power regulation optimization method thereof
CN107749636A (en) Ternary commutation system based on distributed generation system
CN105870963A (en) Frequency voltage slope control-based VSC convertor station control method
JPS58181126A (en) Controlling method of reactive power
CN102437807A (en) Variable frequency transformer control system
CN115173438B (en) Frequency modulation system and method for flywheel energy storage auxiliary thermal power for controllable high-voltage plant
CN203690941U (en) Ternary conversion system based on distributed power generation system
CN109301855A (en) A kind of starting method and system of mixed high-voltage flexible direct current power grid
JPS58181128A (en) Controlling method of reactive power
JPS58181125A (en) Controlling method of reactive power
JPH0327730A (en) Battery power storing system
JPS58181127A (en) Controlling method of reactive power
Kryukov Distribution DC electrical network with power router