JPS58180586A - Liquefying coal-oil slurry by hydrogenation - Google Patents

Liquefying coal-oil slurry by hydrogenation

Info

Publication number
JPS58180586A
JPS58180586A JP6245882A JP6245882A JPS58180586A JP S58180586 A JPS58180586 A JP S58180586A JP 6245882 A JP6245882 A JP 6245882A JP 6245882 A JP6245882 A JP 6245882A JP S58180586 A JPS58180586 A JP S58180586A
Authority
JP
Japan
Prior art keywords
coal
formula
slurry
oil
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6245882A
Other languages
Japanese (ja)
Other versions
JPS5917153B2 (en
Inventor
Mikio Ueda
幹夫 上田
Katsuhide Murata
勝英 村田
Shinnosuke Ikumi
井汲 真之佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP6245882A priority Critical patent/JPS5917153B2/en
Publication of JPS58180586A publication Critical patent/JPS58180586A/en
Publication of JPS5917153B2 publication Critical patent/JPS5917153B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To prevent carbonization of a coal-oil slurry in a preheating process, by effecting preheating of the coal-oil slurry to the hydrocracking temperature in the presence of a radical stabilizer, followed by liquefaction by hydrogenation. CONSTITUTION:In the production of liquefied coal oil by hydrogenation liquefaction of a slurry of slack coal in oil, the slurry is preheated to the hydrocracking temperature in the presence of a radical stabilizer selected from among the compds. of formulas I (where R is 1-15C alkyl or phenyl with 1-15C alkyl in side chain; M is metal such as Ni and Zn), II (where R1-2 are each 1-8C alkyl), III, IV (where R is 1-8C alkyl) and V. The stabilizer R is fed into a mixing tank 1 in the form of liquid or powder and is blended with slack coal C and medium B. The mixture is led into a preheater 2 and then a reaction vessel 3.

Description

【発明の詳細な説明】 本発明は石炭の水添液化にあたり、石炭−油スラリーを
ラジカル安定剤の存在下に水素化分解温度1で予熱する
ことにより、予熱過程における石炭−油スラリーの炭化
を防止し、次いでこれを水添液化する方法に関する。
Detailed Description of the Invention In the hydrogenation and liquefaction of coal, the present invention prevents carbonization of the coal-oil slurry during the preheating process by preheating the coal-oil slurry at a hydrocracking temperature of 1 in the presence of a radical stabilizer. It relates to a method for preventing hydrogenation and then liquefying the hydrogenation.

従来、石炭の直接液化法、すなわち直接水除液化法、溶
剤抽出法、二股教化法などにおいては原料の石炭を粉末
状に破砕し、過当な媒体油と混合して粉末の油スラリー
を形成し、このスラリーを反応温度、たとえば380〜
500°Cに加熱し、高圧下の水素と反応させていた。
Conventionally, in direct coal liquefaction methods, such as direct water removal method, solvent extraction method, and bifurcation method, raw material coal is crushed into powder and mixed with appropriate medium oil to form powder oil slurry. , this slurry is heated to a reaction temperature of, for example, 380~
It was heated to 500°C and reacted with hydrogen under high pressure.

しかしながら、いずれの石炭液化法においても石炭−泊
スラリ〜を反応温度まで昇温させる工程、すなわち予熱
過程が存在し、この過程でコルキンク、炭化が起り、長
期連続運転をさまたける欠点があった。予熱過程で炭化
が起ると、予熱器の伝熱面にカーボンが析出して伝熱を
悪くすると共に、配管の閉塞、管壁温度の過熱による破
損なとの事故を招くことがある。
However, all coal liquefaction methods involve a step of raising the temperature of the coal-tower slurry to the reaction temperature, that is, a preheating step, which has the disadvantage that corking and carbonization occur during this step, which hinders long-term continuous operation. If carbonization occurs during the preheating process, carbon will precipitate on the heat transfer surface of the preheater, impairing heat transfer, and may lead to accidents such as clogging of pipes and damage due to overheating of the pipe wall temperature.

このため従来の石炭液化プラントでは、(イ)熱流束を
小さくする、(ロ)直火加熱を避ける、(ハ)水素カス
を予熱器の前で導入するなどの処置をしていた。しかし
、これらの処置によっても−F記のような欠点を避は得
なかった。
For this reason, conventional coal liquefaction plants have taken measures such as (a) reducing heat flux, (b) avoiding direct heating, and (c) introducing hydrogen sludge in front of the preheater. However, even with these measures, the drawbacks mentioned in -F could not be avoided.

すなわち、(イ)はそれたけ大きな予熱器を必要とする
ことになり、(ロ)では・燃焼室と加熱部を別にしなけ
ればならないので、装置の複雑化、大型化は避けられず
、(ハ)では予熱過程は反応器と比較して温度が低く、
従って水素の反応性も大きくないので炭化防止効果はあ
まり期待できないし、寸だ水素を導入した分たけスラリ
ーの占める体積が小さくなり、その結果スラリ〜が予熱
器内に滞留する時間が短くなり、予熱器性能の而ではマ
イナスになる。
In other words, (a) requires a significantly larger preheater, and (b) requires a separate combustion chamber and heating section, which inevitably makes the device more complicated and larger. In c), the temperature in the preheating process is lower than that in the reactor;
Therefore, since the reactivity of hydrogen is not large, we cannot expect much carbonization prevention effect, and the volume occupied by the slurry decreases by the amount of hydrogen introduced, and as a result, the time the slurry remains in the preheater becomes shorter. In terms of preheater performance, this is a minus.

そこで本発明は上記欠点、すなわち石炭の直接液化の予
熱過程における炭化を解消せんとするものであり、従来
法に比して熱流束を犬きくすることができ、予熱過程で
の炭化が少ないので管の閉塞や破損の怖れがなく、安全
に長期運転を行なうことができ、直火加熱も可能である
なとの特長を有するものである。
Therefore, the present invention aims to eliminate the above-mentioned drawback, that is, the carbonization in the preheating process of direct liquefaction of coal.Compared to the conventional method, the heat flux can be made much higher, and there is less carbonization in the preheating process. It has the advantage of being able to operate safely for long periods of time without the risk of pipe blockage or damage, and that it can also be heated over a direct flame.

すなわち本発明の石炭−油スラリーの水添液化方法は、
粉炭を油スラリー状で水素化分解して石炭液化油を製造
するにあたり、前記粉炭の油スラリーを下記一般式(I
)で示されるN、N−7置換ンチオカル・・ミン酸金属
塩、下記一般式(11)で示されるモノスルフィド、下
記一般式(川)で不されるモノセレニド、下記一般式(
fV)で示されるンアルキルンチオリン酸金属塩、芳香
族第2級゛または第3級アミン、下記一般式(V)で示
されるリン酸エステルおよびジーtert−ブチル置挾
フェノール系酸化防止剤からなる群から選はれた少くと
も一柚の化合物の存在下VC水素化分解温度まで予熱し
、次いでこれを水素化することを特徴とするものである
That is, the method for hydrogenating and liquefying coal-oil slurry of the present invention is as follows:
When producing coal liquefied oil by hydrocracking powdered coal in the form of an oil slurry, the oil slurry of the powdered coal is converted into the following general formula (I
), a monosulfide represented by the following general formula (11), a monoselenide represented by the following general formula (kawa), a monoselenide represented by the following general formula (
fV), an aromatic secondary or tertiary amine, a phosphoric acid ester represented by the following general formula (V), and a di-tert-butyl-optional phenolic antioxidant. The method is characterized in that it is preheated to a VC hydrogenolysis temperature in the presence of at least one compound selected from the group consisting of: and then hydrogenated.

RI  S  R2(II)、   RI  Se  
R2(11)((RO)2PS2)2M       
 (IV)(RO)3 PO(V) たたしくI)式中、Rは炭素数1〜15のアルギル基、
または炭素数1〜15のアルキル側鎖を准するフェニル
基を表わし、MはNi 、 Zn + Mo +Pb 
、 Cd 、 Sn 、 WおよびFeからなる群から
選ばれた2価の金属であり、(II)式中、R1および
R2は夫々等しいか、または相異なる炭素数1〜8のア
ルキル基であり、(Ill)式中、R1およびR2は前
記(II)式と同様のアルキル基であり、(IV)式中
、Rは炭素数1〜8のアルキル基、Mは前記(I)式と
同様の2価の全域であり、(V)式中、Rは前記(IV
)式と同様のアルキル基である。
RI S R2 (II), RI Se
R2 (11) ((RO)2PS2)2M
(IV) (RO)3 PO (V) Takashiku I) In the formula, R is an argyl group having 1 to 15 carbon atoms,
or represents a phenyl group that associates with an alkyl side chain having 1 to 15 carbon atoms, M is Ni, Zn + Mo + Pb
, Cd, Sn, W and Fe, in the formula (II), R1 and R2 are each equal or different alkyl groups having 1 to 8 carbon atoms, In the formula (Ill), R1 and R2 are the same alkyl groups as in the above formula (II), and in the formula (IV), R is an alkyl group having 1 to 8 carbon atoms, and M is the same as in the above formula (I). In the formula (V), R represents the above-mentioned (IV
) is an alkyl group similar to the formula.

本発明の炭化防止方法は、石炭の直接液化法の予熱過程
で炭化が起ることを防止するために、原料の粉炭−油ス
ラリー中に特定の添加剤、すなわちう7カル安定剤を添
加することに特徴がある。本発明において使用される添
加剤は下記(1)〜(7)からなる群から選ばれた少く
とも1棟の化合物である。
The carbonization prevention method of the present invention involves adding a specific additive, that is, a carbon stabilizer, to the raw material powder coal-oil slurry in order to prevent carbonization from occurring during the preheating process of the direct coal liquefaction method. There are certain characteristics. The additive used in the present invention is at least one compound selected from the group consisting of (1) to (7) below.

(1)  下記一般式(I)で示されるN、N−ジ置換
/チオカルバミン嘔金稿塩。
(1) N,N-disubstituted/thiocarbamine salt represented by the following general formula (I).

ここで(I)式中、Rは炭素数1〜15のアルキル基、
捷だは炭素数1〜15のアルキル側鎖を有するフェニル
基を表わし、MはNi + Zn 、 Mo 。
Here, in the formula (I), R is an alkyl group having 1 to 15 carbon atoms,
Kashida represents a phenyl group having an alkyl side chain having 1 to 15 carbon atoms, and M is Ni + Zn, Mo.

Pb 、Cd 、 Sn 、WおよびFeからなる群か
ら選ばれた21曲の金属である。
There are 21 metal pieces selected from the group consisting of Pb, Cd, Sn, W and Fe.

(2)前記一般式(n)で示されるモノスルフィト 。(2) Monosulfite represented by the general formula (n).

R,−8−R2(II) (II)式中、R1およびR2は夫々等しいか、捷だは
相異なる炭素数1〜8のアルキル基である。
R, -8-R2 (II) In the formula (II), R1 and R2 are each the same or different alkyl groups having 1 to 8 carbon atoms.

(3) 下記一般式(III)で示されるモノセレニド
、。
(3) A monoselenide represented by the following general formula (III).

R+  Se  R2(m) (TTI)式中、R3およびR2は前記(II)式と同
様に夫々等しいか、または相異なる炭素数1〜8のアル
キル基である。
R+ Se R2(m) (TTI) In the formula, R3 and R2 are the same or different alkyl groups having 1 to 8 carbon atoms, respectively, as in the above formula (II).

(4)下記一般式(IV)で示されるジアルキル/チオ
リン酸金属塩。
(4) A dialkyl/thiophosphate metal salt represented by the following general formula (IV).

((RO)2PS2 ’12 M     (IV)上
記(IV)式中、Rは炭素数1〜8のアルキル基であり
、Mは前記(I)式と同様に、Ni、Zn。
((RO)2PS2 '12 M (IV) In the above formula (IV), R is an alkyl group having 1 to 8 carbon atoms, and M is Ni or Zn as in the above formula (I).

Mo 、 Pb 、 Cd 、 Sn 、 WおよびF
eからなる群から選ばれた2価の金属である。
Mo, Pb, Cd, Sn, W and F
It is a divalent metal selected from the group consisting of e.

(5)  芳香族第2級または第3級アミン。(5) Aromatic secondary or tertiary amine.

タトエハ、ジフェニルアミン、トリフェニルアミン、フ
ェニルナフチルアミン、ジフェニルフェニレンジアミン
、ジナフチルフェニレンジアミ/などである。
Tatoeha, diphenylamine, triphenylamine, phenylnaphthylamine, diphenylphenylenediamine, dinaphthylphenylenediamine/etc.

(6)  下記一般式(V)で示されるリン酸エステル
(6) A phosphoric acid ester represented by the following general formula (V).

(RO)3PO(V) (V)式中、Rは前記(IV)式と同様に、炭素数1〜
8のアルキル基である。
(RO)3PO(V) In formula (V), R has 1 to 1 carbon atoms, as in formula (IV) above.
8 alkyl group.

(7)  ジーtert−ブチル置換フェノール系酸化
防止剤。
(7) Di-tert-butyl substituted phenolic antioxidant.

たとえば、2,6−シーtert−ブチル−p−フレH
3 4,4′−メチレンビス(2,6−シーtert−ブチ
ルフェノール)。
For example, 2,6-tert-butyl-p-FureH
3 4,4'-methylenebis(2,6-tert-butylphenol).

tert C4tert C4 4,4′−チオビス(6−tert−ブチル−Q−クレ
ゾール)。
tert C4 tert C4 4,4'-thiobis(6-tert-butyl-Q-cresol).

H3CH3 4,4′−ビス(2,6−シーtert−ブチルフェノ
ール) tertC4tertC4 などが、このフェノール系酸化防止剤に属する。
H3CH3 4,4'-bis(2,6-tert-butylphenol) tertC4tertC4 and the like belong to this phenolic antioxidant.

上記(1)〜(7)に示した化合物は、後述のように石
炭の水添分解、液化の過程で生成するフリーラフカルを
安定化せしめる機能を有しており、本発明においては上
記(11〜(7)からなる群から選ばれた少くとも1種
の化合物をラジカル安定剤として粉炭−油スラリーに添
加するものである。
The compounds shown in (1) to (7) above have the function of stabilizing free radicals generated in the process of hydrogenolysis and liquefaction of coal, as described below. At least one compound selected from the group consisting of 11 to (7) is added to the pulverized coal-oil slurry as a radical stabilizer.

かかるラジカル安定剤を粉炭−油スラリーに添加した場
合の反応は、たとえば下記のようにして行なわれる。
When such a radical stabilizer is added to a powdered coal-oil slurry, the reaction is carried out, for example, as follows.

第1図は一般に採用されている石炭の直接水添液化プロ
セスを示す工程図であり、前記ラジカル安定剤Rは化合
物の性状に応じて液状または粉末状で混合槽1に供給さ
れ、ここで粉炭Cおよび媒体油Bと混合され、−粉炭一
油スラリ〜に含まれた状態で水素と共に予熱器2に送ら
れて予熱され、次いで反応器6に供給される。
FIG. 1 is a process diagram showing a generally employed direct hydrogenation and liquefaction process for coal. It is mixed with C and medium oil B, and is sent together with hydrogen to the preheater 2 to be preheated in a state contained in -pulverized coal-oil slurry-, and then supplied to the reactor 6.

ここで、ラジカル安定剤の粉炭−油スラリ〜への添加量
は、通常では原料石炭の無水無灰炭換算I Kgあたり
約10−5〜10−1モル程度である。
Here, the amount of the radical stabilizer added to the powdered coal-oil slurry is usually about 10-5 to 10-1 mol per kg of anhydrous ash-free coal of raw material coal.

ラジカル安定剤の添加量が10−5モルに満たないと石
炭の予熱過程で石炭から生成するラジカルを十分に安定
化することができず、また添加量が10−1モルを越え
ると、もはやラジカル安定剤としての機能は飽和状態に
なり、これ以上添力[1しても効果上の差は認められな
くなる。
If the amount of radical stabilizer added is less than 10-5 mol, it will not be possible to sufficiently stabilize the radicals generated from coal during the coal preheating process, and if the amount added exceeds 10-1 mol, the radicals will no longer be stabilized. Its function as a stabilizer reaches a saturated state, and even if it is added more than 1, no difference in effectiveness will be observed.

本発明における石炭は通常約60メツンユ、好ましくは
、約100メツシユより小さい微粒の粉炭状て用いられ
、スラリー形成用の媒体油としては、石炭液化により得
られた芳香族系油、たとえば了/トラセン油などが一般
に用いられるか、これに限定されるものではない。′ま
たスラリー中の石炭濃度は適宜選択することができ、た
とえば石炭濃度20〜50重量%の条件が一般に採用さ
れる。
The coal used in the present invention is usually used in the form of fine powder coal smaller than about 60 mesh, preferably less than about 100 mesh, and the medium oil for slurry formation is an aromatic oil obtained by coal liquefaction, such as Although oil is generally used, it is not limited thereto. 'Also, the coal concentration in the slurry can be selected as appropriate; for example, a coal concentration of 20 to 50% by weight is generally employed.

上述の如く、う/カル安定剤が添加された粉炭−油スラ
リーは、通常では原料石炭が380〜500°C1好ま
しくは400〜480′cテ熱分解、水素化分解反応を
起こすことから、予熱器2で常温から380〜500°
Cまで加熱昇温される。この予熱過程における圧力は、
次の石炭液化反応に必要な圧力で決定され、通常では常
圧から50〜500気圧が採用される。反応器6に供給
された石炭−泊スラリーは、380〜500’C,50
〜500気圧に保持されて水添液化される。反応生成物
は気−液分離器4に送られて気液分離されたのちに、ガ
ス分はガス洗浄器5で洗浄され、パイプジインカス6ま
たはLPG7として使用に供される。まだ水素カスはパ
イプライン8を経て予熱器2に送られ反応に供される。
As mentioned above, the pulverized coal-oil slurry to which the fuel/cal stabilizer has been added is preheated because the raw coal usually undergoes thermal decomposition and hydrocracking reactions at 380 to 500°C, preferably 400 to 480°C. 380-500° from room temperature in container 2
The temperature is raised to C. The pressure during this preheating process is
It is determined by the pressure required for the next coal liquefaction reaction, and usually 50 to 500 atmospheres from normal pressure is adopted. The coal-coal slurry supplied to the reactor 6 was heated at 380 to 500'C, 50
It is maintained at ~500 atmospheres and hydrogenated and liquefied. The reaction product is sent to a gas-liquid separator 4 for gas-liquid separation, and then the gas component is washed by a gas washer 5 and used as a pipe incas 6 or LPG 7. The hydrogen residue is still sent to the preheater 2 via the pipeline 8 and subjected to reaction.

気−液分離器4からの液体弁は分溜器9で分留されて軽
質油10となり、まだは真空蒸留器11で蒸留の後、燃
料油12として取出される。残査油はパイプライン16
を経てガス化炉14に送られ、水蒸気15゜酸素16存
在下にガス化され、転化精製器17を経て水素18とし
て予熱器2に供給される。また、気−液分離器4からの
液体弁19は媒体油Bとして混合槽1に供給される。
The liquid valve from the gas-liquid separator 4 is fractionated in a fractionator 9 to become light oil 10, which is then distilled in a vacuum distiller 11 and then taken out as fuel oil 12. Residual oil goes to pipeline 16
The hydrogen is sent to the gasification furnace 14, where it is gasified in the presence of water vapor 15° and oxygen 16, and is supplied to the preheater 2 as hydrogen 18 through the conversion refiner 17. Further, the liquid valve 19 from the gas-liquid separator 4 is supplied as medium oil B to the mixing tank 1.

本発明で用いる石炭の種類は、任意に選定することがで
き、瀝青炭に限られるものではなく、亜瀝青炭、褐炭、
亜炭など巾広い種類の石炭を使用することができ、夫々
の場合について後述のように顕著な効果がもたらされる
The type of coal used in the present invention can be arbitrarily selected and is not limited to bituminous coal, but includes subbituminous coal, brown coal,
A wide variety of coals, such as lignite, can be used, each with significant effects as described below.

次に本発明を反応機構の観点から考察する、通常、石炭
を水素化して液状生成物を得る反応はラジカル反応と考
えられている。すなわち、石炭の熱分解によって、1ず
フリーラジカルしか生成する。このフリーランカルは分
子状水素、あるいはスラリー媒体油から供給される水素
との結合によって安定化されて液状生成物を生ずる。し
かし石炭の熱分解は300°C付辺からすでに始まるの
で、石炭の熱分解により生じたフリーランカルが予熱器
の中にすでに存在することになる。このフリーラジカル
は分子状水素またはスラリー媒体からの水素によって安
定化されないと重縮合反応を起こし、炭化反応へと進行
することになる。しかるに予熱器内には反応器内はど高
温でない昇温途中の温度領域が存在するので、通常分子
状水素またはスラリー媒体からの水素は反応に寄与する
ほど活性化されず、従ってフリーラジカルは安定化され
るには至らない。しかしながら、このように分子状水素
あるいは媒体油から供給される水素による)1,1−ラ
フカル安定化機構が期待できない比較的低温領域でも、
本発明のようにラジカル安定剤が存在するとフリーラジ
カルは速やかに安定化され、予熱器内での炭化発生が防
止されるのである。
Next, the present invention will be discussed from the viewpoint of the reaction mechanism. Usually, the reaction of hydrogenating coal to obtain a liquid product is considered to be a radical reaction. That is, the thermal decomposition of coal produces only free radicals. The free runcal is stabilized by combination with molecular hydrogen or hydrogen supplied from the slurry media oil to produce a liquid product. However, since thermal decomposition of coal already starts around 300°C, free runcal generated by thermal decomposition of coal already exists in the preheater. If these free radicals are not stabilized by molecular hydrogen or hydrogen from the slurry medium, they will undergo polycondensation reactions and progress to carbonization reactions. However, since there is a temperature region in the preheater during heating that is not as high as in the reactor, molecular hydrogen or hydrogen from the slurry medium is usually not activated enough to contribute to the reaction, and therefore free radicals are stable. It is not enough to become a standard. However, even in a relatively low-temperature region where the 1,1-radical stabilization mechanism (by molecular hydrogen or hydrogen supplied from medium oil) cannot be expected,
When a radical stabilizer is present as in the present invention, free radicals are quickly stabilized and carbonization is prevented from occurring within the preheater.

1−述の如き本発明によれは、粉炭−油スラリーを、う
/カル安定剤の存在下に常温から水添液化反応温度まで
予熱することにより下記のような優れた効果が奏せられ
る。
1- According to the present invention as described above, the following excellent effects can be achieved by preheating the pulverized coal-oil slurry from room temperature to the hydrogenation and liquefaction reaction temperature in the presence of a fuel/cal stabilizer.

(イ)粉炭−油スラリー〇予熱過程において、石炭の熱
分解により生成したフリーラジカルがう/カル安定剤に
よって安定される。したかつてフリーラジカルが重縮合
反応により炭化することを抑制し、コークスが反応器の
器壁や配管中に生成するコーキング、炭化現象が防止さ
れ、長期間にわたって安全に連続運転ができる。
(a) Powdered coal-oil slurry During the preheating process, free radicals generated by the thermal decomposition of coal are stabilized by the gas/cal stabilizer. It suppresses the carbonization of free radicals caused by polycondensation reactions, prevents coking and carbonization caused by coke on the walls and pipes of the reactor, and allows safe continuous operation over long periods of time.

(ロ) 予熱器内壁における炭化が防止される結果、保
熱係数の低下が防止され、予熱器人出の圧力降下がほと
んとなく、また予熱器壁温の與状列温かないので器壁の
損傷、破損などの事故が防l卜される。
(b) As a result of preventing carbonization on the inner wall of the preheater, a decrease in the heat retention coefficient is prevented, and there is almost no pressure drop in the preheater. Accidents such as damage and breakage are prevented.

(ハ) 予熱器内の熱流束は、通常炭化を少なくする目
的で5,000〜10,000 Btu/ ft2/h
rが採用されているが、本発明によれは熱流束はs、o
oo〜30.000 Btu/ ft2/hrに拡大さ
れる。従ツーC予M器をコンパクトにすることが可能で
ある。
(c) The heat flux in the preheater is usually 5,000 to 10,000 Btu/ft2/h for the purpose of reducing carbonization.
However, according to the present invention, the heat flux is s, o
Expanded to oo ~ 30,000 Btu/ft2/hr. It is possible to make the slave-to-C pre-M device compact.

に) また、炭化が防止されるので、予熱器をILi火
加熱型とすることができる。従って、予熱器の・燃焼室
と加熱部を別にする必要もなく、装置の複雑化、大型化
を避けることができる。
In addition, since carbonization is prevented, the preheater can be of the ILi fire heating type. Therefore, there is no need to separate the heating section from the combustion chamber of the preheater, and it is possible to avoid complication and enlargement of the device.

0う 本発明で用いるラジカル安定剤の量は極く小量で
良いので粉炭−油スラリーのスラリー性質を変えること
がなく、既存の石炭液化プラントの装置をほとんど変更
することがなく適用できる。かつ、ラジカル安定剤は容
易に入手または合成可能なので、液化生成物のコスト上
昇を招くこともない。
Since the amount of radical stabilizer used in the present invention may be extremely small, it does not change the slurry properties of the pulverized coal-oil slurry, and it can be applied to existing coal liquefaction plant equipment with almost no changes. Moreover, since the radical stabilizer can be easily obtained or synthesized, the cost of the liquefied product does not increase.

(へ) ラジカル安定剤を用いることにより、炭化防止
のために予熱器に水素を導入する必要がなくなり、水素
の占める体積分だけ予熱器容積を小さくすることができ
る。
(f) By using a radical stabilizer, there is no need to introduce hydrogen into the preheater to prevent carbonization, and the volume of the preheater can be reduced by the volume occupied by hydrogen.

(ト)  ラジカル安定剤は予熱過程においてイコ炭の
熱分解で生じたフリーラジカルを安定化するたけであり
、水素液化反応に悪影響を及ぼすことは全くない。
(g) The radical stabilizer only stabilizes free radicals generated by thermal decomposition of icocoal during the preheating process, and has no adverse effect on the hydrogen liquefaction reaction.

以下、本発明の実施例を述べる。Examples of the present invention will be described below.

実施例1〜10 予め100メソツユ以下に粉砕した太平洋炭C(亜瀝に
炭)とアントラセン油Bを混合槽1て混合して石炭濃度
30重量%のスラリーを調製した。次にこの粉炭−油ス
ラリーに各種のう/カル安定剤Rを石炭IK2(無水、
無灰炭換算)に対して8.4 X 10−’モル添加、
混合し、このスラリーを所定の供給速度で第2図に示す
ような予熱器2を通した。この予熱器2は外径5 mm
 、内径3 mm 、長さ20??+のSUS 316
製の蛇管2Aをヒータ2Cにより400°Cに加熱され
たメルトバス2B中に浸漬し、入ロPI+出ロP2間の
圧力損失△Pをスラリー供給開始時、50時間後、およ
び100時間後に測定して、蛇管内における炭化発生の
程度を評価した。結果を下記第1表に示す。
Examples 1 to 10 Pacific coal C (subbitten charcoal), which had been crushed in advance to 100 methane or less, and anthracene oil B were mixed in a mixing tank 1 to prepare a slurry having a coal concentration of 30% by weight. Next, various carcin/cal stabilizers R are added to this powdered coal-oil slurry (coal IK2 (anhydrous,
8.4 x 10-' mol added to ash-free coal
The slurry was mixed and passed through a preheater 2 as shown in FIG. 2 at a predetermined feed rate. This preheater 2 has an outer diameter of 5 mm.
, inner diameter 3 mm, length 20? ? + SUS 316
A flexible tube 2A manufactured by Amadeus Co., Ltd. was immersed in a melt bath 2B heated to 400°C by a heater 2C, and the pressure loss △P between input port PI and exit port P2 was measured at the start of slurry supply, 50 hours later, and 100 hours later. The degree of charring in the pipe was evaluated. The results are shown in Table 1 below.

なお、石炭:媒体油混合比は4:6であり、スラリー流
速は0.500に9/hr  スラリー人口温度は60
°C1蛇管内圧力は300に9/−Gであった。また、
表において実施例1はスラリー供給後、40時間で、実
施例2は80時間で夫々運転不能となった。
The coal:media oil mixing ratio is 4:6, the slurry flow rate is 0.5009/hr, and the slurry population temperature is 60
The pressure inside the C1 spiral tube was 300 to 9/-G. Also,
In the table, Example 1 became inoperable 40 hours after the slurry was supplied, and Example 2 became inoperable 80 hours after the slurry was supplied.

この第1表から明らかなように、本発明で使用する化合
物により顕著な炭化防IL効果が見られ、かつこの効果
は、従来の予熱過程における水素添加のそれよりも大で
ある。
As is clear from Table 1, the compounds used in the present invention have a remarkable anti-IL effect on carbonization, and this effect is greater than that of hydrogen addition in the conventional preheating process.

なお、実施例1〜10に用いたラジカル安定剤を混合使
用した場合も同様の結果を示した。
Note that similar results were obtained when the radical stabilizers used in Examples 1 to 10 were used in combination.

(本頁以下余白) 実施例11〜20 実施例1〜10と同一条件において、ラジカル安定剤と
して前記(I)式の化合物を用いたときの予熱過程にお
ける炭化発生の程度を検討した。
(Margins below this page) Examples 11 to 20 Under the same conditions as Examples 1 to 10, the degree of carbonization during the preheating process was examined when the compound of formula (I) was used as a radical stabilizer.

結果を下記第2表に示す。この第2表から、N。The results are shown in Table 2 below. From this Table 2, N.

N−ジ置換ジチオカルノ・ミン酸金属塩はラジカル安定
剤として有効であることが理解できる。
It can be seen that N-disubstituted dithiocarno-mic acid metal salts are effective as radical stabilizers.

実施例21〜45 実施例1〜10と同一条件で前記(II)式、(■)式
、(■)式で夫々用される化合物、芳香族第2級または
第3級アミン、前記(V)式の化合物およびジーter
t−ブチル置換フェノール系酸化防止剤について、夫々
ラジカル安定効果を検討した。結果を下記第3表に示す
。この第3表の結果も、前述した各化合物がラジカル安
定剤として有効であることを示している。
Examples 21 to 45 Under the same conditions as Examples 1 to 10, compounds used in formulas (II), (■), and (■), aromatic secondary or tertiary amines, and (V ) compounds of the formula and ter
The radical stabilizing effect of each t-butyl-substituted phenolic antioxidant was investigated. The results are shown in Table 3 below. The results in Table 3 also show that each of the above-mentioned compounds is effective as a radical stabilizer.

実施例46 実施例3において(R= tert−)゛チル、  M
=Zn )、添加量を変化させ、スラリー供給100時
間後の圧力損失△P(mmAq)を測定した。結果を第
3図に示す。第3図からラジカル安定剤添加量が無水無
灰炭換算石炭l K9あたり約10−5〜101モルの
範囲において圧力損失がほとんと見られないことが明ら
かである。
Example 46 In Example 3, (R=tert-)゛chill, M
= Zn), and the added amount was changed, and the pressure loss ΔP (mmAq) after 100 hours of slurry supply was measured. The results are shown in Figure 3. It is clear from FIG. 3 that almost no pressure loss is observed when the amount of radical stabilizer added is in the range of approximately 10-5 to 101 mol per 1 K9 of coal equivalent to anhydrous ash-free coal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す工程図、第2図は本発明
の評価に用いた粉炭−油スラリーの予熱装置の概要図、
第3図はN、N−ジーtert −ブナルジチオ力ルハ
ミン酸亜鉛の添加量と予熱器の圧力損失との関係を示す
図である。 1・・・混合槽、2・・・予熱器、6・・・反応器。 代理人 弁理士 小 川 信 − 弁理士 野 口 賢 照 弁理士 斎 下 和 彦
Fig. 1 is a process diagram showing an example of the present invention, Fig. 2 is a schematic diagram of a preheating device for pulverized coal-oil slurry used for evaluation of the present invention,
FIG. 3 is a diagram showing the relationship between the amount of N,N-di-tert-bunaldithioruhamic acid zinc added and the pressure loss of the preheater. 1... Mixing tank, 2... Preheater, 6... Reactor. Agent: Patent Attorney Makoto Ogawa − Patent Attorney: Ken Noguchi Patent Attorney: Kazuhiko Saishita

Claims (1)

【特許請求の範囲】 粉炭を油スラリー状で水素化分解して石炭液化油を製造
するにあたり、前記粉炭の油スラリーを下記一般式(I
)で示されるN、N−ジ置換/チオカルバミン酸金属塩
、下記一般式(II)で示されるモノスルフィド、下記
一般式(III)で示されるモノセレニド、下記一般式
(■)で示されるンアルキルジチオリン酸金属塩、芳香
族第2級捷たは第3級アミン、下記一般式(V)で示さ
れるリン酸エステル、およびジーtert−ブチル置俟
ノエノール系酸化防止剤からなる群から選ばれた少くと
も一種の化合物の存在下に水素化分所温度まで予熱し、
次いでこれを水素化することを特徴とする石炭−油スラ
リーの水添液化方法。 RR R,−8−R2(n)、   R,−8e−R2(lu
ll)L (RO)2PS2)2M         
    (IV)(RO+3PO(V) たたしくI)式中、Rは炭素数1〜15のアルキル基、
または炭素数1〜15のアルキルil!I鎖を有するフ
ェニル基を表わし、MはNi + Zn 、 Mo 。 Pb 、 Cd 、 Sn 、 WおよびFeからなる
群から選ばれた2価の金蝿であり、(■)式中、R1お
よびR2は夫々等しいか、または相異なる炭素数1〜8
のアルキル基であり、(■)式中、R1およびR2は前
記(n)式と同様のアルキル基であり、(IV)式中、
Rは炭素数1〜8のアルキル基、Mは前記(I)式と同
様の2価の金属であり、(V)式中、Rは前記(IV)
式と同様のアルキル基である。
[Scope of Claims] When producing coal liquefied oil by hydrocracking powdered coal in the form of an oil slurry, the oil slurry of the powdered coal is prepared by the following general formula (I
), a monosulfide represented by the following general formula (II), a monoselenide represented by the following general formula (III), and a monoselenide represented by the following general formula (■). selected from the group consisting of alkyl dithiophosphate metal salts, aromatic secondary or tertiary amines, phosphoric acid esters represented by the following general formula (V), and di-tert-butyl-containing noenol antioxidants. preheating to hydrogenation station temperature in the presence of at least one compound;
A method for hydrogenating and liquefying a coal-oil slurry, which comprises then hydrogenating the slurry. RR R,-8-R2(n), R,-8e-R2(lu
ll)L (RO)2PS2)2M
(IV) (RO+3PO(V) Tataku I) In the formula, R is an alkyl group having 1 to 15 carbon atoms,
Or alkyl il having 1 to 15 carbon atoms! Represents a phenyl group having an I chain, M is Ni + Zn, Mo. A divalent gold fly selected from the group consisting of Pb, Cd, Sn, W and Fe, in the formula (■), R1 and R2 are each equal or different, with carbon numbers 1 to 8
In the formula (■), R1 and R2 are the same alkyl groups as in the formula (n), and in the formula (IV),
R is an alkyl group having 1 to 8 carbon atoms, M is a divalent metal similar to the above formula (I), and in the formula (V), R is the above (IV)
It is an alkyl group similar to the formula.
JP6245882A 1982-04-16 1982-04-16 Coal-oil slurry hydrogenation and liquefaction method Expired JPS5917153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6245882A JPS5917153B2 (en) 1982-04-16 1982-04-16 Coal-oil slurry hydrogenation and liquefaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6245882A JPS5917153B2 (en) 1982-04-16 1982-04-16 Coal-oil slurry hydrogenation and liquefaction method

Publications (2)

Publication Number Publication Date
JPS58180586A true JPS58180586A (en) 1983-10-22
JPS5917153B2 JPS5917153B2 (en) 1984-04-19

Family

ID=13200775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6245882A Expired JPS5917153B2 (en) 1982-04-16 1982-04-16 Coal-oil slurry hydrogenation and liquefaction method

Country Status (1)

Country Link
JP (1) JPS5917153B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055174A (en) * 1984-06-27 1991-10-08 Phillips Petroleum Company Hydrovisbreaking process for hydrocarbon containing feed streams
US5064527A (en) * 1984-05-08 1991-11-12 Exxon Research & Engineering Company Catalytic process for hydroconversion of carbonaceous materials
EP2504099A2 (en) * 2009-11-24 2012-10-03 Chevron U.S.A. Inc. Hydroprocessing bulk catalyst and methods of making thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064527A (en) * 1984-05-08 1991-11-12 Exxon Research & Engineering Company Catalytic process for hydroconversion of carbonaceous materials
US5055174A (en) * 1984-06-27 1991-10-08 Phillips Petroleum Company Hydrovisbreaking process for hydrocarbon containing feed streams
EP2504099A2 (en) * 2009-11-24 2012-10-03 Chevron U.S.A. Inc. Hydroprocessing bulk catalyst and methods of making thereof
EP2504099A4 (en) * 2009-11-24 2014-08-27 Chevron Usa Inc Hydroprocessing bulk catalyst and methods of making thereof

Also Published As

Publication number Publication date
JPS5917153B2 (en) 1984-04-19

Similar Documents

Publication Publication Date Title
EP0093501B1 (en) Process for thermal cracking of carbonaceous substances which increases gasoline fraction and light oil conversions
US4024051A (en) Using an antifoulant in a crude oil heating process
US4024049A (en) Mono and di organophosphite esters as crude oil antifoulants
CA1166178A (en) Producing liquid hydrocarbon streams by hydrogenation of fossil-based feedstock
KR101874152B1 (en) Process for the gasification of heavy residual oil with particulate coke from a delayed coking unit
US4233137A (en) Method of heat recovering from high temperature thermally cracked hydrocarbons
EP0290689B1 (en) Partial oxidation process
DE69003183T2 (en) Coal gasification process and reactor.
WO2011003731A2 (en) Reactor for generating a product gas by allothermic gasification of carbonaceous raw materials
CN1043028C (en) Process for manufacture of synthesis gas by partial oxidation of liquid hydrocarbon-containing fuel using multi-orifice (coannular) burner
JPS58180586A (en) Liquefying coal-oil slurry by hydrogenation
KR100323961B1 (en) A process for the gasification of a petroleum coke feedstock
US4565622A (en) Method of liquefying brown coal
US2194574A (en) Process for producing gasoline and gas
DD151181A5 (en) COMBINED COAL-LIQUIDATION-GASIFICATION PROCESS
US2977299A (en) Production of chemical products from coal products
US1901170A (en) Gasification of carbonaceous material
US7444947B2 (en) Method for feeding a mixture comprising a burnable solid and water
US4935036A (en) Flash hydropyrolysis of bituminous coal
DE102011007806A1 (en) Reactor, useful for gasification of ashless or low-ash fuel with a free oxygen-containing gasification agent, comprises a gasification chamber bounded in a pressurized reactor pressure shell by a wall
JPS5941388A (en) Distillation of coal liquefied oil
DE3107712A1 (en) HEAVY CHARCOAL BASED OIL
WO1994006889A1 (en) Process for obtaining lower olefins
US2976135A (en) Generation of carbon monoxide and hydrogen
US4225414A (en) Process for hydrocracking carbonaceous material to provide fuels or chemical feed stock