JPS58180447A - Preparation of o-phenylphenol compound - Google Patents

Preparation of o-phenylphenol compound

Info

Publication number
JPS58180447A
JPS58180447A JP57063897A JP6389782A JPS58180447A JP S58180447 A JPS58180447 A JP S58180447A JP 57063897 A JP57063897 A JP 57063897A JP 6389782 A JP6389782 A JP 6389782A JP S58180447 A JPS58180447 A JP S58180447A
Authority
JP
Japan
Prior art keywords
reaction
catalyst
alumina
selectivity
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57063897A
Other languages
Japanese (ja)
Other versions
JPS6254408B2 (en
Inventor
Yasuya Jo
城 康弥
Morihito Yamashita
山下 守人
Tomiya Taniguchi
谷口 富哉
Katsuya Nishikawa
勝也 西川
Kenichi Ikemoto
憲一 池本
Hirokazu Asai
浅井 浩和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKO KAGAKU KK
Original Assignee
SANKO KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKO KAGAKU KK filed Critical SANKO KAGAKU KK
Priority to JP57063897A priority Critical patent/JPS58180447A/en
Publication of JPS58180447A publication Critical patent/JPS58180447A/en
Publication of JPS6254408B2 publication Critical patent/JPS6254408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To improve the yield of the titled compound in the catalytic hydrogenative ring-opening reaction of dibenzofuran, by using a catalyst composed of Pt or Pd and an alkaline compound of an alkali metal or alkaline earth metal and gamma-alumina, etc. supporting said catalytic components. CONSTITUTION:Platinum or palladium and an alkaline compound of an alkali metal or alkaline earth metal are supported on gamma-alumina or a silica-alumina having high alumina content to obtain a catalyst. The objective compound can be prepared by the hydrogenative ring-opening reaction of dibenzofuran or its derivative using the above catalyst at 20-500 deg.C, preferably 300-380 deg.C under hydrogen pressure of 1atm-150kg/cm<2>, preferably 1atm-20kg/cm<2>. The amount of the platinum or palladium is preferably 0.1-3wt% (in terms of metal) based on the carrier, and that of the alkaline compound is about 0.2-8wt% (in terms of metallic atom) based on the carrier.

Description

【発明の詳細な説明】 して又はそれらの原料として利用されて来たが、近年さ
らに合成高分子の原料、改質剤、難燃剤等の原料として
注目されて来た。
DETAILED DESCRIPTION OF THE INVENTION In recent years, it has been used as a raw material for synthetic polymers, modifiers, flame retardants, etc.

ジベンゾフラン(以下1) B Fと略記する。)又は
その誘導体から0−PP類を合成する方法として、Li
+ 、 NB  、 K等のアルカリ金属、又はそれら
の水素化物による開裂法、種々の金属触媒を用いる水素
還元法等が知られているが、何れも工業的には取り扱い
上、設備−1−1安全−に等問題がある。つまりアルカ
リ金属及びその水素化物は活性が強く発火性があり、県
木設備が必要で、取ね扱い運搬等も困難である。又縦来
公知の金属触媒による水素化還元法では、反応温度30
0℃以」−1水素圧50kg/C!I以上を必要とする
ため設備費が高額となる。さらに収率も低い等未だ実用
の域に達していない。又、白金等の第■族金属触媒の存
在下でのDBP類の水素化還元方法が、米国特許第3.
989.761月、第4,000,203号等で提案さ
れているが、イμJれも反応率、選択率が低く満足すべ
きものでない。
Dibenzofuran (hereinafter 1) is abbreviated as BF. ) or its derivatives, Li
Cleavage methods using alkali metals such as +, NB, and K or their hydrides, hydrogen reduction methods using various metal catalysts, etc. are known, but all of them are industrially difficult to handle due to equipment-1-1. There are safety issues. In other words, alkali metals and their hydrides are highly active and flammable, require prefectural wood facilities, and are difficult to handle and transport. In addition, in the conventionally known hydrogenation reduction method using a metal catalyst, the reaction temperature is 30
0℃ or below”-1 hydrogen pressure 50kg/C! The equipment cost is high because it requires more than I. Furthermore, the yield is low and it has not yet reached the level of practical use. Further, a method for hydrogenation and reduction of DBPs in the presence of a Group Ⅰ metal catalyst such as platinum is disclosed in US Patent No. 3.
989.761, No. 4,000,203, etc., but the reaction rate and selectivity are low and the results are not satisfactory.

本発明者は、DBF類の接触水素化開裂にょる0−PP
類の製造における触媒について種々検討を加えた結果、
白金又はパラジウムなγ−アルミナや活性炭に担持させ
たのみの触媒では、反応率、選択率、寿命とも満足すべ
きものではないが、これらにアルカリ金属又はアルカリ
土類金属のアルカリ性化合物を添加した触媒を使用した
場合は、反応率、選択率及び寿命が飛躍的に改良される
こと、又担体としてはr−アルミナ或いはアルミナ含有
率の高いシリカ−アルミナが特に優れた効果を有するこ
と、などを見出し本発明に到達した。
The present inventor has discovered that 0-PP by catalytic hydrogenation cleavage of DBFs.
As a result of various studies on catalysts for the production of
Catalysts supported only on platinum or palladium γ-alumina or activated carbon are not satisfactory in terms of reaction rate, selectivity, and lifespan, but catalysts in which alkaline compounds of alkali metals or alkaline earth metals are added are used. The book shows that when used as a support, the reaction rate, selectivity, and service life are dramatically improved, and that r-alumina or silica-alumina with a high alumina content has particularly excellent effects as a support. The invention has been achieved.

本発明の目的は、反応率、選択率及び寿命が飛躍的に改
良されたo−pp類の製造方法を提供することにある。
An object of the present invention is to provide a method for producing o-pps that has dramatically improved reaction rate, selectivity, and service life.

本発明はジベンゾフラン又はその誘導体を、水素開裂し
てオルソーフェニルフェノール類を製造するに当抄、γ
−アルミナ或いはアルミナ含有率の高いシリカ−アルミ
ナに、白金又はパラジウムと、アルカリ金属又はアルカ
リ土類金属のアルカリ性化合物を担持させたものを触媒
として使用す 3 ることを特徴とする、オルソーフェニルフェノール類の
製造方法に関する。
The present invention is directed to the production of ortho phenylphenols by hydrogen cleavage of dibenzofuran or its derivatives.
- Alumina or silica with a high alumina content - Ortho phenylphenols characterized by using alumina supported with platinum or palladium and an alkaline compound of an alkali metal or alkaline earth metal as a catalyst. Relating to a manufacturing method.

本発明について実施例を挙げて具体的に説明する。The present invention will be specifically described with reference to Examples.

まず、本発明に使用する触媒を製造する方法を説明する
First, a method for manufacturing the catalyst used in the present invention will be explained.

γ−アルミナ又はアルミナ含有率の高いシリカ−アルミ
ナ(これらは担体として作用する。)を必要に応じ55
0〜600℃で3〜5時間エヤー焼成する。これに(浸
漬法)によって所定量の白金又はパラジウムの化合物を
付着させ、300〜400℃で十分焼成後回温度で3〜
4時間水素還還元て担体上に白金又はパラジウム金属を
析出、担持させる。次いでこの白金又はパラジウム担持
体にさらに(浸漬法)により所定量のアルカリ金属又は
アルカリ土類金属のアルカリ性化合物を付着させて十分
焼成し、目的の触媒を得る。
γ-alumina or silica-alumina with a high alumina content (these act as carriers) is added as necessary.
Air bake at 0 to 600°C for 3 to 5 hours. A predetermined amount of platinum or palladium compound is attached to this (dipping method), and after sufficient firing at 300 to 400℃, the temperature is 3 to 30℃.
Platinum or palladium metal is precipitated and supported on the carrier by hydrogen reduction for 4 hours. Next, a predetermined amount of an alkaline compound of an alkali metal or alkaline earth metal is further adhered to this platinum or palladium support by a dipping method and sufficiently calcined to obtain the desired catalyst.

白金又はパラジウムの担体への添加量は金属原子として
0.1〜3チ(重量基準、以下同じ)が適当であり、添
加量がこの範囲より低い場合は活性、 4− 選択性が低くなり、との範囲より高くなると、不経済で
あるばかりでガ〈反応が進みすぎて副反応がおこる等好
゛土しくない現象が認められる。白金又はパラジウムの
最適添加址は担体の種類や反応条件等によっても多少変
動するので、これら諸条件を勘案して前記範囲内で適宜
定めれば良いが、一般的には0.2〜2%程度である。
The appropriate amount of platinum or palladium added to the carrier is 0.1 to 3 t (on a weight basis, the same applies hereinafter) as metal atoms; if the amount added is lower than this range, the activity and selectivity will decrease; If the temperature is higher than the above range, it is not only uneconomical, but also causes undesirable phenomena such as the reaction progressing too much and side reactions occurring. The optimal amount of platinum or palladium to be added varies depending on the type of carrier, reaction conditions, etc., so it can be determined as appropriate within the above range taking these conditions into account, but generally it is 0.2 to 2%. That's about it.

アルカリ金属又はアルカリ土類金属のアルカリ性化合物
は、炭酸塩、重炭酸塩、硝酸塩、水酸化物、酸化物、低
級脂肪酸基、低級アルコラード等の形で担体に担持1せ
ればよい。要するに触媒の操作条件下でアルカリ性を示
す化合物であればよい。水酸化物又は炭酸塩が好適であ
る。父上記金属のうちナトリウム及びカリウムが特に好
ましい。
The alkaline compound of an alkali metal or alkaline earth metal may be supported on a carrier in the form of carbonate, bicarbonate, nitrate, hydroxide, oxide, lower fatty acid group, lower alcoholade, or the like. In short, any compound that exhibits alkalinity under the operating conditions of the catalyst may be used. Hydroxides or carbonates are preferred. Among the above metals, sodium and potassium are particularly preferred.

前記アルカリ性化合物の担持駿は、金属原子として担体
の0.2〜8チ程度で、この範囲より小さい場合は効果
が不十分であり、又大きくても活性が低下する傾向にあ
る。アルカリ性化合物の相持量は、相体の種類や反応条
件等によっても多少変動するので、これらの条件を勘案
して前配添加範 5 − 回内で適宜定めればよいが、一般的には2〜5チ程度が
好適である。
The alkaline compound supported on the support is approximately 0.2 to 8 times the amount of metal atoms on the support, and if it is smaller than this range, the effect is insufficient, and even if it is larger, the activity tends to decrease. The amount of alkaline compound supported varies somewhat depending on the type of phase, reaction conditions, etc., so taking these conditions into consideration, the pre-addition range can be determined as appropriate within the range of 5 to 2. Approximately 5 inches is suitable.

本発明方法により長時間にわたり高選択性を維持しつつ
0−PP類を得るためには、反応温度は一般的には20
0〜500℃であり、好ましくは300〜380℃であ
る。この温度範囲をはずれる場合でも反応条件によって
は高選択率で0−PP類を生成することも可能であるが
、生産性等をも考慮すると前記反応温度域が適当である
。最適反応温度は原料1)13 F類の供給速度や触媒
の状況その他の反応条件によっても若干異なってくるの
で、これらも考慮して」二記温度範囲内で適宜選定され
る。
In order to obtain 0-PPs by the method of the present invention while maintaining high selectivity over a long period of time, the reaction temperature is generally 20°C.
The temperature is 0 to 500°C, preferably 300 to 380°C. Although it is possible to produce 0-PPs with high selectivity depending on the reaction conditions even when the temperature is outside this temperature range, the above-mentioned reaction temperature range is appropriate, considering productivity and the like. The optimum reaction temperature varies slightly depending on the feed rate of the raw materials 1)13F, the status of the catalyst, and other reaction conditions, so it is appropriately selected within the temperature range described in 2, taking these into consideration.

又反応相へのDBF類の供給速度は、反応温度や触媒の
種類、量、状態など他の反応条件によっても異なるが、
一般的には毎時触媒量の0.1〜3倍、特に0.2〜2
倍量の供給が好ましい。この速度範囲より小さい場合に
は0−PP類の選択率が低下し、大きい場合には反応率
が低下する傾向を示す。
In addition, the rate of supply of DBFs to the reaction phase varies depending on other reaction conditions such as the reaction temperature and the type, amount, and state of the catalyst.
Generally 0.1 to 3 times the hourly catalyst amount, especially 0.2 to 2
Supplying double amounts is preferred. When the rate is lower than this range, the selectivity of 0-PPs tends to decrease, and when it is higher than this rate, the reaction rate tends to decrease.

 6− 水素の圧力?−11、常圧〜150kg/crd、好ま
しくは常圧〜20kg/cIItである。この圧力範囲
より島い場合には0−PP類の選択率が低下し1、反応
装置類の設備費が増大するので好捷しくない。
6- Hydrogen pressure? -11, normal pressure to 150 kg/crd, preferably normal pressure to 20 kg/cIIt. If the pressure is lower than this range, the selectivity of 0-PPs will decrease (1) and the cost of equipment for reactors will increase, which is not preferable.

触媒の再生は、従来公知の方法、例えば300〜400
℃程度の温度で空気又は空気と窒素との混合ガス気流下
で触媒を十分酸化l2、次いで300〜350℃で水素
ガスにより還元することにより容易に行表うととができ
る。
The catalyst can be regenerated by a conventionally known method, for example, 300 to 400
This can be easily carried out by sufficiently oxidizing the catalyst in a stream of air or a mixed gas of air and nitrogen at a temperature of about 12°C, and then reducing it with hydrogen gas at 300 to 350°C.

D B F” 9導体と(2ては例えは表1に示すもの
がある。
D B F'' 9 conductors and (2) are shown in Table 1, for example.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例1 550℃で空気流下に焼成されたγ−アルミナペレット
(直径1.6mm、長さ平均10龍、比表面積320m
’/?)621i’を、塩化白金酸(1−12PtCt
、・6H,0) 1.64 fを蒸留水150dに溶存
させた溶液に加え、浸漬法によって塩化白金酸を均一に
付着させた。これを130℃に保った電気乾燥器中で乾
燥後、パイレックスガラス製触媒焼成管中で:p /=
 /時程度の空気流中で350 ’Cで3時間焼成し、
次いで3t/時程度の水素気流中で350 ’Cで3時
間還元L5た1、これを、苛性カリ(試薬特級)3.1
!i’(純度換算)を蒸留水150dに溶存させた溶液
に加λ−1浸漬法により苛性カリを付着させで乾燥後;
う50℃で9累気流中において2時間焼成し目的の触媒
を得た。
Example 1 γ-Alumina pellets (diameter 1.6 mm, average length 10 mm, specific surface area 320 m
'/? )621i', chloroplatinic acid (1-12PtCt
, 6H, 0) 1.64 f dissolved in 150 d of distilled water was added to the solution, and chloroplatinic acid was uniformly deposited by a dipping method. After drying this in an electric dryer kept at 130°C, in a Pyrex glass catalyst calcining tube: p / =
Bake at 350'C for 3 hours in an air flow of about /hour,
Next, L5 was reduced for 3 hours at 350'C in a hydrogen flow of about 3 t/hour, and this was reduced to 3.1 liters of caustic potash (reagent grade).
! i' (in terms of purity) was dissolved in 150 d of distilled water, and then caustic potash was attached using the λ-1 immersion method, followed by drying;
The target catalyst was obtained by calcining for 2 hours at 50° C. in a 9-phase air stream.

との触媒(1チPt−5%KOII/活性アルミナ)4
8Iな、内径25mmX長さ500關のパイレツクスノ
1ラス製反応管の触媒充填部に充填し、該反応管な管状
電気炉内に設置して通常の流通法に191) l(l=
’の水素化開裂反応を行なった。すなわち80℃に保温
した1) B Fをマイクロフィーダーにより12I/
時の速度で、父同時に水素を4t、/時の速度で、33
0℃に保った触媒−ヒに供給して反応を行な一つだ。反
応生成物は60℃に保つだ捕集トラップに捕集して抜取
りコックから適宜系外に取り出し1、ガスクロマド分析
を行なった。
Catalyst (1T Pt-5% KOII/Activated Alumina) 4
The catalyst-packed portion of a Pyrex No. 1 lath reaction tube with an inner diameter of 25 mm and a length of 500 mm was filled with catalyst, and the reaction tube was placed in a tubular electric furnace and subjected to a normal flow method.
A hydrogenation cleavage reaction of ' was carried out. In other words, 1) BF kept at 80°C was heated to 12I/
At the speed of 4 tons of hydrogen at the same time, at the rate of 33
One method is to feed the catalyst to a catalyst kept at 0°C and carry out the reaction. The reaction product was collected in a trap kept at 60°C, taken out of the system from a sampling cock as appropriate1, and subjected to gas chromatographic analysis.

反応開始後8時間め頃までは反応率80〜85モル頭、
0− P P選択率70〜80モルチであったが、時間
の経過と共に0−PP選択率が増大して300時間経過
時点では反応率83モルφ、0−PP選選択率9七 チ、選択率88モル頭であった。
Until about 8 hours after the start of the reaction, the reaction rate is 80 to 85 moles,
The 0-PP selectivity was 70 to 80 mol, but the 0-PP selectivity increased with the passage of time, and by the time 300 hours had passed, the reaction rate was 83 mol φ, the 0-PP selectivity was 97 mol, and the 0-PP selectivity was 97 mol. The ratio was 88 moles.

比較例1 実施例1の苛性カリ添加前の触媒(1%Pt/活性アル
ミナ)を使用し、その他の反応条件を実施例1と全く同
様に操作して反応を行なったところ、反応開始後8時間
めで反応率70モル頭、0−PP選択率:32モル頭で
あり、反応時間240時間めでは、反応率35モル頭、
選択率40モルチとなった,。
Comparative Example 1 A reaction was carried out using the catalyst (1% Pt/activated alumina) before addition of caustic potassium from Example 1 and operating the other reaction conditions exactly as in Example 1. At the end, the reaction rate was 70 moles, the 0-PP selectivity was 32 moles, and at the reaction time of 240 hours, the reaction rate was 35 moles,
The selectivity was 40 ml.

実施例2 白金−アルミナ触媒(05%Pi /活性アルミナ、直
径3. 2 y+m X長さ3. 2 mm、市販品)
54y−を苛性ノノリ(試薬特級)2.7PC純度換算
)を蒸留水1 5 Q mlに溶存させた溶液に加えて
浸漬法によって苛性カリを付着させた後乾燥り. l 
5 0 ’Cで窒素気流中で2時間焼成1目的の触媒を
得た。この触媒(0.5%Pt−5チK O H /活
性アルミナ) 9 − 501を用い、実施例1と同様に反応を行なって、反応
開始後200時間めには反応率85モル頭、(’)−P
P選選択率9七 率83モル頭、0−PI)選択率91モル頭を得た。
Example 2 Platinum-alumina catalyst (05% Pi/activated alumina, diameter 3.2 y+m x length 3.2 mm, commercially available)
54y- was added to a solution of caustic glue (special grade reagent, 2.7 PC purity equivalent) dissolved in 15 Q ml of distilled water, and caustic potash was applied by dipping, followed by drying. l
The desired catalyst was obtained by calcining at 50'C for 2 hours in a nitrogen stream. Using this catalyst (0.5% Pt-5CHKOH/activated alumina) 9-501, a reaction was carried out in the same manner as in Example 1, and at 200 hours after the start of the reaction, the reaction rate was 85 moles, ( ')-P
A P selection selectivity of 97% and 83 moles, and a 0-PI) selectivity of 91 moles were obtained.

実施例3 実施例2の苛性力IJ 2. 7 f/−の代りに炭酸
ナトリウム(試薬特級)2.77を用いた外は実施例2
と同様に操作して得た触媒(0.5%Pt−5%Na。
Example 3 Caustic force IJ of Example 2 2. 7 Example 2 except that sodium carbonate (reagent special grade) 2.77 was used instead of f/-
A catalyst obtained in the same manner as (0.5% Pt-5% Na).

CO3/活性アルミナ)を用いて実施例2と同様に反応
を行ない、反応開始後100時間めで反応率77モル%
、0−PP選選択率8七 実施例4 パラジウム−アルミナ触媒( 0.5 1 Pd /活
性アルミナ、直径3. 2 11I X長さ3. 2 
mm、市販品)54tを使用した外は実施例2と同様に
処理して得た触媒(0.5条Pd−5チK O H /
活性アルミナ)Kよる実施例2と同様の条件下における
水素化開裂反応では、反応開始後24時間めの反応率3
6モル頭、0〜PP選択率72モルチであった。
A reaction was carried out in the same manner as in Example 2 using CO3/activated alumina, and the reaction rate was 77 mol% at 100 hours after the start of the reaction.
, 0-PP selectivity 87 Example 4 Palladium-alumina catalyst (0.5 1 Pd/activated alumina, diameter 3.2 11 I x length 3.2
A catalyst (0.5 strip Pd-5 strip KOH/
In the hydrogenation cleavage reaction using activated alumina) K under the same conditions as in Example 2, the reaction rate was 3 at 24 hours after the start of the reaction.
6 mol head, 0 to PP selectivity was 72 mol head.

比較例2 10− 実施例4の苛性カリ添加前の触媒(0,51P(1/活
性アルミナ)を使用し、その他の条件は実施例4と全く
同様に操作して反応を行なったところ、反応開始後24
時間めで反応率は34モルチであり、o−pp選択率は
46モルチであった。
Comparative Example 2 10- When the reaction was carried out using the catalyst (0.51P (1/activated alumina) before addition of caustic potassium in Example 4 and operating under the same conditions as in Example 4, the reaction started. 24 more
The reaction rate was 34 molti and the o-pp selectivity was 46 molti.

実施例5 実施例2におけるパイレックスガラス反応管の代りにス
テンレス製反応管を使用し、水素圧15kg/ cAで
同様に反応させた。反応開始後240時間めで反応率8
8モルチ、0−PP選選択率8七実施例6 実施例3で、1)BF”の代りに3−フェニルジベンゾ
フランを使用した以外は全く同様に操作して反応を行な
った、反応開始後200時間めの反応率t15 2%テ
.il)、 2 − (4−フェニル−フェニル)フェ
ノールの選択率は85モルチであった。
Example 5 A stainless steel reaction tube was used in place of the Pyrex glass reaction tube in Example 2, and the same reaction was carried out at a hydrogen pressure of 15 kg/cA. Reaction rate was 8 at 240 hours after the start of the reaction.
8 molti, 0-PP selectivity 87 Example 6 The reaction was carried out in exactly the same manner as in Example 3 except that 3-phenyldibenzofuran was used instead of 1) BF''. The reaction rate at t15 was 2%, and the selectivity for 2-(4-phenyl-phenyl)phenol was 85 mol.

反応混合物からアルカリ抽出法により目的物を分離し、
キシレンで再結晶精製して融点176〜177°C(文
献値1 7 7. 5℃)の白色結晶を得た。
Separate the target product from the reaction mixture by alkaline extraction method,
Recrystallization purification with xylene gave white crystals with a melting point of 176-177°C (literature value 177.5°C).

実施例7 実施例2の苛性2.7fの代りに水酸化カルシウム(試
薬%級)2.7?を用いた以外は実施例2と同様に操作
し,て得た触媒(o,5%Pt−5チCa((月ね,/
活性′アルミナ)を用いて、実施例2と同様に反応を行
ない、反応開始後120時間めで反応率78モル係、0
 − P P選択率81モルチを得た。
Example 7 Calcium hydroxide (reagent % grade) 2.7? instead of caustic 2.7f in Example 2? The same procedure as in Example 2 was used except that the catalyst obtained by
A reaction was carried out in the same manner as in Example 2 using activated alumina, and at 120 hours after the start of the reaction, the reaction rate was 78 molar and 0.
- PP selectivity of 81 molti was obtained.

表11)13F誘導体  13 −  14 ーTable 11) 13F derivatives 13 - 14-

Claims (1)

【特許請求の範囲】 1 ジベンゾフラン又はその誘導体を、水素化開裂シて
オルソ−フェニルフェノール類を製造スるに当り、γ−
アルミナ或いはアルミナ含有率の高いシリカ−アルミナ
に、白金又はパラジウムと、アルカリ金属又はアルカリ
土類金属のアルカリ性化合物を担持させたものを触媒と
して使用することを特徴とする、オルソ−フェニルフェ
ノール類の製造方法。 2 アルカリ性化合物がナトリウム又はカリウムのアル
カリ性化合物である、特許請求の範囲第1項記載の方法
[Claims] 1. In producing ortho-phenylphenols by hydrogenation cleavage of dibenzofuran or its derivatives, γ-
Production of ortho-phenylphenols characterized by using alumina or silica-alumina with a high alumina content on which platinum or palladium and an alkaline compound of an alkali metal or alkaline earth metal are supported as a catalyst. Method. 2. The method according to claim 1, wherein the alkaline compound is a sodium or potassium alkaline compound.
JP57063897A 1982-04-19 1982-04-19 Preparation of o-phenylphenol compound Granted JPS58180447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57063897A JPS58180447A (en) 1982-04-19 1982-04-19 Preparation of o-phenylphenol compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57063897A JPS58180447A (en) 1982-04-19 1982-04-19 Preparation of o-phenylphenol compound

Publications (2)

Publication Number Publication Date
JPS58180447A true JPS58180447A (en) 1983-10-21
JPS6254408B2 JPS6254408B2 (en) 1987-11-14

Family

ID=13242548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57063897A Granted JPS58180447A (en) 1982-04-19 1982-04-19 Preparation of o-phenylphenol compound

Country Status (1)

Country Link
JP (1) JPS58180447A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103025A1 (en) * 2004-04-21 2005-11-03 Novogen Research Pty Ltd Isoflavene synthetic method and catalyst
CN112973763A (en) * 2021-03-03 2021-06-18 太原理工大学 Dibenzofurans hydrodeoxygenation catalyst and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989761A (en) * 1975-08-08 1976-11-02 Monsanto Company Production of orthophenylphenols
US4000203A (en) * 1975-08-08 1976-12-28 Monsanto Company Production of orthophenylphenols

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989761A (en) * 1975-08-08 1976-11-02 Monsanto Company Production of orthophenylphenols
US4000203A (en) * 1975-08-08 1976-12-28 Monsanto Company Production of orthophenylphenols

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103025A1 (en) * 2004-04-21 2005-11-03 Novogen Research Pty Ltd Isoflavene synthetic method and catalyst
CN112973763A (en) * 2021-03-03 2021-06-18 太原理工大学 Dibenzofurans hydrodeoxygenation catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JPS6254408B2 (en) 1987-11-14

Similar Documents

Publication Publication Date Title
US4780552A (en) Preparation of furan by decarbonylation of furfural
AU616551B2 (en) Process for starting-up an ethylene oxide reactor
US4758600A (en) Process for the manufacture of ethanol
JP2012508736A (en) Integrated process for producing vinyl acetate from acetic acid via ethylene
JPH01146837A (en) Method for dehydrating cyclohexenone
JP3046865B2 (en) Method for producing chloroform from carbon tetrachloride and catalyst composition used therefor
JP2637812B2 (en) Method for producing phenol
JPS58180447A (en) Preparation of o-phenylphenol compound
US4317919A (en) Recovery of bromine from effluent gases in the oxidation of substituted aromatics to form aromatic carboxylic acids
JPH0912535A (en) Production of methyl mercaptan
EP0636599B1 (en) Process for the production of acetic acid
EP0264823B2 (en) Process for preparation of 2,3,5-trimethylhydroquinone
JP2016529220A (en) Process for producing furan and its derivatives
JP3613539B2 (en) Catalyst for producing synthesis gas, method for producing the same, and method for producing synthesis gas
JPWO2007063974A1 (en) Method for adding hydrogen to aromatic ring of aromatic ring compound
JP2000506886A (en) Production of acetaldehyde
EP0194328B1 (en) Manufacture of phenyl esters and phenol
JPS6254409B2 (en)
EP1112775B1 (en) Catalyst for the preparation of allyl acetate
EP0180957B1 (en) Preparation process of indoles
EP1205246B1 (en) Process for preparation of catalyst
JPH0250088B2 (en)
EP0075952A1 (en) Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol
US4999177A (en) Process for the preparation of high purity carbon monoxide
KR0176417B1 (en) Method for prolongating life of catalyst for vapor phase methanol carbonylation