JPS58180037A - Viewer for hot spot of semiconductor device - Google Patents

Viewer for hot spot of semiconductor device

Info

Publication number
JPS58180037A
JPS58180037A JP6441282A JP6441282A JPS58180037A JP S58180037 A JPS58180037 A JP S58180037A JP 6441282 A JP6441282 A JP 6441282A JP 6441282 A JP6441282 A JP 6441282A JP S58180037 A JPS58180037 A JP S58180037A
Authority
JP
Japan
Prior art keywords
semiconductor device
ferromagnetic
substance
hot spot
viewer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6441282A
Other languages
Japanese (ja)
Other versions
JPS6227742B2 (en
Inventor
Masakazu Nakabayashi
正和 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6441282A priority Critical patent/JPS58180037A/en
Publication of JPS58180037A publication Critical patent/JPS58180037A/en
Publication of JPS6227742B2 publication Critical patent/JPS6227742B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Thin Magnetic Films (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To improve the accuracy of discrimination of the hot spot by forming the viewer by the semiconductor device, in which a ferromagnetic-substance thin-film is shaped to the surface, and a magnet viewer observing the change of the magnetization of the semiconductor device. CONSTITUTION:In the hot spot 21a, a temperature of a Curie temperature or more functions to a ferromagnetic substance having the magnetization 22b of domains, which are given previously a magnetic field and oriented in the same direction, magnetization is disturbed partially, and the magnetic susceptibility of the section 22a is lowered. Accordingly, the section 22a appears in the magnet viewer as a dark section, and is discriminated as the difference of light and darkness with another section 21b. When the ferromagnetic-substance thin-film is given previously the magnetic field and the domains are oriented in the same direction, it is preferable from a point of view of the increase of the difference of light and darkness that the direction is made perpendicular to a reference horizontal line of the semiconductor device. The ferromagnetic substance used for the device is selected properly by the relationship of the temperature of the hot spot of the semiconductor device and the Curie temperature of the ferromagnetic substance. The thickness of the ferromagnetic-substance thin-film formed onto the surface of the semiconductor device is selected properly by the magnetic substance used, but it is normally extends over 0.5-3mum.

Description

【発明の詳細な説明】 本発明は半導体装置に発生するホラトス。ゲットを観察
する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a horatos that occurs in a semiconductor device. This invention relates to a device for observing targets.

半導体装置を設計開発するうえにおいて、作動時におけ
る半導体装置の温度分布、ことにホットスポットの位置
を知ることが重要な*jiiとなる。
In designing and developing a semiconductor device, it is important to know the temperature distribution of the semiconductor device during operation, especially the location of hot spots.

従来、半導体装置のホットスポットの観察装置として、
第1図に示すような半導体装置(1)上にフレステリッ
ク液晶の層(2)が形成され、これを偏光顕微鏡(8)
を介して観察するようにした装置は知られている。
Conventionally, as a hot spot observation device for semiconductor devices,
A layer of fristeric liquid crystal (2) is formed on a semiconductor device (1) as shown in Figure 1, and this is observed under a polarizing microscope (8).
Devices that allow observation through .

この装置はランプ(6)からの光を偏光子(4)にょっ
て偏光させ、ハーフ之チー(7)で光路を変えて対物レ
ンズ(8)を通過させ、半導体装置上のコレステリック
液晶層に入射させ、液晶表面で反射させて反射光を対物
レンズ、ハーフミラ−を介して検光子(5)に集めるよ
うにしたものである。この装置の動作原理は、第2図に
示すように、半導体装置表面のコレステリック液晶がホ
ットスポットにおいてはその温度上昇により相転移を起
し、コレステリック相(9)からイソトロピック相(至
)となる。ところで入射波(ロ)に対し、コレステリッ
ク相(9)では偏波面(11)が回転し、イツトaビッ
タ相に)では偏波面(ロ)が回転しないので、反射波(
ロ)は対物レンズ(8)、ハーフミラ−(7)を通り、
検光子(6)(第1図)にまではすべて到達するが、検
光子と偏光子とは偏波面が一致していないため、偏波面
が回転した光(コレステリック相における反射波)のみ
が検光子を通過できる。すなわち、偏波面が回転しない
イントロビック相(ロ)における反射波は検光子を通過
できないので、暗部として目にうつるのであり、その明
暗を観察することにより、ホットスポットを判別するの
である◇ しかしながらこの装置では、早導体装置上にコレステリ
ック液晶の均一な膜厚の層を形成させることが重要であ
るが、現在のところ均一な膜厚なうろことが困難である
ため不均一な膜厚にもとづく反射光の明暗を生じさせ、
この明暗がホットスポットとそうでない部分とにもとづ
く明暗に加わってホットスポットの判別精度を低下させ
るという欠点がある。
This device polarizes light from a lamp (6) using a polarizer (4), changes the optical path with a half-chip (7), passes it through an objective lens (8), and directs it to the cholesteric liquid crystal layer on the semiconductor device. The light is made incident, reflected by the liquid crystal surface, and the reflected light is collected on an analyzer (5) via an objective lens and a half mirror. The operating principle of this device is that, as shown in Figure 2, the cholesteric liquid crystal on the surface of the semiconductor device undergoes a phase transition at hot spots due to the temperature rise, changing from the cholesteric phase (9) to the isotropic phase (toward). . By the way, with respect to the incident wave (b), the plane of polarization (11) rotates in the cholesteric phase (9), and the plane of polarization (b) does not rotate in the a-bitter phase), so the reflected wave (
b) passes through the objective lens (8) and half mirror (7),
All of the light reaches the analyzer (6) (Figure 1), but since the polarization planes of the analyzer and polarizer do not match, only light with a rotated polarization plane (reflected waves in the cholesteric phase) is detected. Photons can pass through it. In other words, the reflected waves in the introbic phase (b), where the plane of polarization does not rotate, cannot pass through the analyzer, so they are seen as dark areas, and hot spots can be identified by observing their brightness. In the device, it is important to form a layer of cholesteric liquid crystal with a uniform thickness on the fast conductor device, but it is currently difficult to form a layer of cholesteric liquid crystal with a uniform thickness. Causes the brightness and darkness of the light,
There is a drawback that this brightness and darkness is added to the brightness and darkness based on hot spots and non-hot spots, and reduces hot spot discrimination accuracy.

本発明者〜は、上記の欠点を克服するために鋭意研究を
重ねた結果、強磁性体薄膜が表面に形成せられてなる半
導体装置とその磁化の変化を観察するマグネットビュワ
ーとからなる観察装置により、その目的を達成しうるこ
とを見出し、本発明を完成するにいたった。
As a result of intensive research to overcome the above-mentioned drawbacks, the inventors of the present invention have developed an observation device consisting of a semiconductor device having a ferromagnetic thin film formed on its surface and a magnet viewer for observing changes in its magnetization. The inventors discovered that the object could be achieved and completed the present invention.

以下、本発明の装置および動作原理を116〜4図に基
づいて説明する。
The apparatus and operating principle of the present invention will be explained below with reference to FIGS. 116-4.

本発明の観察装置は、第6図に示すように半導体装置参
〇、その上面に形成された強磁性体薄膜に)およびマグ
ネットビュワーーからなる。
The observation device of the present invention, as shown in FIG. 6, consists of a semiconductor device 〇, a ferromagnetic thin film formed on the top surface of the semiconductor device 〇, and a magnet viewer.

この装置においてホツFスボッ) (elm) ハ、+
 (’)キュリ一温度以上の温度が、あらかじめ磁界を
与えられて同一方向に配向させられたドメインの磁化(
ggb)をもつ強磁性体に作用して、磁化を局部的にじ
よう乱させその部分(JJa)の磁化率を低下させるの
で、マグネットビエワーに暗部となって現われ、ほかの
部分01b)との明暗の差として判別される(第4図)
In this device, (elm) Ha, +
(') A temperature of one Curie temperature or higher is the magnetization of domains that are oriented in the same direction by applying a magnetic field in advance (
It acts on the ferromagnetic material with 01b), slightly disturbs the magnetization locally, and lowers the magnetic susceptibility of that part (JJa), so it appears as a dark part in the magnet viewer and is different from other parts 01b). Distinguished as the difference in brightness (Figure 4)
.

なお、あらかじめ強磁性体薄膜に磁界を与えてドメイン
を同一方向に配向させるに際し、その方向は半導体装置
の基準水平線に対し垂直とすることが明暗の差を大きく
させる点で好ましい。
Note that when applying a magnetic field to the ferromagnetic thin film in advance to orient the domains in the same direction, it is preferable that the direction be perpendicular to the reference horizontal line of the semiconductor device in order to increase the difference in brightness and darkness.

本発明の装置において用いうる強磁性体としては、たと
えばガドリニウム、クレム・テルル合金、二[[Sクロ
ム、鉄、コバルト、ニッケル、フェライト、ケイ素鉄、
コバルト鋼、アルニコ、マグネ★イトなどがあげられ、
用いる強磁性体は半導体装置のホットネポットの温度と
強磁性体のキュリーi度との関係で適宜選択される。
Examples of ferromagnetic materials that can be used in the device of the present invention include gadolinium, Krem-tellurium alloy, di[[S chromium, iron, cobalt, nickel, ferrite, silicon iron,
Examples include cobalt steel, alnico, magnetite, etc.
The ferromagnetic material used is appropriately selected depending on the relationship between the hot pot temperature of the semiconductor device and the Curie degree of the ferromagnetic material.

半導体装置表面に形成する強磁性体薄膜の膜厚は、用い
る磁性体により適宜選択されるが通常0.5〜57aa
である。
The thickness of the ferromagnetic thin film formed on the surface of the semiconductor device is appropriately selected depending on the magnetic material used, but is usually 0.5 to 57 aa.
It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のホットスポット観察装置の概略説明図、
第2図は第1図に示す装置の動作原理説明図、第6図は
本発明の装置の概略断面図、第4図は本発明の装置の動
作原理説明図である。 (図面の主要符号) (1)、―I):半導体装置 に);強磁性体薄膜 (財);マグネットビ具ワー 代理人 葛 野 信 −(ほか1名)
Figure 1 is a schematic explanatory diagram of a conventional hot spot observation device.
2 is a diagram illustrating the operating principle of the apparatus shown in FIG. 1, FIG. 6 is a schematic sectional view of the apparatus of the present invention, and FIG. 4 is a diagram illustrating the operating principle of the apparatus of the present invention. (Main symbols in the drawings) (1), -I): For semiconductor devices); Ferromagnetic thin film (foundation); Magnet Brewer representative Shin Kuzuno - (1 other person)

Claims (1)

【特許請求の範囲】[Claims] (1)強磁性体薄膜が表面に形成せられてなる半導体装
置とその磁化の変化を観察するマダネットビュワーとか
らなる半導体装置のホットスポット観察装置。
(1) A hot spot observation device for a semiconductor device, which includes a semiconductor device having a ferromagnetic thin film formed on its surface and a madanet viewer for observing changes in magnetization of the semiconductor device.
JP6441282A 1982-04-15 1982-04-15 Viewer for hot spot of semiconductor device Granted JPS58180037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6441282A JPS58180037A (en) 1982-04-15 1982-04-15 Viewer for hot spot of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6441282A JPS58180037A (en) 1982-04-15 1982-04-15 Viewer for hot spot of semiconductor device

Publications (2)

Publication Number Publication Date
JPS58180037A true JPS58180037A (en) 1983-10-21
JPS6227742B2 JPS6227742B2 (en) 1987-06-16

Family

ID=13257550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6441282A Granted JPS58180037A (en) 1982-04-15 1982-04-15 Viewer for hot spot of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58180037A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9115264B2 (en) 2010-02-15 2015-08-25 Productive Research Llc Delamination resistant, weldable and formable light weight composites
US9233526B2 (en) 2012-08-03 2016-01-12 Productive Research Llc Composites having improved interlayer adhesion and methods thereof
US9239068B2 (en) 2009-12-28 2016-01-19 Productive Research Llc Processes for welding composite materials and articles therefrom
US9434134B2 (en) 2008-08-18 2016-09-06 Productive Research Llc Formable light weight composites

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211971A (en) * 1975-07-18 1977-01-29 Tohoku Metal Ind Ltd Sensible temperature magnetic material of noncontact temperature detection
JPS53111776A (en) * 1977-03-11 1978-09-29 Tohoku Metal Ind Ltd Surface temperature detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211971A (en) * 1975-07-18 1977-01-29 Tohoku Metal Ind Ltd Sensible temperature magnetic material of noncontact temperature detection
JPS53111776A (en) * 1977-03-11 1978-09-29 Tohoku Metal Ind Ltd Surface temperature detector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9434134B2 (en) 2008-08-18 2016-09-06 Productive Research Llc Formable light weight composites
US9889634B2 (en) 2008-08-18 2018-02-13 Productive Research Llc Formable light weight composites
US9239068B2 (en) 2009-12-28 2016-01-19 Productive Research Llc Processes for welding composite materials and articles therefrom
US9115264B2 (en) 2010-02-15 2015-08-25 Productive Research Llc Delamination resistant, weldable and formable light weight composites
US9415568B2 (en) 2010-02-15 2016-08-16 Productive Research Llc Formable light weight composite material systems and methods
US9981451B2 (en) 2010-02-15 2018-05-29 Productive Research Llc Delamination resistant, weldable and formable light weight composites
US10710338B2 (en) 2010-02-15 2020-07-14 Productive Research Llc Delamination resistant, weldable and formable light weight composites
US11331880B2 (en) 2010-02-15 2022-05-17 Productive Research Llc Delamination resistant, weldable and formable light weight composites
US9233526B2 (en) 2012-08-03 2016-01-12 Productive Research Llc Composites having improved interlayer adhesion and methods thereof

Also Published As

Publication number Publication date
JPS6227742B2 (en) 1987-06-16

Similar Documents

Publication Publication Date Title
US5053704A (en) Flow imager for conductive materials
Stupakiewicz et al. Direct imaging of the magnetization reversal in microwires using all-MOKE microscopy
Urs et al. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters-imaging spin waves and temperature distributions
JP2004093280A (en) Measuring device
US4755752A (en) Flaw imaging in ferrous and nonferrous materials using magneto-optic visualization
JPS6076650A (en) Method and device for detecting defect, void, discontinuous section, etc. in target body
US7265845B2 (en) Surface corrugation enhanced magneto-optical indicator film
JPS58180037A (en) Viewer for hot spot of semiconductor device
Schäfer et al. Magneto-optical microscopy
Prutton The observation of domain structure in magnetic thin films by means of the Kerr magneto-optic effect
CA2122264A1 (en) Bistable magneto-optic single crystal films and method of producing same utilizing controlled defect introduction
Pavlov et al. Linear and non-linear magneto-optical studies of Pt/Co/Pt thin films
US5565772A (en) High sensitivity magnetic viewer using anhysteretic transfer for viewing weak magnetic patterns
Vishnevskii et al. Magneto-optic eddy current introscopy based on garnet films
Cook et al. Magneto-optical stokes polarimetry and nanostructured magnetic materials
Schafer et al. Exploration of a new magnetization-gradient-related magnetooptical effect
US6593739B1 (en) Apparatus and method for measuring magnetization of surfaces
Dove et al. Kerr Effect and Bitter Pattern Measurements of Easy‐Axis Distributions in Uniaxial Permalloy Films
JPH02227655A (en) Method and device for magneto-optic flaw detection
Henry Bubble materials characterization using spatial filtering
Jimenez Implementation of Magneto Optical Kerr Effect Microscopy for the Observation of Magnetic Domain Structure in Thin Films
RU2177162C1 (en) Process of generation of optical image of magnetic field
JPH0735727A (en) Magnetooptic flaw detecting element
Khristosenko et al. Study of the properties of ferromagnetic films in a special physics laboratory course
RU2168193C2 (en) Magnetooptical converter, process of film growing, method of visualization of inhomogeneous magnetic field (versions) and device for its embodiment