JPS58180011A - Method of sheathing condenser - Google Patents

Method of sheathing condenser

Info

Publication number
JPS58180011A
JPS58180011A JP6178082A JP6178082A JPS58180011A JP S58180011 A JPS58180011 A JP S58180011A JP 6178082 A JP6178082 A JP 6178082A JP 6178082 A JP6178082 A JP 6178082A JP S58180011 A JPS58180011 A JP S58180011A
Authority
JP
Japan
Prior art keywords
resin
capacitor
powder coating
powder
dipping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6178082A
Other languages
Japanese (ja)
Inventor
下川 昌一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUWA DENKI KK
TOWA ELECTRIC
Original Assignee
TOUWA DENKI KK
TOWA ELECTRIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUWA DENKI KK, TOWA ELECTRIC filed Critical TOUWA DENKI KK
Priority to JP6178082A priority Critical patent/JPS58180011A/en
Publication of JPS58180011A publication Critical patent/JPS58180011A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は無誘導構造コンデンサの外装方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of packaging a non-inductive structure capacitor.

コンデンサの外装方法には、金属又は非金属ケースか非
金属外装がある。非金属外装には樹脂ディ、プ、粉体塗
装、キャスト、丑たけエンドンールを施し7た絶縁テー
プラップによる方法などがある。設備、材料費、作業性
の諸要素を総合して現在最も経済的なディ、ブ方法によ
るコンデンサが最も多く製作されている1゜コンデンサ
を外装する目的は外部との絶縁と外気を充分に遮断して
絶縁が完全に保護されることにβる。一方、端子に外装
用絶縁物が付着すれば外部回路と結線する場合接触不良
等の事故をおこすことになる。即ち外装は端子部には樹
脂等の付着がなく、素子には均一に樹脂が付着する必要
がある。現在最も多く用いられているディ、プ方法につ
いて説明すると、エポキシ樹脂や不飽和ポリエステル樹
脂にノリ力微粒子等を加えて、テキソトt1ヒ、り性を
もたせた液状樹脂にコンデンサ素1” k ?’y3 
L 、その後静かに引き上げると素子全面に樹111劫
・付着する。樹脂の付着を避けたい端子部分、通常リ−
1・線の引出部が硬化前の樹脂液に浸されたり、樹脂液
の付着のおそれのあるときは、予めンリコン樹脂やフッ
素樹脂等非接着性樹脂を極く蒲テ11−ド線の引出部に
塗布することによって樹脂7′ノ月着を防止することが
できる。
Capacitor packaging methods include metal or nonmetallic cases or nonmetallic packaging. Non-metallic exteriors include methods such as resin dipping, powder coating, casting, and insulating tape wrapping with Ushitake Endonol. The purpose of encasing a 1° capacitor is to insulate it from the outside and sufficiently block the outside air, which is currently the most economical way to manufacture capacitors by combining various factors such as equipment, material cost, and workability. This ensures that the insulation is completely protected. On the other hand, if the external insulating material adheres to the terminal, accidents such as poor contact may occur when connecting to an external circuit. That is, it is necessary for the exterior to have no resin or the like attached to the terminal portion, and for the resin to be attached uniformly to the element. To explain the dipping method that is most commonly used at present, the capacitor element is added to a liquid resin that is made by adding adhesive particles to epoxy resin or unsaturated polyester resin to give it tackiness. y3
L. Then, when it is gently pulled up, the tree adheres to the entire surface of the element for 111 kalpas. Terminal areas where you want to avoid resin adhesion, usually lead
1. If the wire lead-out part is immersed in uncured resin liquid or there is a risk of resin liquid adhering to it, cover it with non-adhesive resin such as adhesive resin or fluororesin beforehand. By applying the resin to the area, it is possible to prevent the resin 7' from getting wet.

、l’j 2図に示す素子の外側が絶縁物で形成される
側面に金属部分や角のない誘導構造のコンデンサは上記
のディ、プ方法で支障はないが、第4図に示す素子の外
側に電極である金属部分を有し且つ角や突起のあるメタ
ライズドフィルムコンデンサのような無誘導構造のコン
デンサは均一な塗膜をつくることは困難である。
, l'j There is no problem with the above dipping method for a capacitor with an inductive structure where the outside of the element shown in Figure 2 is made of an insulating material and has no metal parts or corners on the side, but the element shown in Figure 4 has no problem with the dipping method described above. It is difficult to form a uniform coating on capacitors with a non-inductive structure, such as metallized film capacitors, which have metal parts serving as electrodes on the outside and have corners and protrusions.

図面によって説明すれば第1図は誘導構造のフィルムコ
ンデンサの外観図であり、第2図はそのA−A矢視断面
図である。1はフィルムと電極を交仔に重ねて捲取られ
た素子であり外側は絶縁物であるフィルムからなってい
る。2はリード線、3はディ、プされた樹脂である。素
子1の外側は角がないため樹脂は素子の回りにほぼ均一
に付着する。
To explain with reference to the drawings, FIG. 1 is an external view of a film capacitor having an inductive structure, and FIG. 2 is a cross-sectional view taken along the line A--A. Reference numeral 1 denotes an element in which a film and an electrode are overlapped and rolled up, and the outside is made of an insulating film. 2 is a lead wire, and 3 is a dipped resin. Since there are no corners on the outside of the element 1, the resin adheres almost uniformly around the element.

第3図は無誘導構造のメタライズドフィルムコンデンサ
の外観図であり、第4図はそのA−A矢視断面図である
。4はメタライズドフィルム、5は亜鉛や半田等をメタ
リコンによって吹付けた金属、6はリード線、7はディ
、ブされた樹脂である。素子の外側にはメタリコンやリ
ード線6の金属があり、又Bのような角部がある。その
ため樹脂は角部Bが平面部Cに比べて極めて薄くなり、
例えば平面部Cの厚さ0.2+mnに対して角部の厚さ
は0.1 mm以下になり外部との絶縁は不完全である
FIG. 3 is an external view of a non-inductive metallized film capacitor, and FIG. 4 is a cross-sectional view taken along the line A--A. 4 is a metallized film, 5 is a metal sprayed with zinc, solder, or the like using metallicon, 6 is a lead wire, and 7 is a resin that has been debossed. On the outside of the element, there is metal such as metal contactor and lead wire 6, and there are also corner parts as shown in B. Therefore, the corner part B of the resin becomes extremely thin compared to the flat part C,
For example, while the thickness of the flat portion C is 0.2+mm, the thickness of the corner portion is less than 0.1 mm, and insulation from the outside is incomplete.

このだめディップ樹脂を厚く塗布すれば、樹脂は下部に
垂れが生じ外観を損なうので、ディップと熱硬化を数回
繰り返し行うことによって垂れを少くし外部との絶縁を
完全にすることができるが、寸法か大きくなり且つ工数
がかかるという欠点がある。粉体塗装方法は種々の特徴
の中で角や突起部分も極めて良好に被覆ができ且つ垂れ
が生じないという長所がある。反面、全面を被覆するに
は薄く塗布できないという欠点をもっている。粉体塗装
ゆより−C被覆jゎえ無誘導構造i 77’ 、/ヶ。
If this dip-dip resin is applied thickly, the resin will sag at the bottom and spoil the appearance, so by repeating dipping and heat curing several times, it is possible to reduce the sagging and perfect the insulation from the outside. It has the drawbacks of being large in size and requiring a lot of man-hours. Among various features, the powder coating method has the advantage that even corners and protrusions can be coated very well and no sagging occurs. On the other hand, it has the disadvantage that it cannot be applied thinly to cover the entire surface. Powder coating Yuyori-C coating JゎE non-inductive structure I 77'/month.

外観図を第5図に示す。第6図はそのA−A矢視断面図
である。角部Bは粉体樹脂によって他の部分とほぼ同じ
厚さに覆われ外部との絶縁を完全にすることができる。
An external view is shown in Figure 5. FIG. 6 is a sectional view taken along the line A-A. The corner B is covered with powder resin to approximately the same thickness as the other parts, and can be completely insulated from the outside.

粉体塗装をコンデンサに施す場合にあと一つの欠点とし
て樹脂がリード線の引出し部に付着する問題がある。コ
ンデンサの素子のリード線間部分、第5図のD部分を塗
布するにはD部分が粉体流動層の中に浸されなければな
らない。素子の厚さによって異るが素子上部より1〜3
間深く粉体流動槽内に浸す必要がある。出来上ったコン
デンサは第5図の外観図に示すように、リード線6の引
出し部に樹脂8が余分に付着する。
Another drawback when applying powder coating to a capacitor is that resin adheres to the lead-out portion of the lead wire. To coat the part between the leads of the capacitor element, part D in FIG. 5, part D must be immersed in the powder fluidized bed. 1 to 3 times from the top of the element, depending on the thickness of the element
It is necessary to deeply immerse the powder in a fluidized powder bath. As shown in the external view of FIG. 5, the completed capacitor has excess resin 8 attached to the lead-out portion of the lead wire 6.

粉体塗装の場合は液状樹脂のディップと異って、予めリ
ード線の引出部にシリコン樹脂やフッ素樹脂等非粘着性
樹脂を塗布しても樹脂の付着を防止することはできない
。リード線の引出部に樹脂8が付着していると、コンデ
ンサをプリント基板に取付ける際、基板の穴に樹脂8が
入り半田付けが不完全になったり、完全な半田付けがで
きるようコンデンサをプリント基板より間隔をとって取
り付けるために余分な空間を要するなどの不都合を生じ
る。
In the case of powder coating, unlike liquid resin dipping, it is not possible to prevent resin from adhering even if a non-adhesive resin such as silicone resin or fluororesin is applied to the lead wire lead-out portion in advance. If resin 8 is attached to the lead wire lead-out part, when attaching the capacitor to the printed circuit board, the resin 8 may enter the hole in the board and the soldering may be incomplete, or the capacitor may be printed to ensure perfect soldering. This causes inconveniences such as requiring extra space because it is mounted at a distance from the substrate.

本発明は粉体塗装の長所と液状樹脂ディップの長所を活
かしたコンデンサの外装方法であり以下に詐、明する。
The present invention is a capacitor exterior packaging method that takes advantage of the advantages of powder coating and liquid resin dipping, and will be explained in detail below.

リード線の引出部をシリコン樹脂やフ、素樹脂等の非接
着性樹脂にて極く薄く塗布した無誘導型コンデンサ素子
を予熱し、粉体流動槽内に素子がほぼ浸される程度に入
れて粉体塗装全行う。この後、粉体塗装されたコンデン
サ素子を液状樹脂ディップ槽内に素子が完全に浸される
まで入れ、槽より静かに引上げた後加熱硬化させる。
Preheat a non-inductive capacitor element whose lead wires are coated with a very thin layer of non-adhesive resin such as silicone resin, plastic resin, etc., and place it in a powder fluidization tank to the extent that the element is almost immersed. Perform all powder coating. Thereafter, the powder-coated capacitor element is placed in a liquid resin dipping tank until it is completely immersed, and after being gently pulled out of the tank, it is heated and cured.

第7図に本発明で外装をした無誘導構造コンデンサの外
観図と第8図に八−A矢視断面図を示す。
FIG. 7 shows an external view of a non-inductive structure capacitor equipped with an exterior according to the present invention, and FIG. 8 shows a sectional view taken along the line 8-A.

リード線引出部は粉体樹脂槽に浸されないので粉体樹脂
は付着しない。また、第7図り部分も粉体樹脂は殆んど
塗布されない。第8図のメタリコン5およびリード線6
の金属部分は角や突起も含めて粉体樹脂で被覆される。
Since the lead wire extraction portion is not immersed in the powder resin tank, powder resin does not adhere to it. In addition, almost no powder resin is applied to the seventh cut portion. Metallicon 5 and lead wire 6 in Fig. 8
The metal parts, including corners and protrusions, are coated with powdered resin.

金属部分は素子内部の熱が伝導して表面に伝わるので絶
縁物部分よりも厚く粉体樹脂が付着する傾向がある。素
子の金属部分は外部との絶縁が要求されるので、上記の
傾向は無誘導構造コンデンサにとって有用な効果である
。液状樹脂ディップは粉体塗装の上に施すので素子に直
接ディップするよりも金属部分における付着性がよくな
り、全体的に均一に塗布される。
Since heat inside the element is conducted to the metal part and transferred to the surface, the powder resin tends to adhere to the metal part more thickly than the insulating part. The above trend is a useful effect for non-inductive structure capacitors since the metal parts of the device are required to be insulated from the outside. Since the liquid resin dip is applied on top of the powder coating, it has better adhesion on the metal parts than dipping directly onto the element, and is applied evenly over the entire surface.

液状樹脂が均一に塗布されるため樹脂を薄く施せばよい
ので垂れの発生が少い結果が得られる。液状樹脂ディッ
プ工程で素子を液状樹脂ディ、ブ槽から引上げて熱硬化
させる際、リード線を下方にして熱硬化をさせれば、液
状樹脂は第7図り部にやや厚く塗布される傾向があるの
で、粉体塗装が殆んど施されないD部分は合計の樹脂の
厚さが他の部分の厚さとほぼ同じ厚さになり、外装の樹
脂層の全体の厚さの均一性を向上させることができる。
Since the liquid resin is applied uniformly, the resin can be applied thinly, resulting in less dripping. During the liquid resin dipping process, when the device is pulled up from the liquid resin dipping tank and heat cured, if the lead wires are placed downwards and heat cured, the liquid resin tends to be applied a little thickly to the seventh dipping area. Therefore, the total resin thickness in the D part, where powder coating is hardly applied, is almost the same as the other parts, improving the uniformity of the overall thickness of the exterior resin layer. I can do it.

無誘導構造コンデンサの外装樹脂の厚さは素子の大きさ
や樹脂の種類、作業条件によって異るが比較のだめ一例
を示すと次の通りである。液状樹脂ディップのみの場合
約04朝、粉体塗装のみの場合約0.4+nM、本発明
による場合約0.3順で粉体塗装と液状樹脂ディップは
それぞれ約0.15mである。本発明によって外装した
結果を第8図により説明すれば、素子は外側のメタリコ
ン5や1,1−ド線6は角部や突起部を含めて粉体樹脂
10で被覆され、その外部を液状樹脂でディ、プした後
熱硬化させた樹脂11で被覆され完全に外部と絶縁され
る。
The thickness of the exterior resin of a non-inductive structure capacitor varies depending on the size of the element, the type of resin, and working conditions, but an example for comparison is as follows. In the case of only liquid resin dip, it is about 0.4 m, in the case of powder coating only, about 0.4 + nM, and in the case of the present invention, about 0.3 m, and the powder coating and liquid resin dip are each about 0.15 m. The result of packaging according to the present invention will be explained with reference to FIG. 8. In the device, the outer metallic compound 5 and the 1,1-wire 6, including the corners and protrusions, are covered with a powdered resin 10, and the outside is covered with a liquid resin. After being dipped in resin, it is covered with thermoset resin 11 and is completely insulated from the outside.

コンデンサを外気から遮断し絶縁の保護を完全にするた
めと外装の表面に素子内部からの気泡によるピンホール
の発生を押えるために、素子をフィラーの入らない液状
樹脂を減圧下で含浸させた鴫 後熱硬化させる所謂下塗りを行うことがある。下塗りに
よって表面に塗布される樹脂の厚さは0.1胴以下であ
るので、この上に粉体塗装を施す場合には金属部分に粉
体樹脂が厚く塗布される傾向に変りはない。従って、下
塗り後に本発明の粉体塗装並びに液状樹脂ディップを施
す方法もある。この場合には下塗りの熱硬化と粉体塗装
の予熱との工程を兼ねることができる。
The element is impregnated with filler-free liquid resin under reduced pressure in order to completely protect the insulation by isolating the capacitor from the outside air and to prevent pinholes from forming on the exterior surface due to air bubbles from inside the element. A so-called undercoat, which is then thermally cured, may be applied. Since the thickness of the resin applied to the surface by undercoating is 0.1 mm or less, when powder coating is applied on top of this, there is no change in the tendency for the powder resin to be applied thickly to the metal parts. Therefore, there is also a method of applying the powder coating of the present invention and liquid resin dip after undercoating. In this case, the process can serve as both the thermal curing of the undercoat and the preheating of the powder coating.

3μのポリエチレンテレフタレートフィルムにアルミニ
ウムを蒸着したメタライズドフィルムを用イテ製作した
1μFのメタライズドフィルムコンデンサの素子を、下
塗りを施した後液状樹脂ディップ、粉体塗装、本発明そ
れぞれの方法によって各1000個を製作した。外装樹
脂の厚さは本発明の場合は約0.3 mm 、他の二つ
場合は約0.4解である。液状樹脂ディ、プの場合、外
観不良が34個で不良原因は垂れによる寸法不良が大半
であった。粉体塗装の場合、外観不良が76個で不良原
因はピンホールによる不良が大半であった。本発明によ
る場合は、外観不良は3個のピンホール不良のみであっ
た。また、それぞれ10個を抜取り温度40℃、相対湿
度95%、1000時間の耐湿試験を行った結果、全数
30000MΩ以上であり、1Ijt湿性についての優
良な結果が得られた。
A 1 μF metallized film capacitor element was fabricated using a metalized film made by vapor-depositing aluminum on a 3 μ polyethylene terephthalate film, and after applying an undercoat, 1000 pieces of each were manufactured using liquid resin dipping, powder coating, and each method of the present invention. did. The thickness of the exterior resin is about 0.3 mm in the case of the present invention, and about 0.4 mm in the other two cases. In the case of liquid resin dip, there were 34 appearance defects, and the majority of the defects were due to dimensional defects due to sagging. In the case of powder coating, there were 76 defects in appearance, and most of the defects were caused by pinholes. In the case of the present invention, the appearance defects were only three pinhole defects. In addition, 10 pieces of each were sampled and subjected to a 1,000-hour humidity test at a temperature of 40° C. and a relative humidity of 95%. As a result, the resistance of all samples was 30,000 MΩ or more, and excellent results regarding 1Ijt humidity were obtained.

上記の如く、本発明によれば品質の安定した無誘導構造
のコンデンサの外装を少滴りよく経済的に製作すること
ができる。
As described above, according to the present invention, the exterior of a capacitor with stable quality and non-inductive structure can be manufactured economically with little dripping.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を説明するだめのもので、第1図は従来の誘
導構造コンデンサの外観図、第2図はその断面図、第3
図は従来の液状樹脂ディップにて外装された無誘導構造
コンデンサの外観図、第4図はその断面図、第5図は従
来の粉体塗装にて外装された無誘導構造コンデンサの外
観図、第6図はその断面図、第7図は本発明による無誘
導構造のコンデンサの外観図、第8図はその断面図であ
る。 特許出願人 東和電気株式会社 第2図 第4図
The figures are only for explaining the present invention; Fig. 1 is an external view of a conventional inductive structure capacitor, Fig. 2 is a sectional view thereof, and Fig. 3 is a sectional view of the conventional inductive structure capacitor.
The figure is an external view of a non-inductive structure capacitor coated with a conventional liquid resin dip, FIG. 4 is a cross-sectional view thereof, and FIG. FIG. 6 is a sectional view thereof, FIG. 7 is an external view of a non-inductive structure capacitor according to the present invention, and FIG. 8 is a sectional view thereof. Patent applicant: Towa Electric Co., Ltd. Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 無誘導構造のコンデンサのリード線の引出部に非接着性
樹脂を塗布した後粉体塗装を施し再に液状樹脂をディ、
ブすることを特徴とするコンデンサの外装方法1.
After applying non-adhesive resin to the lead wire of a capacitor with a non-inductive structure, powder coating is applied, and then liquid resin is applied again.
Method for packaging a capacitor characterized by coating 1.
JP6178082A 1982-04-15 1982-04-15 Method of sheathing condenser Pending JPS58180011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6178082A JPS58180011A (en) 1982-04-15 1982-04-15 Method of sheathing condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6178082A JPS58180011A (en) 1982-04-15 1982-04-15 Method of sheathing condenser

Publications (1)

Publication Number Publication Date
JPS58180011A true JPS58180011A (en) 1983-10-21

Family

ID=13180942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6178082A Pending JPS58180011A (en) 1982-04-15 1982-04-15 Method of sheathing condenser

Country Status (1)

Country Link
JP (1) JPS58180011A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339942A (en) * 1995-06-09 1996-12-24 Nec Kansai Ltd Electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339942A (en) * 1995-06-09 1996-12-24 Nec Kansai Ltd Electronic component

Similar Documents

Publication Publication Date Title
JP2005260227A5 (en)
US4528748A (en) Method for fabricating a printed circuit board of desired shape
US4168520A (en) Monolithic ceramic capacitor with free-flowed protective coating and method for making same
JPH0821519B2 (en) Chip type solid electrolytic capacitor and manufacturing method thereof
JPS58180011A (en) Method of sheathing condenser
US2160646A (en) Electric condenser
US2871428A (en) Construction of electric circuits
JPS6129135B2 (en)
JPH0246025Y2 (en)
JPS6360597A (en) Resin sealing of electronuc parts
JPH0260208B2 (en)
JPS6146145A (en) Insulating method of field coil
JPS5858806B2 (en) How to package electronic parts
JPS6025875Y2 (en) inductance circuit components
JPS62147719A (en) Manufacture of chip-type film capacitor
JPS6144436Y2 (en)
JPH0249697Y2 (en)
JPS5930531Y2 (en) Aluminum wet electrolytic capacitor mounting device
JPS6337488B2 (en)
JPS6022606Y2 (en) cylindrical chip capacitor
JPH0328501Y2 (en)
US3231960A (en) Process for making electrical components and components made thereby
JPH0249698Y2 (en)
JPS6158224A (en) Electric device and method of producing same
JPS6333444Y2 (en)