JPS58178808A - Control system for coal gasification composite power generating facility - Google Patents

Control system for coal gasification composite power generating facility

Info

Publication number
JPS58178808A
JPS58178808A JP6107082A JP6107082A JPS58178808A JP S58178808 A JPS58178808 A JP S58178808A JP 6107082 A JP6107082 A JP 6107082A JP 6107082 A JP6107082 A JP 6107082A JP S58178808 A JPS58178808 A JP S58178808A
Authority
JP
Japan
Prior art keywords
gas
power generation
equipment
fuel
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6107082A
Other languages
Japanese (ja)
Inventor
Kenjiro Kumamoto
熊本 健二郎
Sadanori Shintani
新谷 定則
Tatsujiro Ishida
石田 龍二郎
Kuniaki Ozawa
小沢 邦昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6107082A priority Critical patent/JPS58178808A/en
Publication of JPS58178808A publication Critical patent/JPS58178808A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve the efficiency of sub-combustion of a sub-combustion burner even in case of the decreased temperature of gas turbine exhaust gas by a method wherein the rate of distribution of fuel gas to the gas turbine power generating facility and the sub-combustion burner is varied when the calory or flow rate of fuel gas is varied or when a partial load is applied. CONSTITUTION:A steam turbine power generating facility 5 is composed of a pluality of systems of a gas turbine power generating facility 3, sub-combustion burner 14 and waste heat recovery boiler facility 4, respectively. Purified gas 11 is divided into parts 11a and 11b with a distribution control device 20 and then supplied to the gas turbine facility 3 and the sub-combustion burner 14. Under a partial excessive load of the steam turbine, much more volume of fuel is supplied to the sub-combustion burner to keep a combustion gas temperature which is approximate to that of the designed value. The corresponding gas turbine is operated as a blower fan for the boiler. Thereby, it is possibl to improve an efficiency even in case of a partial loading of the gas turbine when a calory or rate of flow of the gas fuel is varied.

Description

【発明の詳細な説明】 本発明は石炭ガス化複合発電設備の運転方式に係り、特
に部分負荷時の効率改善に好適な石炭ガス化複合発!設
備の運転方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an operating method for a coal gasification combined cycle power generation facility, and is particularly suitable for improving efficiency during partial loads. Regarding the operating method of equipment.

第1図には従来の石炭ガス化複合発電設備のブロック構
成金示す。原料である石炭7は、酸化剤である空気8を
ガスタービン発電設備3より抽気により得てガス化さ扛
る。場合によって、酸化剤は付属する酸素発生設備6に
より得ら扛る酸素9とすることもでき、かつ必要に応じ
てここでは示さない蒸気も供給妊れる。ガス化炉設備1
から出る粗ガス10は、石炭中の硫黄から生じる硫黄化
合物や灰分や未燃炭素から成る媒塵金保有するので、引
き続く冷却精製設備2により、清浄化される。これを出
た精製ガス11は、ガスタービン発電設備3へ供給さn
1発発電性なう。ガスタービン発電設備3のみでは、理
論的に効率の限界があるので、約500Cの排気ガス1
2は直接、排熱回収ボイラ設備4に導か扛、蒸気13を
得る。この蒸気により蒸気タービン発電設備5を駆動し
て、全体として通常の汽力発電設備と同等か、こ扛以上
の効率會得ることができる。現状では、耐熱材料の強度
と高温部材の冷却力法の限界から、ガスタービン発電設
備3から排出される排気ガス12の温度は550Cを超
えることはない。−万、蒸気タービン発電設備5は、使
用できる蒸気条件(圧力および温度)が向上すγLば、
より高効率となることが知ら扛ている。しかし、ガスタ
ービン発電設備3の制約から、この′f、筐では、複合
発電設備としての効率向上は望めない。第2図には、燃
料の類例全問わないが、ガスタービン発電設備3と排熱
回収ボイラ設備4の間に、助燃バーナ14を設けて、ガ
スタービン発電設備3からの排気ガス1210温して、
より高温の燃焼ガス18會得、蒸気条件改善を図った、
在米の抜合発電設イIs ノブロック構成に示f(US
 P 3.443.5bo−Q参照)。在米の燃料(灯
油または天然ガス)にあっては、燃料の発熱量が高く、
七扛故に、ガスタービン発電設備3の吸入する空気15
に対して、少ない(約2%)ftが供給されるので排気
ガス12の流量増加はわずかでめった。このような場合
の助燃は、むしろ効率の低Tをきたし、ただ、出力の増
加のみが利点とさnた。それ故、在来の助燃は、ガスタ
ービン発電設備3の排気ガス12の温度が著しく低く、
燃料が安価で、かつ容易に出力の増加を図ることができ
る場合にのみ採用さ0たことがあった。葦た、公知例U
 S P3879616号の如く蒸気タービンの応答性
向上を計る場合にも利用σ扛たことがあった。現在より
も、ガスタービンに使用で扛る高温材料の耐熱性の充分
でない時代には、タービン入ロ温度ヲ烏<とることがで
きなかった。このため、ガスタービンの排気温度も低く
、複合発電設備の蒸気条件は充分に高いものに出来ず、
ガスタービンと蒸気タービンにより発生しうる発電力は
低力・つた。しかし、このような複合発電設備は、比較
的容易に設置することができ、同級出力の汽力発電設備
より負荷追従性が高く、それなりの魅力を持っていた。
Figure 1 shows the block composition of a conventional coal gasification combined cycle facility. Coal 7, which is a raw material, is gasified by extracting air 8, which is an oxidizing agent, from gas turbine power generation equipment 3. In some cases, the oxidizing agent may be oxygen 9 obtained from the attached oxygen generating equipment 6, and steam, not shown here, may also be supplied as required. Gasifier equipment 1
The crude gas 10 emitted from the coal contains sulfur compounds generated from sulfur in the coal, ash, and dust particles composed of unburned carbon, and is therefore purified by the subsequent cooling and purification equipment 2. The purified gas 11 that exits this is supplied to the gas turbine power generation equipment 3.
One shot power generation now. Since there is a theoretical efficiency limit with only the gas turbine power generation equipment 3, the exhaust gas 1 of approximately 500C
2 is directly led to the exhaust heat recovery boiler equipment 4 to obtain steam 13. This steam drives the steam turbine power generation equipment 5, and as a whole, it is possible to obtain efficiency equal to or greater than that of ordinary steam power generation equipment. At present, the temperature of the exhaust gas 12 discharged from the gas turbine power generation equipment 3 does not exceed 550C due to the strength of heat-resistant materials and the limits of cooling power methods for high-temperature members. - If the usable steam conditions (pressure and temperature) of the steam turbine power generation equipment 5 improve,
It is known that it is more efficient. However, due to the limitations of the gas turbine power generation equipment 3, this 'f case cannot be expected to improve efficiency as a combined power generation equipment. In FIG. 2, an auxiliary combustion burner 14 is provided between the gas turbine power generation equipment 3 and the exhaust heat recovery boiler equipment 4, and the exhaust gas from the gas turbine power generation equipment 3 is heated to 1210°C, regardless of the type of fuel used. ,
Achieved higher temperature combustion gas18 and improved steam conditions.
The U.S.-based Nukigo power plant is shown in the Knoblock configuration (U.S.
(See P 3.443.5bo-Q). The fuel used in the United States (kerosene or natural gas) has a high calorific value;
Air 15 taken into the gas turbine power generation equipment 3 due to the
On the other hand, since a small amount (approximately 2%) of ft is supplied, the increase in the flow rate of the exhaust gas 12 is small and rare. In such a case, auxiliary combustion would rather result in a low T efficiency, and the only advantage would be an increase in output. Therefore, with conventional auxiliary combustion, the temperature of the exhaust gas 12 of the gas turbine power generation equipment 3 is extremely low.
It has been used only when fuel is cheap and output can be easily increased. Reed, known example U
σ has also been used to improve the response of a steam turbine, as in SP3879616. Back in the day, when the heat resistance of the high-temperature materials used in gas turbines was less than that of today, it was not possible to maintain the temperature at the turbine entrance. For this reason, the exhaust temperature of the gas turbine is also low, and the steam conditions of the combined cycle power generation equipment cannot be made high enough.
The electrical power that can be generated by gas turbines and steam turbines is low power. However, such combined power generation facilities were relatively easy to install, had better load followability than steam power generation facilities of the same output, and had a certain appeal.

電力供給量の不足を補うために、このような助燃バーナ
を有する設備が採用さ扛た理由がある。助燃バーナで達
成する高温ガスの温度(すなわち、燃料の量と蒸気条件
)は、目的とする出力、効率、設備量等全勘案して選ば
れるが、本格的な汽力発電設備以上に魅力あるものでは
なかった。
There is a reason why equipment with such an auxiliary burner was adopted in order to compensate for the shortage of electric power supply. The temperature of the high-temperature gas (that is, the amount of fuel and steam conditions) achieved by the auxiliary combustion burner is selected by taking into consideration all factors such as the target output, efficiency, amount of equipment, etc., but it is more attractive than full-scale steam power generation equipment. It wasn't.

−万、石炭は本来産炭地および賦在する炭層によって、
組成の変動がかなり太きい。そ扛故に、こnをガス化し
た燃料は、供給石炭量とこ扛に加えら扛る酸化剤(空気
または酸素)と必要に応じ加えら扛る蒸気の比率量を一
定に保っても、発熱量−?流量が変動する。さらに固有
の水分、灰分およびガスとなる水素、炭素の重量比率が
変動するため、石炭の量にはこnらを全て含むからこの
供給量に対して、添加剤の比を決めても流量や発熱量は
変動する。−万で、発電設備は、要求さ扛る負荷′亀力
量金供給す扛ば艮く、ある決められた設定値に合わせる
よう制御さ扛なけ扛ばならない。
-10,000, coal is originally produced in coal-producing areas and coal seams.
There is considerable variation in composition. Therefore, even if the amount of coal supplied, the oxidizing agent (air or oxygen) added to the coal, and the steam added as necessary are kept constant, the fuel produced by gasifying this nitrogen will generate less heat. Quantity-? Flow rate fluctuates. Furthermore, since the weight ratio of inherent moisture, ash, hydrogen and carbon that become gases fluctuates, the amount of coal includes all of these, so even if you decide the ratio of additives to this supply amount, the flow rate will vary. The amount of heat generated fluctuates. In most cases, the power generation equipment must be controlled to meet a certain predetermined set point in order to supply the required load.

そこで、発熱量や流量が変動したとか、発電量には過不
足音生じることになる。不足するときは、供給石炭量と
そ扛に伴なう供給物質全増量してセリ、過剰な場合にこ
れらを減緻すtば良い訳であるが、ガス化設備と冷却精
製設備は、化学的操作を含むのでその負荷応答性は充分
に高くない。また排熱回収ボイラ設備によって供給量n
る蒸気は、熱量のホールドアツプによって、応答に遅延
を生じる。この甲で燃料の発熱量や流量の変動に急速に
応答しつるのは、ガスタービン発wL設備のみでおる。
Therefore, the amount of heat generated or the flow rate fluctuates, or the amount of power generated is over or under. If there is a shortage, all you have to do is increase the amount of coal supplied and all the materials to be supplied, and if there is an excess, all you have to do is thin them out, but gasification equipment and cooling purification equipment Since it involves manual operation, its load response is not sufficiently high. In addition, the exhaust heat recovery boiler equipment supplies n
The steam generated in the process causes a delay in response due to the hold-up of heat. Only gas turbine-generated WL equipment can respond rapidly to changes in the calorific value and flow rate of the fuel.

しかしながら、ガスタービン発電設備は、メービン入口
温度の制限があり、過剰な燃料を消費して電力に変換す
ることはできない。燃料の発熱量が流量が増大した時、
系統内の圧力を上昇させ扛ば、ガスタービンに供給され
る燃料全減少した1筐で出力會一定に保持することがで
きるが、ある限界以上は不可能である。逆も又成立する
However, gas turbine power generation equipment is limited by the mabin inlet temperature and cannot consume excess fuel and convert it into electricity. When the calorific value of the fuel increases,
If the pressure in the system is increased, the output power can be kept constant with one casing that reduces the total amount of fuel supplied to the gas turbine, but this is not possible above a certain limit. The reverse is also true.

本発明の目的は、石炭ガス化複合発電設備にあって、ガ
ス燃料の発熱量や流量の変動時、ガスタービンの部分負
荷時などにおいても排気ガスの温度低下などによる蒸気
タービンの効率劣化を防止し部分負荷効率の改善を図り
Pfr足の負荷出力を維持しようとするものである。
An object of the present invention is to prevent deterioration of efficiency of a steam turbine due to a drop in exhaust gas temperature, etc., in a coal gasification combined cycle power generation facility, even when the calorific value or flow rate of gas fuel fluctuates, or when the gas turbine is under partial load. The purpose is to improve partial load efficiency and maintain load output at Pfr.

この目的を達成するため本発明においては、ガス燃料の
発熱量やIN、量の変動時、部分負荷時などにガスター
ビン発電設備と助燃バーナへのガス燃料の配分を変えて
、たとえばガスタービン排気ガス温度が低下しても助燃
バーナの助燃率を上げることにより対応できるようにし
た点に特徴がある。
In order to achieve this objective, the present invention changes the distribution of gas fuel to the gas turbine power generation equipment and the auxiliary burner when the calorific value, IN, or amount of the gas fuel fluctuates, or when there is a partial load. The feature is that even if the gas temperature decreases, it can be handled by increasing the auxiliary combustion rate of the auxiliary combustion burner.

以下、実施例にもとづき本発明の詳細な説明する。Hereinafter, the present invention will be described in detail based on Examples.

第3図には、本発明全適用した石炭ガス化複合発電設備
の第1の実施例のブロック構成金示す。
FIG. 3 shows a block diagram of a first embodiment of a combined coal gasification combined power generation facility to which the present invention is fully applied.

ガスタービン発電設備3と排熱回収ボイラ設備4とその
中間に設置さ′nた助燃ノ仁−す14は、第3図では3
系列示さγしているが、2基列以上であ扛は良い。−万
、ガス化炉設備1と冷却精製設備2とは、必すしも3基
列でおる必要はない。壕だ蒸気タービン発電設備5は複
数系列のガスタービン発電設備3、助燃バーナ14と排
熱回収ボイラ設備4に対して1基の割合で構成δ扛る。
In FIG.
Although the series is shown as γ, it is good to use two or more bases in a row. - It is not necessary that the gasification furnace equipment 1 and the cooling purification equipment 2 are arranged in a row of three units. The trenched steam turbine power generation equipment 5 is configured such that one unit is provided for each of the multiple series of gas turbine power generation equipment 3, auxiliary combustion burner 14, and exhaust heat recovery boiler equipment 4.

さら1楕製ガス11は配分制御装置20でllaとll
bに分けらn1ガスタ一ビン発電設備3と助燃バーナ1
4に供給さする。本発明の目的からは、望筐しくは、助
燃バーナ14は常時作動しており、蒸気条件は良いもの
とする。
Further, the elliptical gas 11 is divided into lla and ll by the distribution control device 20.
Divided into b: n1 gas turbine, power generation equipment 3 and auxiliary burner 1
4. For the purpose of the present invention, it is preferable that the auxiliary burner 14 is always in operation and that the steam conditions are good.

ここでガスタービン発電設備3は流体機械として、無負
荷から全負荷1でほとんど吸込全気量は変化しない特性
があり、かつ石炭ガスのように、発熱量の低いガスを燃
料とする場合は、天然ガスのような高発熱量燃料に比較
するとほとんど1桁程度多い燃料流量を必要とする。
Here, the gas turbine power generation equipment 3 is a fluid machine, and has the characteristic that the total intake air volume hardly changes from no load to full load 1, and when using gas with a low calorific value such as coal gas as fuel, Compared to high calorific value fuels such as natural gas, it requires almost an order of magnitude more fuel flow rate.

羨合発′醒設備の部分負荷運転方式は、第3図に示すよ
うな構成では、全ガスタービンの出力を減少させ、これ
に伴なって排気ガス温度が低下するので、蒸気発生量も
減少かつ蒸気条件も低下することにより全体として出力
が減る場合と、一部台数のガスタービンを停止させるか
、無負荷とすることにより出力全減少させる場合とがあ
る。ここで注意すべき点は、排熱回収ボイラ4以降の、
蒸気系には熱容量に基すく応答遅扛が大きく、かつ蒸気
タービン特に第3図において用いられる大型の蒸気ター
ビンは、急激な温度変動を許さない強度上の制約がある
ことである。このような特性も考慮して、蒸気タービン
の著しい部分負荷による性能劣化を補うため、助燃バー
ナへ燃料をより多く供給し、設計点に近い燃焼ガス温度
全保持する。
In the configuration shown in Figure 3, the partial load operation method of the engine startup equipment reduces the output of all gas turbines, and as a result, the exhaust gas temperature decreases, so the amount of steam generated also decreases. In addition, there are cases in which the overall output is reduced due to lower steam conditions, and cases in which the total output is reduced by stopping some of the gas turbines or making them unloaded. The point to note here is that after exhaust heat recovery boiler 4,
The steam system has a large response delay based on its heat capacity, and the steam turbine, especially the large steam turbine used in FIG. 3, has strength constraints that do not allow sudden temperature fluctuations. Taking these characteristics into consideration, in order to compensate for the performance deterioration caused by the significant partial load of the steam turbine, more fuel is supplied to the auxiliary combustion burner to maintain the combustion gas temperature close to the design point.

この場合こ【に対応するガスタービンは、自己の回転数
を維持する無負荷条件とし、あたかもボイラに対する送
風機のように作動させる。このようにすれば副次的な効
果として、ガスタービンも蒸気タービンも共に負荷増大
指令に対応し易い状態に保持することもできることにな
る。
In this case, the corresponding gas turbine is operated under no-load conditions to maintain its own rotational speed, as if it were a blower for a boiler. In this way, as a secondary effect, both the gas turbine and the steam turbine can be maintained in a state where they can easily respond to load increase commands.

第4図は本発明を適用した石炭ガス化複合発電設備の第
2の実施例のブロック構成金示す。
FIG. 4 shows the block composition of a second embodiment of a combined coal gasification combined power generation facility to which the present invention is applied.

第4図においては、1基の蒸気タービン発電設備にたい
して、1基列のガス化炉設備1と冷却精製設備2、およ
び1基列のガスタービン発電設備3と排熱回収ボイラ設
備4とその中間に設置された助燃バーナ14と全基本構
成として、冷却精製設備2とガスタービン30間に、燃
料ガス配分制御装置20を設けて、燃料ガス11を、ガ
スタービン用燃料ガス16と助燃バーナ用燃料17に配
分するようにする。燃料ガス110発熱量筐たは流量が
増加するとき、ガスタービン3の一定出力維持に必要な
燃料#L量は、所定のタービン入口温(9) 度により規定さnlある温度値以上では不要となる。流
量を消費できないとt!には、ガス化炉設備1からガス
タービン発電設備3の間の圧力が上昇することからこれ
に対処しつる。しかし、ガス系統はある設計圧力で設削
芒れているので、限界圧力以上に昇圧させることができ
ない。予め助燃バーナ14全設けて、ガスタービン排気
ガス12の温度よりも高い排気ガス18を得る構成にし
ておけば、燃料ガス16と17の配分を変更して、ガス
系統内の過圧を防止することができ、出力ヲー足に保つ
ことができる。すなわち、過圧限界以降は、ガスタービ
ン発電設備3の出力を減少させ、こ扛に見合う燃料ガス
16の量を、供給ガス燃料11から差し引いた燃料ガス
量17として、助燃バーナ14に供給する。このとき、
ガスタービン発電設備3から排出される排気ガス12の
温度は低下するので、こ扛に見合って、当初定められた
蒸気条件である蒸気13を発生するため、前より余分の
燃料17が消費される。ガスタービン発を設備3の出力
と蒸気タービン発電設備5の出力の(10) 合計金一定とするように、上記燃料ガス蓋16と17の
配分を燃料ガス配分制御装置20により与えて、運転を
行なわしめる。このとき、ガスタービン発電設備3と蒸
気タービン発電設備5等の設計点は、予?jllIσれ
る燃料ガスの発熱量の最も低い場合、あるいは流量の最
も低い場合を想定して、決定しておく。
In FIG. 4, for one steam turbine power generation facility, there is one row of gasifier equipment 1 and cooling purification equipment 2, one row of gas turbine power generation equipment 3, exhaust heat recovery boiler equipment 4, and an intermediate row thereof. As a complete basic configuration, a fuel gas distribution control device 20 is provided between the cooling purification equipment 2 and the gas turbine 30, and the fuel gas 11 is distributed between the gas turbine fuel gas 16 and the auxiliary burner fuel. 17. When the calorific value or flow rate of the fuel gas 110 increases, the amount of fuel #L required to maintain a constant output of the gas turbine 3 is determined by the predetermined turbine inlet temperature (9) degrees, and becomes unnecessary above a certain temperature value. Become. If you can't consume the flow rate, t! In this case, the pressure between the gasifier equipment 1 and the gas turbine power generation equipment 3 increases, so this must be dealt with. However, since the gas system is designed at a certain design pressure, it is not possible to increase the pressure above the critical pressure. If all the auxiliary burners 14 are installed in advance to obtain exhaust gas 18 with a temperature higher than that of gas turbine exhaust gas 12, the distribution of fuel gases 16 and 17 can be changed to prevent overpressure in the gas system. It is possible to keep the output at a low level. That is, after the overpressure limit, the output of the gas turbine power generation equipment 3 is reduced, and the amount of fuel gas 16 commensurate with this reduction is supplied to the auxiliary burner 14 as the amount of fuel gas 17 subtracted from the supplied gas fuel 11. At this time,
Since the temperature of the exhaust gas 12 discharged from the gas turbine power generation equipment 3 decreases, more fuel 17 than before is consumed to compensate for this decrease and generate steam 13 which is the steam condition originally determined. . The fuel gas distribution control device 20 distributes the fuel gas covers 16 and 17 so that the sum of (10) of the output of the gas turbine generator equipment 3 and the output of the steam turbine generator equipment 5 is constant. I will make you do it. At this time, the design points of the gas turbine power generation equipment 3, the steam turbine power generation equipment 5, etc. are planned? It is determined in advance assuming the case where the calorific value of the fuel gas is the lowest or the case where the flow rate is the lowest.

第4図における助燃バーナ14には、助燃バーナ用燃料
ガス17が常時供給さ扛ており、ガスタービン排気ガス
12の温度に対して、助燃バーナ14の排気ガス18は
高い温度でおって、蒸気タービン発電設備5には、例え
ば、再熱型が配置できる。しかし、助燃バーナ14には
常時、助燃バーナ用燃料ガス17を供給して、上記の条
件を与える必要はなく、本発明の本質にかかわるもので
はない。供給きれる精製ガス燃料11の発熱量が増加し
たとき、全体としては、少ない流量で対応しつるが、流
量ヲ絞ると系内の圧力が上昇するので、こnに応じて、
ガスタービン燃料16を減少せしめ、助燃バーナ用燃料
17全増大せしめる。
The auxiliary burner 14 in FIG. 4 is constantly supplied with auxiliary burner fuel gas 17, and the exhaust gas 18 of the auxiliary burner 14 is at a high temperature compared to the temperature of the gas turbine exhaust gas 12. The turbine power generation equipment 5 can be provided with a reheat type, for example. However, it is not necessary to always supply the auxiliary burner fuel gas 17 to the auxiliary burner 14 to provide the above conditions, and this is not related to the essence of the present invention. When the calorific value of the refined gas fuel 11 that can be completely supplied increases, the overall flow rate can be reduced, but if the flow rate is reduced, the pressure in the system increases, so in response to this,
The gas turbine fuel 16 is decreased, and the auxiliary burner fuel 17 is completely increased.

(11) この配分は、ガスタービンでは排気ガス12の温度また
は、発電量を、蒸気タービンでは、蒸気13のR,曹葦
たは発電量を検出し、帰還制御す扛ば艮い。
(11) This distribution can be achieved by detecting the temperature of the exhaust gas 12 or the amount of power generation in the case of a gas turbine, or by detecting the temperature of the exhaust gas 12 or the amount of power generation in the case of a steam turbine, and performing feedback control by detecting the temperature of the exhaust gas 12 or the amount of power generation in the case of a steam turbine.

定量的には現状のガスタービンではタービン入口温度が
1100tr程度で、排気ガス温度は500Cないし5
50t″である。この場合には、排熱回収ボイラの蒸気
条件は450C位全限界とするので総合発電設備の総合
効率が40%という汽力発電設備の性能を越えることは
かなり困難と考えられる。こ扛にたいして本発明により
助燃を行ない排熱回収ボイラの入ロガス温度金65 Q
C位に選べば、蒸気タービンに再熱型を選定でき、総合
効率40%會越えることはそれ程困難ではない。このよ
うな構成では、特に蒸気メーピン側の大型化−1=−+
る万が、スケールメリットがあり望寸しい。
Quantitatively, in the current gas turbine, the turbine inlet temperature is about 1100 tr, and the exhaust gas temperature is 500 C or 5.
In this case, the steam condition of the exhaust heat recovery boiler is set to the full limit of about 450C, so it is considered to be quite difficult for the overall efficiency of the integrated power generation equipment to exceed the performance of steam power generation equipment, which is 40%. The present invention performs auxiliary combustion to reduce the inlet gas temperature of the exhaust heat recovery boiler.
If you choose C, you can select a reheat type steam turbine, and it will not be difficult to achieve an overall efficiency of over 40%. In such a configuration, in particular, the steam map side becomes larger -1=-+
However, there are economies of scale and it is desirable.

このような場合、本発明による部分負荷運転方式を、機
器構成を前提として取扛ば、望ましい結果會得ることが
できる。
In such a case, if the partial load operation method according to the present invention is applied based on the equipment configuration, desirable results can be obtained.

以上説明したごとく、本発明によれば、部分負(12) 荷時にあっても蒸気条件の劣化を助燃バーナによって補
うことができるので、蒸気タービンの部分負荷性能劣化
を補って全体の部分負荷効率を高く維持することのでき
る効果がある。
As explained above, according to the present invention, deterioration in steam conditions can be compensated for by the auxiliary burner even during partial load (12), so deterioration in partial load performance of the steam turbine can be compensated for and the overall partial load efficiency can be improved. It has the effect of maintaining a high level of

また、石炭の形状やガス化の温度条件の変動による、ガ
ス燃料の発熱量や流量の変動に対して、ガス化設備以降
の系統内圧力の過圧力音生じないで、出力の制御を行な
うことができるので、系統の中間で圧力開放による燃料
ガスの無駄な放出も避けることができ、エネルギー利用
率全向上させる効果がある。
In addition, the output can be controlled without causing overpressure noise in the system after the gasification equipment, even when the calorific value and flow rate of the gas fuel fluctuates due to changes in the shape of the coal and the temperature conditions of gasification. As a result, wasteful release of fuel gas due to pressure release in the middle of the system can be avoided, which has the effect of improving the overall energy utilization rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の石炭ガス化複合発電設備のブロック構
成全示し、第2図は、助燃バーナ全有する従来の石炭ガ
ス化複合発電設備のブロック構成を示し、第3図ぼ、本
発明全適用した石炭ガス化複合発電設備の第1の実施例
のブロック構成全示し、第4図は、本発明を適用した石
炭ガス化複合発成設備の第2の実施例のブロック構成を
示す。 1・・・ガス化設備、2・・・冷却精製設備、3・・・
ガスタ(13) −ビン発電設備、4・・・排熱回収ボイラ設備。 代理人 弁理士 薄田利幸 第 3  図 2〃 冨 4  図
Figure 1 shows the entire block configuration of a conventional coal gasification combined cycle equipment, Figure 2 shows the block configuration of a conventional coal gasification combined cycle equipment that has all auxiliary burners, and Figure 3 shows the entire block configuration of the conventional coal gasification combined cycle equipment. The entire block configuration of the first embodiment of the combined coal gasification combined power generation facility to which the present invention is applied is shown, and FIG. 4 shows the block configuration of the second example of the combined coal gasification combined power generation facility to which the present invention is applied. 1... Gasification equipment, 2... Cooling purification equipment, 3...
Gaster (13) - Bin power generation equipment, 4...Exhaust heat recovery boiler equipment. Agent Patent Attorney Toshiyuki Usuda 3 Figure 2 Tomi 4 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、すくなくとも1基列のガスタービン発電設備、該発
電設備からの排気ガスを加熱する助燃バーナ、および加
熱さnた排気ガスから熱を回収する排熱回収ボイラ設備
ならびに1基の蒸気タービン発電設備とからなる複合発
電設備と、石炭全ガス化するガス化設備と該ガス全冷却
して精製する冷却精製設備とをすくなくとも1系列備え
てなる石炭ガス化複合発電設備において、上記排気ガス
の温度変動が生じた場合に上記蒸気タービン発電設備に
たいする所定の蒸気条件全維持できるように上記冷却精
製設備から送出されたガスを上記ガスタービン発電設備
と助燃バーナへ配分することを特徴とする石炭ガス化複
合発電設備の制御方式。
1. At least one row of gas turbine power generation equipment, an auxiliary combustion burner that heats exhaust gas from the power generation equipment, an exhaust heat recovery boiler equipment that recovers heat from the heated exhaust gas, and one steam turbine power generation equipment. and a coal gasification combined cycle facility comprising at least one series of gasification equipment that completely gasifies the coal and cooling purification equipment that completely cools and purifies the gas, the temperature fluctuation of the exhaust gas mentioned above. A coal gasification complex characterized in that the gas sent out from the cooling and purification equipment is distributed to the gas turbine power generation equipment and the auxiliary burner so as to maintain all the predetermined steam conditions for the steam turbine power generation equipment when the above occurs. Control method for power generation equipment.
JP6107082A 1982-04-14 1982-04-14 Control system for coal gasification composite power generating facility Pending JPS58178808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6107082A JPS58178808A (en) 1982-04-14 1982-04-14 Control system for coal gasification composite power generating facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6107082A JPS58178808A (en) 1982-04-14 1982-04-14 Control system for coal gasification composite power generating facility

Publications (1)

Publication Number Publication Date
JPS58178808A true JPS58178808A (en) 1983-10-19

Family

ID=13160509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6107082A Pending JPS58178808A (en) 1982-04-14 1982-04-14 Control system for coal gasification composite power generating facility

Country Status (1)

Country Link
JP (1) JPS58178808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178909A (en) * 1984-01-31 1985-09-12 ベー・ベー・ツエー・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ Apparatus of power plant of combined gas turbine steam turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178909A (en) * 1984-01-31 1985-09-12 ベー・ベー・ツエー・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ Apparatus of power plant of combined gas turbine steam turbine

Similar Documents

Publication Publication Date Title
US4041210A (en) Pressurized high temperature fuel cell power plant with bottoming cycle
CA1043856A (en) Pressurized fuel cell power plant with steam flow through the cells
CA1043858A (en) Pressurized fuel cell power plant with single reactant gas stream
JPH0789494B2 (en) Combined power plant
US20070130952A1 (en) Exhaust heat augmentation in a combined cycle power plant
US4212160A (en) Combined cycle power plant using low Btu gas
JPH0468446B2 (en)
US6608395B1 (en) Hybrid combined cycle power generation facility
GB2075124A (en) Integrated gasification-methanol synthesis-combined cycle plant
Yan et al. Status and perspective of externally fired gas turbines
JPH1082306A (en) Gasification compound power generating installation
JPH06223851A (en) Fuel cell and gas turbine combined generation system
Kunickis et al. Flexibility options of Riga CHP-2 plant operation under conditions of open electricity market
JPS58178808A (en) Control system for coal gasification composite power generating facility
JP3433968B2 (en) Operation control method of integrated coal gasification combined cycle system
JP3930426B2 (en) Fuel cell combined power generation system
JP3137147B2 (en) Control method for turbine compressor device for fuel cell facility
JPS60160574A (en) Turbo-compressor system for fuel cell power generation
Casper Application of the LM6000 for Power Generation and Cogeneration
JP3928675B2 (en) Combined generator of fuel cell and gas turbine
Takano et al. Design for the 145-MW blast furnace gas firing gas turbine combined cycle plant
Tsuji et al. Multi-stage solid oxide fuel cell–gas turbine combined cycle hybrid power plant system
CN214944461U (en) IGCC power plant coupling liquefaction air separation equipment system
JP3453237B2 (en) Oxygen circulating solid oxide fuel cell power generator
CN218717136U (en) Combined heat and power system utilizing plants