JPS58178328A - Focus detector - Google Patents

Focus detector

Info

Publication number
JPS58178328A
JPS58178328A JP6102882A JP6102882A JPS58178328A JP S58178328 A JPS58178328 A JP S58178328A JP 6102882 A JP6102882 A JP 6102882A JP 6102882 A JP6102882 A JP 6102882A JP S58178328 A JPS58178328 A JP S58178328A
Authority
JP
Japan
Prior art keywords
focus
detection
photoelectric conversion
plane
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6102882A
Other languages
Japanese (ja)
Other versions
JPH0360405B2 (en
Inventor
Takeshi Utagawa
健 歌川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP6102882A priority Critical patent/JPS58178328A/en
Publication of JPS58178328A publication Critical patent/JPS58178328A/en
Publication of JPH0360405B2 publication Critical patent/JPH0360405B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To filter space frequency components of higher order and to detect a focus exactly, by detecting the focus with the blurred images on photoelectric transducers. CONSTITUTION:If the plane existing at a distance X forward from a focus detecting plane D is considered and X is increased gradually from 0, the images by the reimaging lenses 261, 263 of two sets of photoelectric transducers A1(211)- A6(216), B1(221)-B(226) on the plane X are blurred gradually increasingly and deviate from each other. When the X attains a certain value, the images of A1 and B2-A5 and B6 overlap on each other. If the X is increased further, the overlaps deviate by each other. The images on the transducers A1-A6, B1-B6 in this stage are blurred but the outputs of the A1 and the B3 are equal, and the respective outputs of the A2 and B4, the A3 and B4 and the A4 and B6 are equal as well. If the equality in these paired outputs is detected, the focusing is detected. The focus is detected exactly by selecting the X so as to decrease >=fN components without decreasing the <=fN/2 space frequency components of the blurred images too much.

Description

【発明の詳細な説明】 本発明はT T L (throt+gh th@L@
ns )  型の焦点検出装置における検出光学系に関
する。
[Detailed Description of the Invention] The present invention relates to T T L (throt+gh th@L@
ns) type focus detection device.

TTL方式の焦点検出装置が本出願人により実開昭55
−2651@号公報で開示されておシ又別の光学系が別
の出願人により米国特許4,185.191号明細書に
開示されている0両方式の光学系の外観は全く異なって
いるが、本質的な効果は同等である。即ちいずれも撮影
レンズの異なる射出瞳部分を通過した2本の光束による
焦点検出装置の検出面上のそれぞれの儂を分離してそれ
ぞれ複数の光電変換素子Als・・・、ANS Bls
・・・、BNK導くような構成をとっている。これら光
電変換素子AI、・・・、ANからの出カバターンをP
41光電変換素子Bl、・・・、BNからの出カバター
ンをPRとして、出カバターンPjs Pj  の相互
のパターンのずれを検出して合焦、前ピン、後ピンを判
定する。しかしこれらの光学装置においては像がある高
次の空間周波数成分(ナイキスト限界以上の成分)を含
む時には不適当な結果を与える場合があるという欠点を
有していた。
A TTL type focus detection device was developed by the present applicant in 1972.
The appearance of both types of optical systems disclosed in US Pat. No. 4,185.191 by another applicant is completely different. However, the essential effects are the same. In other words, each of the two beams of light passing through different exit pupil portions of the photographic lens is separated from the other on the detection surface of the focus detection device to form a plurality of photoelectric conversion elements Als..., ANS Bls.
..., it has a structure that leads to BNK. The output turns from these photoelectric conversion elements AI, ..., AN are P
The output patterns from the photoelectric conversion elements Bl, . However, these optical devices have the drawback that they may give inappropriate results when the image contains certain high-order spatial frequency components (components above the Nyquist limit).

本発明の目的は偉合致の検出を検出儂をポカして行なわ
せる事により、誤まりの原因となる高次空間周波数成分
をフィルターし、正確な焦点検出を可能とする光学装置
を提供することである。
An object of the present invention is to provide an optical device that enables accurate focus detection by filtering out high-order spatial frequency components that cause errors by detecting a close match by focusing on the detector itself. It is.

まず初めに焦点検出装置の検出面上に投映された光像に
関して該検出面上に間隔dで並ぶ4I数の検出微小領域
D1%D1、・・・、D。
First, regarding the optical image projected onto the detection surface of the focus detection device, 4I detection micro-areas D1%D1, . . . , D are arranged on the detection surface at intervals d.

に入射する光音に関連した光電出力al、’l、・・、
&Nを得、この光電出力alS &!、・・・、myの
つくるパターンから光像のパターンの形状や動きを論じ
る場合の問題点を第1D倉、・・・、DB上に空間周波
数f−一 の空d 間格子像が投映され、この空間格子像が少しずつ右へ変
位した場合e(A’)  にその時の対応する光電出力
’l、aI、・・・、1.を(A”)に示す。この場合
光像は右に動いているのに対応して出カバターンも少し
ずつ右へ動いている事がわかる。
The photoelectric output al,'l,... associated with the optical sound incident on
&N, and this photoelectric output alS &! , ..., the problem when discussing the shape and movement of the pattern of an optical image from the pattern created by my is that a lattice image of the space d with a spatial frequency f-1 is projected onto the 1st D, ..., DB. , when this spatial grating image is displaced little by little to the right, e(A') corresponds to the photoelectric output 'l, aI, . . . , 1. is shown in (A''). In this case, it can be seen that the light image is moving to the right, and the output pattern is also moving gradually to the right.

第1図(B)は空間周波数f−−の空間格子d 像が右へ変位した場合(B′)  と、それに対応する
光電出力&1、l茸、・・・、aIの変化の様子(B!
′)  を示したものである。この場合光gI#″を右
に動いているにもがかわらず出方パターンは振巾を変え
あるいは位相を1800変化させるだけで、儂の微小な
動きに対応し走出カバターンの位相の滑かな変化は認め
られない。
Figure 1 (B) shows the case where the spatial grating d image of the spatial frequency f-- is displaced to the right (B') and the corresponding changes in the photoelectric output &1, l mushroom, ..., aI (B'). !
′). In this case, even though the light gI#'' is moving to the right, the output pattern only changes the amplitude or changes the phase by 1800 degrees, corresponding to my minute movement, resulting in a smooth change in the phase of the running cover turn. It is not allowed.

儂が右へ変位した場合(σ) と、それに対応した光電
出力’1.11、・・・、畠1の変化の様子(c″) 
 を示したものである。この場合光像は右に動いて゛い
るにもかかわらず、出方パターンは逆の左方向に動いて
いる事がわかる。
When I is displaced to the right (σ) and the corresponding change in photoelectric output '1.11,..., Hatake 1 (c'')
This is what is shown. In this case, even though the light image is moving to the right, it can be seen that the exit pattern is moving in the opposite direction to the left.

この上うに光像の空間周波数がナイキスト周波数f、F
=iに相当する(B)の場合や、fN〈f < 2fJ
  に相当する(0の場合には出カバターンの動きから
光像の動きを判断することができない。又一般の光像は
いろいろな空間周波数成分を含んでいるがその中でf≧
f、 K相当する成分が多い時には光像の動きの判定は
非常に誤差の大きいものとなる。従って先に述べたよう
な2組の複数の検出素子A1.1m、・・・、A、及び
B1、B鵞、・・・、BNからの光電出カバターンPu
s Pj  の相互の変位の方向と大きさから、合焦、
前ピン、後ピンを判定する焦点検出装置においては、光
像中のf≧11 の空間周波数成分の存在は誤動作の原
因となる。本発明はこれら誤動作の原因となる高次の空
間周波数成分をボケにより除去する、焦点検出装置検出
面の適正な配置に関するものである。
Above this, the spatial frequency of the optical image is the Nyquist frequency f, F
In the case of (B), which corresponds to =i, or fN〈f < 2fJ
corresponds to
When there are many components corresponding to f and K, there will be a very large error in determining the movement of the optical image. Therefore, the photoelectric output cover turns Pu from the two sets of plurality of detection elements A1.1m, .
From the direction and magnitude of mutual displacement of s Pj, focusing,
In a focus detection device that determines front focus and rear focus, the presence of a spatial frequency component of f≧11 in an optical image causes malfunction. The present invention relates to an appropriate arrangement of the detection surface of a focus detection device that eliminates high-order spatial frequency components that cause these malfunctions by blurring.

第2図、第3図は実開昭55−26516号公報に開示
された光学系と同等のものであり、これによりまず従来
例を説明する。第2図において、複数の充電変換素子A
I(211)、A茸 (212)、 As(213)、
 A4(214)、AI(215)、AI(21B) 
 及び他方の複数の光電変換素子B1(221)、B1
(222)、Bs (223)、Ha (224)、B
、(225)、Bs(22B)  は、それぞれ再結儂
レンズ261及び262によりフィールドレンズ23G
近傍の面上にほぼピントの合った状態でそれぞれの共役
像が1ね合わされて位置するように調整されている。即
ち、AI(211)  とB+(221J  の共役像
がDt(231)  にAt(212)とth(222
)の共役像がDt(232に・・・・・As(216)
とB・(221i)  の共役がos(236)  に
それぞれ形成されている。
FIG. 2 and FIG. 3 are equivalent to the optical system disclosed in Japanese Utility Model Application Publication No. 55-26516, and the conventional example will be explained first. In FIG. 2, a plurality of charging conversion elements A
I (211), A mushroom (212), As (213),
A4 (214), AI (215), AI (21B)
and the other plurality of photoelectric conversion elements B1 (221), B1
(222), Bs (223), Ha (224), B
, (225), Bs (22B) are the field lens 23G by the reconsolidation lenses 261 and 262, respectively.
Adjustments are made so that the respective conjugate images are aligned and positioned on a nearby surface in a substantially focused state. That is, the conjugate images of AI(211) and B+(221J are Dt(231), At(212) and th(222)
) is the conjugate image of Dt(232...As(216)
The conjugates of and B·(221i) are formed on os(236), respectively.

この相互の共役像が重なり会9て存在する面がこの従来
の焦点検出装置の検出面りでibや検出面り上のD1〜
D6が間隔dで並ぶ「検出微小領域」を形成する。又フ
ィールドレンズ230は前記再結像レンズ261.26
2の開口がフィールドレンズから距離tだけ離れた前方
に設定された結偉レンズ(焦点検出されるレンズ)の射
出瞳位置20Gにその共役像をそれぞれ射出瞳の第1部
分(251)及び射出l1ikの第2部分(252)と
して形成すべくその曲率が決定されている。
The surface where these mutually conjugate images overlap 9 is the detection surface of this conventional focus detection device, and is ib and D1 to D1 on the detection surface.
D6 form a "detection minute area" lined up at an interval d. Further, the field lens 230 is the re-imaging lens 261.26.
The aperture of No. 2 transmits its conjugate image to the exit pupil position 20G of the focusing lens (lens whose focus is detected) set in front at a distance t from the field lens, and the first part of the exit pupil (251) and the exit l1ik, respectively. Its curvature is determined to be formed as the second portion (252) of.

この様が構成において通常行なわれる「鮮明葎による焦
点検出方式」では結偉レンズの最も鮮明な像面が焦点検
出面DK一致した時合魚信号を発生するように配置する
。即ち合焦状態では複数の光電変換素子A、〜A1及び
81〜B−上の像は最も鮮明な状態となる。
In the "focus detection method using a sharp lens" which is normally used in such a configuration, the arrangement is such that a matching signal is generated when the sharpest image plane of the focusing lens coincides with the focus detection plane DK. That is, in the focused state, the images on the plurality of photoelectric conversion elements A, ~A1, and 81~B- are in the clearest state.

) この儂が鮮明な状態ではf≧f、Iなる空間周波数
成分が取シ除かれる事が無いので前述の誤動作を起こす
可能性がある。モして光電変換素子AI(211)とB
t(221)、A冨(212)とBl(222)、As
(213)とBl(223)、・・・As(216)と
B・ (226)の各対が互いに等しい出力であること
を検出することにより合焦検出ができる。
) In this clear state, the spatial frequency component f≧f, I is not removed, which may cause the above-mentioned malfunction. Photoelectric conversion elements AI (211) and B
t (221), A Tomi (212) and Bl (222), As
Focusing can be detected by detecting that each pair of (213) and Bl (223), . . . As (216) and B. (226) has an equal output.

本発明はt < t y/2の空間周波数成分をあまり
減少させる事なくf′&イ、の空間周波数成分を大巾に
減少させる程度のボケた像面が焦点検出装置の検出面り
に一致した時に合焦信号を発生するような配置即ち「ボ
ケ偉による焦点検出方式」を与える屯のである。
In the present invention, the blurred image surface coincides with the detection surface of the focus detection device to the extent that the spatial frequency component of f'&i is greatly reduced without significantly reducing the spatial frequency component of t < y/2. This is because it provides an arrangement that generates a focus signal when the lens is focused, that is, a ``focus detection method based on blurring''.

次に第2図を用いて本発明の詳細な説明する。本実施例
において射出[120G、フィールドレンズ230、再
結偉レンズ261.262、光電変換素子A、−A4、
Bs〜B−の位置関係は前述し九従来のものと等しい。
Next, the present invention will be explained in detail using FIG. In this example, the injection [120G, field lens 230, reconsolidation lens 261, 262, photoelectric conversion elements A, -A4,
The positional relationship of Bs to B- is the same as the nine conventional ones described above.

第2図において焦点検出面り即ち検出微小領域Dt(2
3L)〜D・(236)の存在する面から前方Xの距離
にある面を考える。再結儂レンズが検出面り上に光電変
換素子A1〜AI 、Bl ”’−B−の鮮明な像を結
んでいるので、Xを0からだんだん大きくしていくとこ
のXの面上での2組の複数の充電変換素子AJ −Ag
 、81〜Bmの再結像レンズによる儂は少しずつボケ
を増しながら相互にずれてゆき、Xがある値をとると光
電変換素子AI(211)とBl (222)  が又
A曾(212)とBs (223)が・”’As (2
15)とBl(226)が重なる状態となる。さらにX
を増してゆき第2図に図示し+Xの位置まで来ると、と
のXの面上で光電変換素子Al(211)とIIg(2
23)  が243において、AI(212)とBs 
(224)  が244において、・・・・An(21
4)とBv(22B)  が246においてそれぞれ重
なる。ここで焦点検出装置の検出1iiDから射出瞳の
第1及び第2の部分の中心を見込む角を図のようにθと
し検出面り上での検出微小領域の間隔をdとする時、上
に述べたような光電変換素子AIとBjの素子儂が(少
しボケてはいるが)相互に重なシ合う位ftはX −難
・d /θ(n−−−−−3、−2、−1,1,2,3
・・・・ン −(1) で与えられ第2図扛n−2の場合に和尚している。ヒこ
で射出瞳の第1の部分及び第2の部分の中心とは、それ
ぞれ両一部分を通過した光束のエネルギー密度分布の重
心に相当する光線が瞳面と交わる点の事である。従って
一部分形状が円形でエネルギー密度分布が一様であれば
、この中心はこの円形の中心に一致する。この装置にお
いて、逆に(1)式で与えられる量Xだけ検出面りから
離れた位置に結儂レンズ(すなわちカメラで言えば撮影
レンズ]の最も鮮明な像面が来た時に1焦点検出装置が
合焦判定を行なうとすれば、例えば第2図の場合には複
数充電変換素子上の儂はボケてはいるがAtとB、の出
力が等しくAsと84、AIと81%A4とB・の出力
もそれぞれ等しくなる。したがってとの各対の出力が醇
しいことを検出すれば光電変換素子上のボケ九儂よシ合
焦検出を行なうことができる。カメラに前述し九検出装
置を設けた場合には第2図の面りがフィルム面に共役な
位置にくるが、本発明の第2図を用いて説明した実施例
では面りからXだけ離れた面がフィルム面と共役になる
。もちろんn−・・・−3、−2、−1,1,2,3・
・・以外のXの位置(例えばnm0.5等)K撮影レン
ズの最も鮮明な像面が来九時に焦点検出装置により合焦
判定を行なうように構成すれば、複数光電変換素子A1
〜A−及び81〜B・の各出力が対応せず完全に一致す
る事はないので、合焦判定の誤差が大きくなってしまう
。この様にして(1)式で与えられる量X(ただしn−
・・・・−3、−2、−111,2,3・・・ )だけ
検出面りから離れた位置に撮影レンズの最も鮮明な像面
が来た時に合焦判定を行なえばボケ像による正確な焦点
検出ができ、しかも高次の空間周波数成分により悪影響
を受けないようにできる。またX = n−d/θにお
ける最も適幽な難の大きさは次の様にして決定される。
In FIG. 2, the focus detection plane, that is, the detection minute area Dt(2
Consider a surface located at a distance X in front of the surface where 3L) to D.(236) exist. Since the reconvergence lens forms a clear image of the photoelectric conversion elements A1~AI, Bl''-B- on the detection surface, as X is gradually increased from 0, the Two sets of charging conversion elements AJ-Ag
, 81~Bm by the re-imaging lens gradually become blurred and deviate from each other, and when X takes a certain value, the photoelectric conversion elements AI (211) and Bl (222) also become A (212). And Bs (223) is・”'As (2
15) and Bl (226) overlap. Further X
When increasing and reaching the +X position shown in FIG. 2, photoelectric conversion elements Al (211) and IIg (2
23) is 243, AI (212) and Bs
(224) is 244, ...An(21
4) and Bv(22B) overlap at 246, respectively. Here, when the angle from the detection 1iiD of the focus detection device to the center of the first and second portions of the exit pupil is θ as shown in the figure, and the interval between the detection minute areas on the detection surface is d, the upper To the extent that the elements of photoelectric conversion elements AI and Bj as described above overlap each other (albeit slightly blurred), ft is -1, 1, 2, 3
It is given by n-(1), and the priest is in the case of n-2 in Figure 2. Here, the centers of the first and second parts of the exit pupil are the points where the rays corresponding to the centers of gravity of the energy density distribution of the light fluxes that have passed through both parts intersect with the pupil plane. Therefore, if the partial shape is circular and the energy density distribution is uniform, this center will coincide with the center of this circle. In this device, conversely, when the sharpest image plane of the convergence lens (i.e., the photographing lens in a camera) comes to a position away from the detection plane by the amount X given by equation (1), the single focal point detection device For example, in the case of Fig. 2, the outputs of At and B are the same, As is 84%, AI is 81%, A4 and B The outputs of and are also equal to each other. Therefore, if it is detected that the output of each pair of and is rich, it is possible to detect the focus rather than the blur on the photoelectric conversion element. If the surface is provided, the surface shown in FIG. 2 will be at a position conjugate to the film surface, but in the embodiment explained using FIG. Of course n-...-3, -2, -1, 1, 2, 3.
If the configuration is such that the focus detection device performs focus determination at a position of
Since the respective outputs of ~A- and 81~B. do not correspond and do not match completely, the error in focus determination becomes large. In this way, the quantity X (where n−
...-3, -2, -111,2,3...) If the focus is determined when the sharpest image plane of the photographing lens is at a position away from the detection plane, the image will be blurred. Accurate focus detection can be performed without being adversely affected by high-order spatial frequency components. Furthermore, the most suitable magnitude of difficulty at X = nd/θ is determined as follows.

まずHm Qの時とれは検出面りが撮影レンズの最も鮮
明な像面に一致した時に合焦判定を行なうものでこれが
繭述した従来のやり方に相当する。さて検出面りからX
だけ離れた位置での、複数光電変換素子AI−A@、B
1〜B6のボケの程度すは第2図に示すように、検出面
りから部分瞳を見込む角を9としてb−ψ・X程度とな
シ、逆の言い方をすれば再結儂光学系の倍率1kmとす
れば複数光電変換素子A1〜A@、B1〜B−上の儂は
m−b  の程度ボケる事になる。このボケが’N/2
 以下の空間周波数成分をあtす低下させずWCf x
以上の空間周波数成分を大きく減少させるようKXの値
即ち難の値を選べばよい。そのような条件はだいたいd
’ (J<2d’:d ’ = d X (t −X 
) / l  とする事で達成する事ができる。
First, the timing of HmQ is to determine focus when the detection plane coincides with the clearest image plane of the photographing lens, and this corresponds to the conventional method described above. Now, from the detection side
Multiple photoelectric conversion elements AI-A@, B at positions separated by
As shown in Figure 2, the degree of blur for 1 to B6 is about b-ψ・X, assuming the angle from the detection surface to the partial pupil is 9. In other words, the degree of blur is approximately b−ψ・X, as shown in Figure 2. If the magnification is 1 km, the images on the plurality of photoelectric conversion elements A1 to A@, B1 to B- will be blurred to an extent of m-b. This blur is 'N/2
WCf x without reducing the following spatial frequency components
What is necessary is to select the value of KX, that is, the critical value, so as to greatly reduce the above spatial frequency components. Such conditions are approximately d
'(J<2d':d' = d
) / l.

又焦点検出装置の検出面りが撮影レンズの最も鮮明な像
面に−°致しない状態で精度よく合焦を判定する為には
複数充電変換素子上のボケもA!〜A6上と81〜Ba
上で対称である必要があり、第3図371.372に図
示したような非対称なボケでは光電変換素子A1〜ムロ
及びBl−%−IFの対応する受光面の儂が相互に完全
に重なシ合うXの値は見出し得す本発明の効果は幾分減
少する。従って本発明のような「ボケgIKよる焦点検
出方式」では射出瞳の第1部分と第2部分の形状が、両
者の中心を結ぶ線にそって一方を平行移動(撮影レンズ
光軸に直角な方向に移動)シ九・時に両者の形状が重な
り合うように設定する事が好ましい。しかし第3図の場
合でもボケを含む両複数光電変換素子偉が概略型なる、
即ち両者のボケ像の重心が重なり合う位置を見つける事
が可能であり、その場合KFs、やはシ(1)式の条件
を満たす位置に置けばよい。この場合第3図における角
θは検出面りから射出−の第11第2の部分の中心を見
込む角により与えられる値をとるものとする。
Also, in order to accurately determine focus when the detection surface of the focus detection device does not match the sharpest image surface of the photographing lens, the blur on the multiple charging conversion elements is also A! ~A6 top and 81~Ba
371 and 372 as shown in Fig. 3, the corresponding light receiving surfaces of the photoelectric conversion elements A1 to Muro and Bl-%-IF must completely overlap each other. The value of X that matches will somewhat reduce the effectiveness of the present invention. Therefore, in the "focus detection method using bokeh gIK" as in the present invention, the shapes of the first and second parts of the exit pupil are moved in parallel along the line connecting the centers of the two parts (perpendicular to the optical axis of the photographing lens). It is preferable to set the shape so that the shapes of the two overlap each other. However, even in the case of Fig. 3, both the plurality of photoelectric conversion elements including the blur are of the schematic type.
That is, it is possible to find a position where the centers of gravity of both blurred images overlap, and in that case, the position may be placed at a position that satisfies the condition of KFs or equation (1). In this case, the angle θ in FIG. 3 is assumed to take a value given by the angle from the detection surface to the center of the 11th second portion of the emission plane.

同受光素子310.320の、検出1i1iDからXだ
け離れた面における再結像レンズによるgR#′i次の
ごときものとなる。即ち再結儂レンズの中心を通る光線
(これは前述の射出瞳の第1の部分及び第2の部分の中
心を通る光線に一致するが)による受光素子31D13
20の像(図示していないが第2図の243〜246と
全く同様の形状)を再結像レンズ開口形状に相似した形
371.372にポカした形のものである。
The re-imaging lens on the plane of the light receiving elements 310 and 320 that is separated by X from the detection 1i1iD produces the following gR#'i. That is, the light-receiving element 31D13 is caused by a light ray passing through the center of the reconvergence lens (this coincides with the light ray passing through the centers of the first and second parts of the exit pupil described above).
20 (not shown, but the shape is exactly the same as 243 to 246 in FIG. 2) is shaped like a shape 371 and 372 similar to the shape of the re-imaging lens aperture.

またg2図及び第3図の例では検出面り即ち光電変換素
子A、−A−及びB1〜B・の再結儂レンズによる債が
鮮明にかつ相互に重なり合って存在する面がフィールド
レンズ面と概略一致した場合を示しているが、フィール
ドレンズの役割は再結骨レンズ開口を撮影レンズの射出
瞳上に概略投映する事にあり、検出面りとフィールドレ
ンズ面は必ずしも一致していなくてもよい。すなわちフ
ィールドレンズ230を例えば前記検出面りから前方X
の位置にもって来る事も可能である。その場合にはこの
Xの位置における光電変換素子A1〜A暮、81〜B−
の儂はフィールドレンズのパワーの影響を受けないので
、その大きさは第2図に示した値d′とは少し異な抄、
単純に再結骨レンズの結儂倍率により決まる値となる。
In addition, in the examples shown in Fig. g2 and Fig. 3, the detection surface, that is, the surface where the bonds formed by the recombination lenses of the photoelectric conversion elements A, -A-, and B1 to B are clearly and overlapping with each other is the field lens surface. This shows a case where they roughly match, but the role of the field lens is to approximately project the reconsolidation lens aperture onto the exit pupil of the photographing lens, so even if the detection surface and the field lens surface do not necessarily match. good. That is, the field lens 230 is placed, for example, in front of the detection surface
It is also possible to bring it to the position of In that case, the photoelectric conversion elements A1 to A, 81 to B- at the position of X
d' is not affected by the power of the field lens, so its magnitude is slightly different from the value d' shown in Figure 2.
The value is simply determined by the consolidation magnification of the reconsolidation lens.

次に別の光学系(米国特許4,185.191号明細書
)の場合に関する全く同等の事を行なう為の実施例を第
4図、第5図を用いて説明する。第4図で焦点検出装置
の検出面り上には微小レンズアレイ431〜436があ
りこれら微小レンズは検出面り上の間隔dで並んでいる
。これら微小レンズ431〜436の開口面積Ds(4
31)〜D、(43g)  は「検出微小領域」を形成
し、第2図の「検出微小領域DI(231)〜as (
238)Jに対応する。
Next, a description will be given of an embodiment for performing exactly the same thing in the case of another optical system (US Pat. No. 4,185,191) with reference to FIGS. 4 and 5. In FIG. 4, there are microlens arrays 431 to 436 on the detection surface of the focus detection device, and these microlenses are lined up at an interval d on the detection surface. The aperture area Ds(4
31) to D, (43g) form a "detection minute area", and the "detection minute area DI(231) to as (
238) Corresponds to J.

第2図の場合の検出微小領域D1〜D・は光電変換素子
211〜216.221〜226の受光面の形状によっ
て決まったが、第4図の場合の検出微小領域DI−D、
は微小レンズ431〜436の開口の形状によって決ま
っている。第4図の装置ではこれら微小レンズアレイの
後方には対をなして光電変換素子が配置され、Dl(4
31)  の後方にはAI(411)とBt(421)
が、Dt(432)の後方にはAs(412)とBl(
422)が ・・・配置される。そしてこれら光電変換
素子の受光面形状が対応する微小レンズにより検出面り
よりtだけ前方の撮影レンズ射出陳位置400にそれぞ
れの共役像が相互に重なり合うように光学系の配置がな
されている。即ち射出瞳の第1部分451を通過した光
束により検出面り上の微小レンズ431〜436に入射
した光量はそれぞれ光電変換素子411.412.41
3.414.415.416により受光され、射出瞳の
第2部分452を通った光束によシ微小レンズ431〜
436に入射した光量はそれぞれ光電変換素子421.
422.42〜3.424.425.426によシ受光
される。第2図、第3図の焦点検出光学系において射出
瞳の第1部分及び第2部分の形状を決めていたのは再結
骨レンズの開口形状であったが、第4図、第5図の焦点
検出光学系において射出瞳の第1部分及び第2部分の形
状を決めているのは光電変換素子の形状である。この様
な対応関係の相違はあるものの、光電変換素子AI、A
I、・・・、A6とBl、Bl、・・・、B・の出力の
現われ方は全く同郷であり第2図で説明したのと同じこ
とが第4図に関しても言える。すなわち第4図及びこれ
を変形した第5図において焦点検出面りから第1及び第
2の射出一部分451.452(または551.552
)の中心(重心)を見込む角を0とし、検出面り上の検
出微小領域の間隔即ち微小レンズの並びの間隔をdとす
れば X=n ・a/ 19   (n−・・・−3、−2、
−1゜1.2.3・・・) だけ検出面りから離れた面に撮影レンズの最も鮮明度の
高い面が来た時に合焦判定をすることになる。もちろん
撮影レンズにより検出面り上に最も鮮明度の高い像がく
れば光電変換素子411〜416.421〜426の面
上にも最も鮮明度の高い儂がくると考えてよいが、検出
面り上からXだけ離れた面上に最も鮮明度の高い像がき
た時は光電変換素子411〜426の面上にできる儂は
第2図、第3図の場合と同様にボケたものとなる。そし
てカメラにこのタイプの検出装置を設けた従来装置の場
合には第4図の面りがフィルム面と共役な位置にくるが
、本発明の第4図を用いて説明した実施例では面りから
Xだけ離れた面がフィルム面と共役になる。第4図と第
5図の実施例は領域443〜446ibるいは543〜
546で重なシ合った儂を光電変換素子で検出し、光電
変換素子上のボケ像から正確な焦点検出を行ない、しか
も高次の空間周波数成分の影響を受けないようにしたも
のである。第4図t!n−2の場合に相当しておシ、合
焦状態(すなわち検出面りからXだけ離れた面に最も鮮
明度の高い1象がきた時)でAs(411)  とBs
(423)  の出力が、A嘗(412>とB、(42
4)  の出力が、AI(413)とBs(425)の
出力が、A4(414)とBs(426)  の出力が
それぞれ等しくなり、これを検出することにより検出面
りと最も鮮明度の高い体面との間に間隔Xがあるにもか
かわらず、精度の良い合焦検出が可能となる。
The detection micro-regions D1-D in the case of FIG.
is determined by the shape of the apertures of the microlenses 431 to 436. In the device shown in FIG. 4, photoelectric conversion elements are arranged in pairs behind these microlens arrays, and Dl (4
31) AI (411) and Bt (421) are behind
However, behind Dt (432) there are As (412) and Bl (
422) is... placed. The optical system is arranged so that the conjugate images of these photoelectric conversion elements are superimposed on each other at the photographing lens exit position 400, which is a distance t in front of the detection surface, by means of microlenses corresponding to the shapes of the light receiving surfaces of these photoelectric conversion elements. That is, the amount of light incident on the microlenses 431 to 436 on the detection surface due to the light flux passing through the first portion 451 of the exit pupil is the same as the amount of light that has passed through the first portion 451 of the exit pupil.
3.414.415.416 and passes through the second portion 452 of the exit pupil, the microlenses 431~
The amount of light incident on each photoelectric conversion element 421.
422.42 to 3.424.425.426. In the focus detection optical system shown in Figs. 2 and 3, the shape of the first and second parts of the exit pupil was determined by the aperture shape of the reconstitution lens, but in Figs. In the focus detection optical system, the shapes of the first and second portions of the exit pupil are determined by the shape of the photoelectric conversion element. Although there is such a difference in correspondence, the photoelectric conversion elements AI and A
The appearance of the outputs of I, . . . , A6 and Bl, Bl, . That is, in FIG. 4 and a modified version of FIG. 5, the first and second exit parts 451.452 (or 551.552
) is the angle looking at the center (center of gravity) of ,-2,
-1°1.2.3...) Focus is determined when the surface of the photographic lens with the highest sharpness comes to a surface that is away from the detection surface by a distance of -1°1.2.3...). Of course, if the image with the highest clarity is placed on the detection surface by the photographing lens, it can be assumed that the image with the highest clarity will also be placed on the surfaces of the photoelectric conversion elements 411 to 416 and 421 to 426, but the detection surface When an image with the highest clarity appears on a plane separated by X from above, the images formed on the planes of photoelectric conversion elements 411 to 426 will be blurred as in the case of FIGS. 2 and 3. In the case of a conventional device in which a camera is equipped with this type of detection device, the surface shown in FIG. The plane that is X away from is conjugate to the film plane. In the embodiments of FIGS. 4 and 5, areas 443 to 446ib or 543 to
546, the overlapped image is detected by a photoelectric conversion element, accurate focus detection is performed from the blurred image on the photoelectric conversion element, and it is not affected by high-order spatial frequency components. Figure 4 t! Corresponding to the case of n-2, As (411) and Bs in the in-focus state (i.e., when the most vivid image appears on the plane that is X away from the detection plane).
The output of (423) is A嘗(412> and B, (42
4) The output of AI (413) and Bs (425) are equal, and the output of A4 (414) and Bs (426) are equal, respectively, and by detecting this, the detection plane and the highest sharpness are determined. Accurate focus detection is possible despite the distance X between the lens and the body surface.

この場合のボケの程度は検出面りから見た瞳部分の広が
り角度を第4図のようにψとした時にボケの広がりb=
ψ・X で与えられ、蒙2図の場合と同様VCa 、b
〜2d  ;d’−d*(t−X)/l  9度に選ぶ
のが好ましい。第5図は第1射出11部分と第2射出瞳
部分の形状が相互の平行移動(撮影レンズ光軸に直角な
方向の移動Jにより重なり合わない場合であり、この場
合には第3図の場合と同様K(1)式の条件を満たして
いても「ボケ像による焦点検出方式」における合焦状態
で任意のパターンに対して光電変換素子A1〜A6と8
1〜B番の出力が完全に一致する事は保障されず、瞳部
分の形状が相互の平行移動により重含9合う場合に比べ
合焦一度が多少劣化する。しかしながらこのようなもの
でも本発明の目的を達成できる。
The degree of blur in this case is determined by the spread of blur b = ψ, which is the spread angle of the pupil seen from the detection surface as shown in Figure 4.
It is given by ψ・X, and as in the case of Mongolia 2, VCa, b
~2d; d'-d*(t-X)/l It is preferable to select 9 degrees. Figure 5 shows a case where the shapes of the first exit 11 part and the second exit pupil part do not overlap due to mutual parallel movement (movement J in the direction perpendicular to the optical axis of the photographic lens, and in this case, the shapes of the first exit 11 part and the second exit pupil part do not overlap). Even if the condition of K(1) is satisfied as in the case, the photoelectric conversion elements A1 to A6 and 8 are
It is not guaranteed that the outputs of numbers 1 to B perfectly match, and the degree of focusing is somewhat degraded compared to the case where the shapes of the pupil portions overlap and match due to mutual parallel movement. However, even with such a device, the object of the present invention can be achieved.

これまで各実施例において光電変換素子の出力から合焦
を判別することについて述べてき友。そして撮影レンズ
が光軸上を合焦状態から前あるいは後に移動し死時に撮
影レンズによって形成される光電変換素子上の儂がどの
ようになるかについて、あtりふれなかった。しかしA
系列の光電変換素子面上とB系列の光電変換素子面上に
それぞれ形成される儂は、撮影レンズの光軸方向の移動
によってその光電変換素子面上をそれぞれ移動し、A系
列の素子上に形成される像とB系列の素子上に形成され
る儂との相対位置を各光電変換素子の出力から検出する
ことによシ、従来と同様前ピン、後ピンを検出できる。
So far, in each embodiment, we have described how to determine focus from the output of the photoelectric conversion element. Furthermore, when the photographic lens moves forward or backward from the in-focus state on the optical axis, I have not given much thought to what happens to the image on the photoelectric conversion element formed by the photographic lens when the photographic lens dies. However, A
The layers formed on the photoelectric conversion element surfaces of the series and the B series are moved on the photoelectric conversion element surfaces by the movement of the photographic lens in the optical axis direction, and are formed on the photoelectric conversion element surfaces of the A series. By detecting the relative position between the image formed and the image formed on the B-series element from the output of each photoelectric conversion element, the front focus and the rear focus can be detected as in the prior art.

以上詳述した如く本発明は光電変換素子上に形成される
ボケ像でもって合焦近傍における焦点検出を行なうので
、高次の空間周波数成分の影響を受けて誤った焦点検出
をしてしまうという従来装置の欠点を解決できる。
As detailed above, the present invention performs focus detection in the vicinity of the in-focus area using the blurred image formed on the photoelectric conversion element, so there is a possibility that the focus may be incorrectly detected due to the influence of higher-order spatial frequency components. The drawbacks of conventional devices can be solved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の欠点を説明する図、第2図は本発明
の第1実施例の斜視図、第3図は本発明の第2実施例の
斜視図、第4図は本発明の第3実施例の斜視図、第5図
は本発明の第4実施例の斜視図である。 〔主要部分の符号の説明〕 200:400:500・・・・・・納骨レンズの射出
瞳位置251 :451 :551・・・・・・射出−
の第1部分252:452:552・・・・・・射出瞳
の第2部分D・・・・・・検出面 出願人  日本光学工業株式会社 lす91 (八つ    CA”)         (”υ山σ
2(1B(坏(Is 1図 CC) Q(712Q3f144J (Bつ    (C・)    (。。
Fig. 1 is a diagram for explaining the drawbacks of the conventional device, Fig. 2 is a perspective view of the first embodiment of the present invention, Fig. 3 is a perspective view of the second embodiment of the present invention, and Fig. 4 is a perspective view of the second embodiment of the present invention. FIG. 5 is a perspective view of the fourth embodiment of the present invention. [Explanation of symbols of main parts] 200:400:500...Exit pupil position of ossuary lens 251:451:551...Exit -
1st part 252:452:552...Second part D of exit pupil...Detection surface Applicant Nippon Kogaku Kogyo Co., Ltd. σ
2 (1B (Is 1 figure CC) Q (712Q3f144J (Btsu (C・) (..

Claims (1)

【特許請求の範囲】 1 結惨レンズの射出瞳の第1の部分を通過した光束の
うち検出面上の間隔dで並ぶ複数の検出微小領域D1、
DI、・・・、DNにそれぞれ入射する光エネルギーを
受ける第1の複数光電変換素子AI 、Am 、・・・
、ANと前記結儂レンズの射出瞳の第2の部分を通過し
九九束のうち前記複数の検出微小領域D1%DI%・・
・、Dllにそれぞれ入射する光エネルギーを受ける第
2の複数光電変換素子B1、Bl、・・・、BKとを有
し、骸第1、第2の複数光電変換素子AI、・・・、A
ff及びB1、・・・、BNの光電出力に関する信号パ
ターンの相互のズレを検出して、前ビン、後ピン及び合
焦を判定する焦点検出装置において、前記検出面から前
記第1及び第2の部分の中心を見込む角をθとするとき
、このθと前記微小領域の並びの間隔dを用いてXζ1
・d/′#  (ただしn−±1.±2・・・・)で与
えられる量だけ前記検出面から離れた面に最も鮮明度の
高い面が来た時に合焦信号を発生する事を特徴とする焦
点検出装置。 2 前記第1及び第2の部分の一方を、誼第1部分と第
2部分の中心を結ぶ線に平行に移動した場合に該第1部
分と射出瞳の第2部分の形状が相互にほぼ重なり合うよ
うな形状に前記第1及び第2の部分の形状分定めた事を
特徴とする特許請求の範囲第1項に記載の焦点検出装置
[Claims] 1. A plurality of detection micro-regions D1 arranged at intervals d on the detection surface out of the light flux that has passed through the first part of the exit pupil of the condensation lens;
A plurality of first photoelectric conversion elements AI, Am,... which receive optical energy incident on DI,..., DN, respectively.
, AN and the plurality of detection minute areas D1%DI% among the ninety-nine bundles passing through the second part of the exit pupil of the confluence lens.
・A second plurality of photoelectric conversion elements B1, Bl, .
ff and B1, . When the angle looking into the center of the part is θ, using this θ and the interval d between the arrangement of the micro regions, Xζ1
- Generate a focusing signal when the plane with the highest sharpness comes to the plane that is away from the detection plane by the amount given by d/'# (n-±1.±2...) Features a focus detection device. 2. When one of the first and second parts is moved parallel to a line connecting the centers of the first part and the second part, the shapes of the first part and the second part of the exit pupil are approximately the same as each other. 2. The focus detection device according to claim 1, wherein the first and second portions have shapes that overlap each other.
JP6102882A 1982-04-14 1982-04-14 Focus detector Granted JPS58178328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6102882A JPS58178328A (en) 1982-04-14 1982-04-14 Focus detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6102882A JPS58178328A (en) 1982-04-14 1982-04-14 Focus detector

Publications (2)

Publication Number Publication Date
JPS58178328A true JPS58178328A (en) 1983-10-19
JPH0360405B2 JPH0360405B2 (en) 1991-09-13

Family

ID=13159431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6102882A Granted JPS58178328A (en) 1982-04-14 1982-04-14 Focus detector

Country Status (1)

Country Link
JP (1) JPS58178328A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152121U (en) * 1984-03-17 1985-10-09 コニカ株式会社 automatic focus adjustment device
US5345291A (en) * 1991-12-27 1994-09-06 Olympus Optical Co., Ltd. Compact focus detecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152121U (en) * 1984-03-17 1985-10-09 コニカ株式会社 automatic focus adjustment device
US5345291A (en) * 1991-12-27 1994-09-06 Olympus Optical Co., Ltd. Compact focus detecting device

Also Published As

Publication number Publication date
JPH0360405B2 (en) 1991-09-13

Similar Documents

Publication Publication Date Title
JPH0239763B2 (en)
JPS6333683B2 (en)
JPH0376442B2 (en)
JP2008241872A (en) Light detecting device, focus detecting device, and imaging apparatus
JPS58178328A (en) Focus detector
JPS63281110A (en) Focus detecting device
JPS63284513A (en) Optical device for focus detection
JP5272565B2 (en) Focus detection apparatus and imaging apparatus
JPS5849844B2 (en) Focus detection device
JP2007010951A (en) Focus detecting device and imaging apparatus
JP5701048B2 (en) Focus detection device
JP3118849B2 (en) Focus detection device
JPS59146008A (en) Focusing detector
JPH11325887A (en) Branch optical system automatic focus detector
JPH07333493A (en) Focus detector
JPH01140108A (en) Focus detector
JP2632178B2 (en) Automatic focus detection device for camera
JPS63309810A (en) Range finder
JPS6032013A (en) Optical system for detecting focus
JP3141413B2 (en) Focus detection device
JPH0423223Y2 (en)
JP4323592B2 (en) Focus detection device
JP3912891B2 (en) Focus detection device and optical instrument using the same
JPH0380284B2 (en)
JPS59146009A (en) Focusing detecting method