JPS58178224A - Weight measuring device - Google Patents

Weight measuring device

Info

Publication number
JPS58178224A
JPS58178224A JP6060082A JP6060082A JPS58178224A JP S58178224 A JPS58178224 A JP S58178224A JP 6060082 A JP6060082 A JP 6060082A JP 6060082 A JP6060082 A JP 6060082A JP S58178224 A JPS58178224 A JP S58178224A
Authority
JP
Japan
Prior art keywords
fluid
pressure
shielding plate
light
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6060082A
Other languages
Japanese (ja)
Inventor
Masahito Nagayama
正仁 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP6060082A priority Critical patent/JPS58178224A/en
Publication of JPS58178224A publication Critical patent/JPS58178224A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/18Indicating devices, e.g. for remote indication; Recording devices; Scales, e.g. graduated
    • G01G23/36Indicating the weight by electrical means, e.g. using photoelectric cells
    • G01G23/37Indicating the weight by electrical means, e.g. using photoelectric cells involving digital counting
    • G01G23/3707Indicating the weight by electrical means, e.g. using photoelectric cells involving digital counting using a microprocessor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To obtain the highly accurate measuring device, by utilizing the Pascal's principle, utilizing the pressure of fluid, thereby keeping balance and eliminating shift errors perfectly. CONSTITUTION:When a material to be measured is mounted on an upper pan, the load is transmitted to the fluid through a pressure applying plate and compresses the fluid. When the pressure of the fluid at the side of a fluid pressure coupling part is increased, a shielding plate 6 is pushed up, and the amount of light reaching a light receiving element 8 from a light emitting element 7 is decreased. An inverted triangle shaped window part is provided in the shielding plate 6. The amount of movement of the shielding plate is detected as the change in the amount of received light. The output of the light receiving element 8 is converted into the time change by a V-F converter 11 and an F-T converter 12, and the result is inputted to a microcomputer operating circuit 13. The microcomputer operating circuit 13 determines the pump driving time for a pump driving circuit 14 based on the signal change, controls ON and OFF of a pressure pump or its driving time, and keeps the shielding plate 6 at a specified position. In the microcomputer operating circuit 13, the weight value is computed, and the weight is didplayed by a display part 16 in a display circuit 15.

Description

【発明の詳細な説明】 本発明は偏置誤差を解消しぇ計重量に関する。[Detailed description of the invention] The present invention relates to a weighing device that eliminates eccentricity errors.

従来、例えば家庭内における食品や郵送物など0キツチ
ンスケール中レタースケールの如き上皿方式のバカIJ
 Kかいては、ロバ−パル機構とバネ弾性を用いえもの
が大勢であ夛、科学用上皿ハカリには電磁力平衡形が採
用されている。
Conventionally, for example, food items and mail items at home, etc., etc.
There are many products that use a donkey-pal mechanism and spring elasticity, and an electromagnetic force balance type is used for scientific top plate peelers.

第1図に電磁力平衡形針電器の構成例を示すが、ロバ−
パル機構を構成するメンバによυ上への通電を制御して
メンバの平衡を保ち、フォース:1イルへの通電量をそ
の際の重量値検出信号と1〜で重量値へ変換し表示を行
うものである。
Figure 1 shows an example of the configuration of an electromagnetically balanced needle electric device.
The balance of the members is maintained by controlling the energization to υ by the members that make up the pal mechanism, and the amount of energization to force 1 is converted into a weight value using the weight value detection signal at that time and 1~ and displayed. It is something to do.

この様(7,@−1重器の利点としては、指示値の振れ
妙Slい事、荷重の応答が速い事、高精度が期待できる
事などがあげられるが、その反面、1jAFjL依存性
かある事、A−D変換器に精度が費求され一コストアッ
グとなる事、可動部が多く棲雑となる事、偏置誤差があ
る事などが欠点としてあげられる。このうち偏置誤差と
は、上皿に被測定物を載せて測定する際、被測定物の置
かれ九位置により1重値に差が出ることをいい、計重4
VCおいては最も重要な問題である。本来、ロバ−パル
機構は偏置誤差をなくすために用いられるものであるが
、その効果は一方向のみでしかない丸め、それと直角方
向の偏置に対しては偏置誤差を理論的にも完全に解消す
ること社できなかった。
As shown above (7,@-1), the advantages of heavy equipment include small fluctuations in indicated values, fast response to loads, and high accuracy, but on the other hand, 1jAFjL dependence. Disadvantages include the fact that the A-D converter requires precision, which increases the cost, that there are many moving parts, and that there is an eccentricity error.Among these, what is an eccentricity error? , refers to the fact that when measuring with an object placed on the upper plate, there is a difference in the single weight value depending on the position of the object.
This is the most important issue in VC. Originally, the donkey pal mechanism was used to eliminate eccentricity errors, but its effect is only in one direction, and for eccentricity in the right angle direction, it is theoretically possible to eliminate eccentricity errors. It was not possible to eliminate it completely.

本発明は上記の点に嫌み提案されたものであり、密閉し
た容器内に静止している流体の一部に加えた圧力は流体
のすべての部分にそのt壕伝わるという流体の性質(A
スカルの原ml)を利用し、流体の圧力を利用して平衡
を保つことにより、偏置誤差を完全に解消し、精度の高
い計重器を提供することを目的とする。
The present invention was proposed in response to the above points, and is based on the property of fluids (A
The purpose of the present invention is to completely eliminate eccentricity errors and provide a weighing device with high accuracy by using the skull's original ml) and maintaining balance using fluid pressure.

以下、実施例を示す図面に従って本発明を詳述する。Hereinafter, the present invention will be described in detail with reference to the drawings showing examples.

第2図乃至第4図は本発明の一実施例を示すもので、第
2図は計重器畳郁の機械的構成図、第3図は信号処理部
の構成図、第4図は検出部の説明図である。
Figures 2 to 4 show an embodiment of the present invention. Figure 2 is a mechanical configuration diagram of the weighing device, Figure 3 is a configuration diagram of the signal processing section, and Figure 4 is a detection diagram. FIG.

第2図において構成を説明すると、管路5内は透明なオ
イル等の流体4でIII九されており、その一端には加
圧ポンプ9が接続され、他端には上皿1、加圧板2、シ
ール3等により構成されるl縄体圧縮部が設けられてい
る。ま九、管路5の途中には流体の移動と共に移動自在
で、かつ逆三角形状の窓部を有した鐘へい板6が管内に
設けられ、この値へい板6をはさんで発覚索子7、受光
素子8が対向して設けられている。
To explain the configuration in FIG. 2, the inside of the pipe 5 is filled with a fluid 4 such as transparent oil, a pressure pump 9 is connected to one end, and an upper plate 1 and a pressure plate are connected to the other end. 2. A rope compression section consisting of a seal 3 and the like is provided. Nine, in the middle of the conduit 5, there is a bell plate 6 which is movable with the movement of the fluid and has an inverted triangular window part, and the detection cord is placed between the pipe plate 6. 7. Light receiving elements 8 are provided facing each other.

なお、運へい板6の移動範囲にある管路はIラス管等の
透明な材料が用いられている。
Note that the pipe line within the range of movement of the transport plate 6 is made of a transparent material such as an I-rus pipe.

携3図は信号処理部の構成をブロック図にて示したもの
で、発光素子7には電源として発光素子用可電回路10
が接続され、受光素子8の出力端はV−F変換器11、
F−T変換器じを順次に介してマイコン演算回路130
入力ポートに接続され−Cいる。またマイコン演算回路
13の出力ボートには表示用回路15を介して表示部1
6が接続され、他にポンプ駆動回路14へ信号送出を行
っている。ここで、ポンプ駆動回路14は第2図にて示
した加圧ポンプ9をマイコン演算回路13の出力に応じ
て適宜制御するものである。
Figure 3 shows the configuration of the signal processing section in a block diagram.
is connected, and the output end of the light receiving element 8 is connected to a V-F converter 11,
The microcomputer arithmetic circuit 130 is sequentially connected to the F-T converter.
-C is connected to the input port. In addition, the display unit 1 is connected to the output port of the microcomputer arithmetic circuit 13 via a display circuit 15.
6 is connected to send signals to the pump drive circuit 14. Here, the pump drive circuit 14 controls the pressurizing pump 9 shown in FIG. 2 as appropriate in accordance with the output of the microcomputer calculation circuit 13.

動作にあたっては、上皿1に被測定物が載せらjるとそ
の荷重が加圧板2を介して流体4に伝達され、流体4を
圧縮する。この際、流体を圧縮す1力は流体の性質によ
)荷重にのみ依存し、上Illが偏置によj1傾−友と
しても、その影響は倉く勇れない、さて、荷重により流
体圧縮m1llO流体の圧力が高まると層へい86は上
方へ押し上げられ、発覚索子7から受光素子8ヘー1適
する光量が減少することになる。第4図(イ)、(ロ)
は鐘へい板60位置による通過光量の変化を示し友もの
であるが、總へい板6には逆三角形状の窓部が設けられ
ている喪め、總へい板の移動量が受光光量の変化として
検出される。
In operation, when an object to be measured is placed on the upper plate 1, its load is transmitted to the fluid 4 via the pressure plate 2, compressing the fluid 4. In this case, the force that compresses the fluid depends only on the load (depending on the properties of the fluid), and even if the upper Ill is eccentrically placed, the influence will not be strong enough.Now, due to the load, the fluid As the pressure of the compressed fluid increases, the layer shield 86 is pushed upwards, and the amount of light that is suitable from the detection probe 7 to the light receiving element 8 decreases. Figure 4 (a), (b)
2 shows the change in the amount of light passing through depending on the position of the door plate 60, but since the door plate 6 has an inverted triangular window, the amount of movement of the door plate changes the amount of light received. Detected as .

第3図において、この受光素子8の出力はV−F変換器
11によυ同波数Fの変化に変換され、次いでF−T変
換器12によシ   −− なる時間Tの変化に変換されてマイコン演算回路13に
入力される。そして、マイコン演算回路I3ではこの信
号変化によl/y7’駆動回路14の4ング駆動時間を
決定し、加圧ポンプのオン中オフまたは駆動時間を制御
して、流体の平衡を保つべく、別言すれば迩へい板6を
定位置に保つべく動作する。一方、マイコン演算回路1
3内ではF−T変換器じよシ送出される信号よシ重量値
を算出し、表示用回路15、表示部16により重量表水
を行う。なお、信号処理部の構成は第3図に′示したも
のに限らず、他の構成をとることも=r丁能でおる0例
えば、受光量が一定値よシ大逢いか小さいかを判別し、
これを復倦すべく加圧ポンプをオン・オフする単純な構
成も考えられる。この際、重量値は加圧ポンプのオン時
間よりWI算することができる。
In FIG. 3, the output of the light-receiving element 8 is converted by a V-F converter 11 into a change in the same wave number F, and then converted into a change in time T by an F-T converter 12. and is input to the microcomputer calculation circuit 13. Then, the microcomputer calculation circuit I3 determines the four-ring drive time of the l/y7' drive circuit 14 based on this signal change, and controls the on/off and drive time of the pressurizing pump to maintain fluid balance. In other words, it operates to keep the sliding plate 6 in a fixed position. On the other hand, microcomputer calculation circuit 1
3, the weight value is calculated using the signal sent from the FT converter, and the display circuit 15 and the display section 16 perform the weight measurement. Note that the configuration of the signal processing section is not limited to that shown in Fig. 3, and other configurations may also be used. death,
In order to recover from this problem, a simple configuration in which the pressurizing pump is turned on and off may be considered. At this time, the weight value can be calculated by WI from the ON time of the pressurizing pump.

第514は参考までに示した計重器本体の外観である。No. 514 is the external appearance of the scale body shown for reference.

その説明は省略する。The explanation will be omitted.

9上のように本発明の計重4にあっては、流体を充満し
た管路の一端を加圧ポンプに接続し、管路の他端に上皿
への荷重を流体に伝達する流体圧縮4を設け、前記管路
の途中に流体の移動に従い移動自在の遮へい板を設け、
この鐘へい檄をはさんで対向する発光素子と受光素子を
設け、流体の移動を受光素子の受光量変化とじて検知し
、前記加圧4yfを制御して流体の平衡を保つと共に、
検知信号もしくは(/グの制御信号を重量値に変換して
嶽示するようKしたので、偏置誤差を完全に解消するこ
とができ、精度0高い計重器を提供することができる。
As shown in 9 above, in the weighing device 4 of the present invention, one end of the pipe filled with fluid is connected to a pressurizing pump, and the other end of the pipe is connected to a fluid compressor that transmits the load on the upper plate to the fluid. 4, and a shielding plate that is movable according to the movement of the fluid is provided in the middle of the pipe,
A light-emitting element and a light-receiving element are provided facing each other with a space between them, and the movement of the fluid is detected as a change in the amount of light received by the light-receiving element, and the pressure 4yf is controlled to maintain the balance of the fluid.
Since the detection signal or (/g control signal) is converted into a weight value and displayed, the eccentricity error can be completely eliminated, and a weighing device with high accuracy can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

はその説@図、第5図は計重器の外観を示す参考図であ
み。 1・・・上皿、2・・・加圧板、3−シール、4−fi
体、5・・・管路、6・・・題へい板、、7・・・発光
素子、8・・・受光素子、9・・・加圧−ンプ、10・
・・発光素子用定電圧回路、11・・・V−F変換器、
12・・・F−丁蜜換器、13−・・マイコン演算回路
、14・・・Iンプ駆動回路、15・・・表示回路、1
6・・・表示部。 第3図 第5図 110−
The explanation is shown in Figure 5, and Figure 5 is a reference diagram showing the external appearance of the scale. 1... Upper plate, 2... Pressure plate, 3-Seal, 4-fi
Body, 5... Pipe line, 6... Subject plate, 7... Light emitting element, 8... Light receiving element, 9... Pressure pump, 10.
... constant voltage circuit for light emitting element, 11... V-F converter,
12...F-Ding exchanger, 13-...Microcomputer arithmetic circuit, 14...I amplifier drive circuit, 15...Display circuit, 1
6...Display section. Figure 3 Figure 5 110-

Claims (1)

【特許請求の範囲】[Claims] 流体を充満した管路〇一端を加圧−ンプKJI続し、管
路の他端に上履へ0荷重を流体に伝達する流体圧縮部を
設け、前記管路の途中に流体の移動に従い移動自在の砿
へい板を設け、この値へい板をはさんで対向する発光素
子と受光素子を設け、流体の移動を受光素子の受光量変
化として検知し、前記加圧4ンデを制御して流体の平衡
を保つと共に、検知信号もしくは4ングの制御信号を重
量値に変換して表示することを特徴とし良計*S。
One end of the pipe line filled with fluid is connected to a pressure pump KJI, and a fluid compression part is provided at the other end of the pipe line to transmit a zero load to the fluid, and as the fluid moves, a fluid compressor is provided at the other end of the pipe line. A movable glass plate is provided, a light emitting element and a light receiving element are provided facing each other with the plate in between, and the movement of the fluid is detected as a change in the amount of light received by the light receiving element to control the pressurization. It is characterized by maintaining the balance of the fluid and converting the detection signal or 4-ring control signal into a weight value and displaying it.
JP6060082A 1982-04-12 1982-04-12 Weight measuring device Pending JPS58178224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6060082A JPS58178224A (en) 1982-04-12 1982-04-12 Weight measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6060082A JPS58178224A (en) 1982-04-12 1982-04-12 Weight measuring device

Publications (1)

Publication Number Publication Date
JPS58178224A true JPS58178224A (en) 1983-10-19

Family

ID=13146896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6060082A Pending JPS58178224A (en) 1982-04-12 1982-04-12 Weight measuring device

Country Status (1)

Country Link
JP (1) JPS58178224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101289988B1 (en) * 2005-05-24 2013-07-26 사우쓰와이어 컴퍼니 Electrical cable having a surface with reduced coefficient of friction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101289988B1 (en) * 2005-05-24 2013-07-26 사우쓰와이어 컴퍼니 Electrical cable having a surface with reduced coefficient of friction

Similar Documents

Publication Publication Date Title
US3847507A (en) Liquid supply system by pump
US1173038A (en) Apparatus for measuring, indicating, and registering differences of pressure.
US3140612A (en) Ultrasonic sensor device
US2889780A (en) Fluid flow measurement and control apparatus
JPS58178224A (en) Weight measuring device
US2570410A (en) Compensated measuring apparatus
US3411351A (en) Fluid measuring system
US3357245A (en) System for volumetric analysis
US4381040A (en) Weighing scale with capacitor transducer
WO2005052522A1 (en) Volume measuring device
US2605695A (en) Weighing apparatus
US3350931A (en) System for measuring changes in fluid pressure
US2731831A (en) schaefer
US3739645A (en) Differential pressure indicating apparatus
US197489A (en) Improvement in platform weighing-scales
US2895333A (en) Pressure responsive force-ratio balance apparatus
US2422167A (en) Integrating weighing scale
US2524602A (en) Force measuring apparatus
US3459045A (en) Instrument system rangeability device
US3895532A (en) Pressure and temperature compensated indicating apparatus for fluid meters
WO1980001412A1 (en) A transducer
US3062053A (en) Displacement ratio transmitter
US2642741A (en) Transient force measuring device
CN2256531Y (en) measuring force weighing sensor
SU966509A1 (en) Device for measuring destructive force of specimens