JPS58178223A - Weight measuring device - Google Patents

Weight measuring device

Info

Publication number
JPS58178223A
JPS58178223A JP6059982A JP6059982A JPS58178223A JP S58178223 A JPS58178223 A JP S58178223A JP 6059982 A JP6059982 A JP 6059982A JP 6059982 A JP6059982 A JP 6059982A JP S58178223 A JPS58178223 A JP S58178223A
Authority
JP
Japan
Prior art keywords
strain
yielding body
free end
strain yielding
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6059982A
Other languages
Japanese (ja)
Other versions
JPS6310368B2 (en
Inventor
Masahito Nagayama
正仁 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP6059982A priority Critical patent/JPS58178223A/en
Publication of JPS58178223A publication Critical patent/JPS58178223A/en
Publication of JPS6310368B2 publication Critical patent/JPS6310368B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G21/00Details of weighing apparatus
    • G01G21/24Guides or linkages for ensuring parallel motion of the weigh-pans

Abstract

PURPOSE:To obtain the weight measuring device having highly accurate measuring accuracy, by providing two detecting means, which detect the deflection of a strain yielding body at both right and left sides of the free end part of the strain yielding body provided in a simplified Roberval's parallel motion mechanism, averaging the signals obtained by a detecting means, and using the result for detecting the weight, thereby eliminating shift errors perfectly. CONSTITUTION:When a material to be measured is mounted on an upper pan 3, the load is transmitted to the strain yielding body 1 through an auxiliary member 4 of the strain yielding body, and the strain yielding body 3 is deformed. When the shift errors are yielded in the directions of an X axis and a Y axis, moments owing to the shift errors act on the strain yielding body 3 through the auxiliary member 4 of the strain yielding body. The direction of the X axis is not affected because of the Roberval's parallel motion mechanism. The deformations of the deflection and torsion owing to the load simultaneously appear at the free end part of the strain yielding body 3 by the shift errors in the direction of the Y axis. Reflecting plates 5a and 5b, which are provided on both right and left sides, are displaced up and down, and light beams are projected to solar batteries at the different positions in light receiving elements 7a and 7b. The solar batteries, which generate output voltages, are judged, and the averaging operation is performed by a microcomputer operating circuit. The result is converted into a weight value and it is displayed by a display element.

Description

【発明の詳細な説明】 本発明は偏置誤差を解消した計重器に関する。[Detailed description of the invention] The present invention relates to a weighing device that eliminates eccentricity errors.

1重器の構成としては種々のものが提案されているが、
ビーA (tin )の曲げモーメントによる歪もしく
はたわみ(変位)を検出し、重量KW換して表示するも
のがある。第1図にその従来の1重器の要部、すなわち
起歪体鳩辺の構成を示す。起歪体1は略口・櫂−パル機
構を構成するもので、被測定物の荷重が作用する水平メ
ンバの他に4う−クの水平メンバを下方に設け、上下の
水平メンバの両端を他のメンバをもって連結し、一端を
装置内壁に固定してなる。i九図中において2はストレ
インr−ゾであって、起歪体■の各部に貼シ付けられ、
荷重による起歪体lの歪を検出するものである。
Various configurations of single-layer equipment have been proposed, but
There is a device that detects the strain or deflection (displacement) due to the bending moment of the beam A (tin), converts it into weight KW, and displays it. FIG. 1 shows the main part of the conventional single-layer device, that is, the configuration of the strain-generating body pigtail. The strain-generating body 1 constitutes a roughly mouth-paddle-pal mechanism, and in addition to the horizontal member on which the load of the object to be measured acts, four horizontal members are provided below, and both ends of the upper and lower horizontal members are connected to each other. They are connected by other members and one end is fixed to the inner wall of the device. In Figure i9, 2 is a strain r-zo, which is pasted on each part of the strain body ■.
This is to detect the strain of the flexure element 1 due to the load.

さて、被測定物の荷重は図中太矢印の位置に作用するわ
けであるが、必ずしも真下に向く成分だけとは限らず、
上皿(図示せず)に載せられ良被測定物の偏置に19、
図中X@またはY軸方向にモーメントを生ずることが多
々ある。
Now, the load on the object to be measured acts on the position indicated by the thick arrow in the figure, but it does not necessarily apply only to the downward component.
19 for eccentrically placing a good object to be measured placed on an upper plate (not shown);
A moment is often generated in the X@ or Y-axis direction in the figure.

しかして、X軸方向の偏置に対しては、c1/4−パル
機構を採用しているえめ淘定値に影響を与えることはな
いが、Y軸方向0偏置に対しては起歪体lがねじれを起
こし、検出される歪の値に影響を与え、いわゆる偏置誤
差を生じる欠点がある。
Therefore, for eccentricity in the X-axis direction, it does not affect the selection value using the c1/4-pal mechanism, but for zero eccentricity in the Y-axis direction, the strain-generating body There is a drawback that l causes twisting, which affects the detected strain value and causes a so-called eccentricity error.

上記装置誤差を低減する方法として、起歪体1の@Wを
大きくとり、ねじシに対する剛性を増し、−げモーメン
トによる歪Cとねじり力による歪S′との関係を C′ −く必要とされる精度 とすることにより、偏置誤差をある程度は解消すること
ができるが、その効果はあまシ期待できない、ま九、ね
じり力による歪e′を計測し、検知すべき曲げモーメン
ト歪Cを求めるべく、合否8″から、 #  x=  13 −  M なる慣Hを朽う機能を付加した装置もあるが、構成が非
零に複線となシ、精度の点でも↑十分なものであった。
As a method for reducing the above device error, it is necessary to increase the @W of the strain-generating body 1 to increase the rigidity against the screw, and to improve the relationship between the strain C caused by the bending moment and the strain S′ caused by the torsion force. Although it is possible to eliminate the eccentricity error to some extent by setting the accuracy to In order to find it, there is also a device that has a function to change the inertia H from pass/fail 8" to # x = 13 - M, but since the configuration is non-zero and double track, it is sufficient in terms of accuracy. .

本発明は上記の点に鑑み提案されたものであり、略ロバ
−パル機構を構成する起歪体の自由端部左右両側に、そ
の左右両側の喪わみ(変位)を検出す・る二組の検出手
段を設け、これら検出を段から得られた信号を平均して
重量検出に用いることにより、偏置誤差を完全に解消し
、測定精1釦の^い計重器を提供することを目的とする
The present invention has been proposed in view of the above points, and includes two sets on both left and right sides of the free end of the strain-generating body constituting the approximately donkey-pal mechanism, for detecting the deflection (displacement) on both the left and right sides. By providing a detection means and using these detections to average the signals obtained from the stages for weight detection, it is possible to completely eliminate eccentricity errors and provide a weighing device with high measurement precision and one button. purpose.

以ド、実施例を示す図面に従って本発明を詳述する。Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments.

第2図、第3図に示すのは本発明の第1の実施例であり
、第2図は起歪体周辺の構成図、第3図は検出から重量
表示までの信号処理部の構成を示す回路図である。
Figures 2 and 3 show the first embodiment of the present invention, with Figure 2 showing the configuration of the flexure body and its surroundings, and Figure 3 showing the configuration of the signal processing section from detection to weight display. FIG.

第21(において、その構成を説明すると、一端か装置
内壁に固定された起歪体lの自由端部り右1′11 I
I VCrj凸部1m、lbが設けられ、h皿3を保持
する起歪体補助材4の下端がこの凸111m。
To explain the structure of the 21st part, the free end of the flexure element l fixed to the inner wall of the device is
I VCrj convex portions 1m and 1b are provided, and the lower end of the flexure element auxiliary member 4 that holds the h plate 3 is this convex portion 111m.

1bと連結され、起歪体3に荷重を与えている。1b, and applies a load to the strain body 3.

一方、凸111m、1bの端面には―線とθなる角度を
もって反射板5m、5bがNRシ付けられており、反射
板5a、5bを介して発光素子6 a * (51sと
受光素子7m、?b閣の光路が形成されている。ここで
、発光素子6m、6bはある面積をもった光ビームを照
射するもので、放射された光ビームは反射板5m、5b
を介して受光素子7as7bへ導かれる。受光素子7a
、7bは、例えば太陽電池n個を直′線的に配列して構
成され友ものであり、光ビームの当つ九太陽電池からの
み出力が得られ、その位置を知ることができる。すなわ
ち起歪体1の九わみが反射板5m、5bの角度変化に変
換され、これが反射光の到逼位電を変化せしめ、受光素
子rh、rbによシその位置変化を検出するわけである
On the other hand, reflective plates 5m and 5b are attached to the end faces of the protrusions 111m and 1b at an angle θ with the - line, and the light emitting element 6a* (51s and the light receiving element 7m, An optical path of ?b is formed.Here, the light emitting elements 6m and 6b emit a light beam with a certain area, and the emitted light beam passes through the reflection plates 5m and 5b.
The light is guided to the light receiving element 7as7b via the light receiving element 7as7b. Light receiving element 7a
, 7b are constructed by linearly arranging n solar cells, for example, and the output can be obtained only from the nine solar cells that are hit by the light beam, so that their positions can be known. That is, the deflection of the flexure element 1 is converted into a change in the angle of the reflectors 5m and 5b, which changes the reaching potential of the reflected light, and the change in position is detected by the light receiving elements rh and rb. be.

次に第3図に基いて信号処理部の構成を説明する。なお
、起歪体1の自由端部左右両側に取り付けられた検出回
路は夫々間じものなので、片側についてのみ図示してあ
り、他の構成は省略しである。さて、受光素子7a内の
n(−の太陽電池の一端は共通に接地され、夫々の他端
Fiマルチ7レク?8mの入力端に接続されている。マ
ルチプレク?8畠は複数の入力のうちの1つを出力輪へ
接続するもので、マイコン演算回路ll内のマルチプレ
クサ制御回路により、n個の太陽電池の出力信号を順次
選択していくものである。
Next, the configuration of the signal processing section will be explained based on FIG. Note that since the detection circuits attached to both the right and left sides of the free end of the strain body 1 are the same, only one side is illustrated, and the other components are omitted. Now, one end of the n(- solar cells in the light receiving element 7a is commonly grounded, and the other end is connected to the input end of the Fi multi-channel 7 receiver 8m. One of them is connected to the output wheel, and the output signals of the n solar cells are sequentially selected by a multiplexer control circuit in the microcomputer calculation circuit 11.

次いで、マルチプレクサ8aの出力端はへッドアンノ9
&!!r介してコン・IレータlOaの一入力端に接続
さJL、コン・ぐレータlOaの他の入力端子には基準
電圧■r、fが印加され、出力端はマイコン演算回&g
i1の入力ポートに接続されている。
Next, the output terminal of the multiplexer 8a is connected to the head antenna 9.
&! ! JL is connected to one input terminal of the converter lOa through r, reference voltages r and f are applied to the other input terminals of the converter lOa, and the output terminal is connected to the microcomputer calculation circuit &g.
It is connected to the input port of i1.

動作e([あたっては、被測定物が上皿3に載せら7’
+、 6と、起歪体補助材4を介して起歪体lに荷重が
云えられ、起歪体lLf形を起こす。この時 級測定物
が上皿3の板付部の中心に置かれた場合には、下向きの
荷電だけが作用するが、MrPX軸、Y@の方向に偏置
された場合、起歪体補助材4を介して起歪体3にIA 
fit Yこよるモーメントが働くことになる。ここで
、X軸方向の偏置に対しては略ロバ−パル機構を採用し
ているえめ影響はなく、Y一方向の1置によシ起歪体l
はねじ)t−生ずることになる。しかして、起歪体3の
自由端部では荷重によるえわみとねじシO変形が同#に
現れることとな9、自由端部の左右両側に設けられ九反
射@!a、Sbはある値を中心として上下に変位し、夫
々の受光素子7m、7b内の異った位置の太腸電−へ光
ビームを投する。仮に元ビームが当った太陽電池を夫々
m番目、m′番目とすると、!ルチ!レクサ8a(8b
)により11!:目からn番目までの太陽電池の出力を
順次選択し、ヘッドアン!9m(9b)により増幅し友
後、フン・量レータlOa (lob )によって基準
電圧vr*fと比較し、出力電圧を生じている太陽電池
tq別することによりm 、 C11’を検出すること
ができる。マイコン演算回路11ではm 、 m’を検
出すると tn+m’ なる平均をとる演算を行い、重量値に変換(検出値と重
量値け1次の関係があるので定数倍し、更に定数を付加
する)して表示素子12により表示を竹う0k述したよ
うに、起歪体自由端部の変形は荷重による九わみとねじ
〕の合成されたものであるから、m、m’は荷重に応じ
た値を中心Vζして、偏置によるモーメントの分だけ増
減したものであり、三者を平均して得られ喪値には′、
4置による影響が全く現れない。
Operation e ([In this case, when the object to be measured is placed on the upper plate 3 7'
+, 6, a load is applied to the strain body l via the strain body auxiliary material 4, causing the strain body lLf shape to rise. At this time, if the object to be measured is placed at the center of the plate attachment part of the upper plate 3, only a downward charge will act, but if it is eccentrically placed in the direction of MrP IA to strain body 3 via 4
The fit Y moment will be at work. Here, there is no effect on the eccentricity in the X-axis direction due to the adoption of a roughly donkey-pal mechanism, and one position in the Y-direction causes the distortion body l
(screw) t- will occur. Therefore, the deflection due to the load and the screw O deformation appear at the same time at the free end of the strain-generating body 3, and nine reflections are provided on both left and right sides of the free end. a and Sb are displaced up and down around a certain value, and project light beams to different positions of the light receiving elements 7m and 7b. Let us assume that the solar cells hit by the original beam are the m-th and m'-th solar cells, respectively! Luchi! Lexa 8a (8b
) by 11! :Select the output of the solar cells from the th to the nth in order and head un! After amplification by 9m (9b), m and C11' can be detected by comparing it with the reference voltage vr*f by the fecal meter lOa (lob) and distinguishing the solar cell tq producing the output voltage. can. When the microcomputer calculation circuit 11 detects m and m', it calculates the average of tn+m' and converts it into a weight value (since there is a linear relationship between the detected value and the weight value, it is multiplied by a constant and further a constant is added). As mentioned above, the deformation of the free end of the flexure element is a combination of the deflection due to the load and the screw), so m and m' are The center value is Vζ, and it is increased or decreased by the moment due to eccentricity, and the mourning value obtained by averaging the three values is ′,
No influence from the 4th position appears.

次に第4図、第5図に示すのは本発明の第2の実施例で
あり、起歪体自由端部の変位を検出するための手段とし
て、弦の張力変化を利用した先のである。第4図は起歪
体周辺の構成を示したものであるが、起歪体lの自由端
部左右両側に設けられた凸部1m、lbは振動弦13m
、13bを介して振動子(例えば超音波振動子) 14
m 、141eの振動片に接続され、起歪体自由端部の
変位によシ弦張力が変化し、振動の振幅が変化するよう
になっている。
Next, FIGS. 4 and 5 show a second embodiment of the present invention, in which changes in the tension of the string are used as a means for detecting the displacement of the free end of the flexure element. . Fig. 4 shows the structure around the flexure element, where the protrusions 1m are provided on both left and right sides of the free end of the flexure element l, and lb is a vibrating string of 13m.
, 13b to a transducer (for example, an ultrasonic transducer) 14
It is connected to the vibrating piece 141e, and the string tension is changed by the displacement of the free end of the flexure element, and the vibration amplitude is changed.

第5図は信号処理部の構成を示し、左右O検出子RC)
うち片側だけを示す、第5図において構成を説明すると
、振動子14mの信号入力端子Pには信号導として基準
発振回路15の発信出力が加わるよう#IIIRされ、
振動に比例した電圧を出力する端子Qはノ・イインビー
メンスOアンfl@at介してコン/豐レータ17mの
一入力端に接続され、コンΔレータ17色の他の入力端
には階段状の波形を出力するステ7ケース発振器18の
出力が加わるよう接続され、コン/4レータ17mの出
力端はマイコン演算回路110入力ポートに接続されて
いる。ここで、コン・中レータ17a1ステアケース発
振器18#iいわゆる逐次比較方式のφコン・々−タを
構成するもので、入力信号に一致する壕で0階段数をマ
イコン演算回路11内でカウントすることによpアナロ
グ信号をデジタル化するものである。
Figure 5 shows the configuration of the signal processing section, with left and right O detectors RC)
To explain the configuration with reference to FIG. 5, which shows only one side of the transducer, the signal input terminal P of the vibrator 14m is connected to #IIIR so that the oscillation output of the reference oscillation circuit 15 is applied as a signal conductor.
Terminal Q, which outputs a voltage proportional to vibration, is connected to one input end of the controller 17m through the input beam, and a stepped waveform is connected to the other input end of the controller 17m. The output terminal of the converter/4 converter 17m is connected to the input port of the microcomputer arithmetic circuit 110. Here, the converter medium converter 17a1, the staircase oscillator 18#i, which constitutes a so-called successive approximation type φ converter, counts the number of 0 steps in the trench that matches the input signal in the microcomputer arithmetic circuit 11. In particular, it digitizes p-analog signals.

動作にあっては、起歪体1011由端郁の変位によυ振
動弦13m (13b ) t)弦張力が変化すると、
Wi励子14畠(141t)1り振動m餌が蜜化し、こ
の振幅変化はアンプ16a C16k )、コン・肴レ
ータ17m(17b)等によりデジタル化され、検出信
号としてマイコン演算回路11 K送出される。マイコ
ン演算l路11では、前述しえ第10実施例と同様に、
左右両側の検出手段よ〕得られ良信号を平均し、重量値
に変換して表示する。なお、1勺コンバータとしてはス
テ7ケース発振器を用いたもOK限らず、他の方式によ
るφコンバー!七用いても同様に構成できることは言う
までもない。
In operation, when the υ vibrating string 13m (13b) t) string tension changes due to the displacement of the end of the strain body 1011,
Wi exciter 14 (141t) 1 vibration m bait becomes concentrated, and this amplitude change is digitized by amplifier 16a (C16k), controller 17m (17b), etc., and sent as a detection signal to microcomputer calculation circuit 11K. . In the microcomputer operation circuit 11, as in the tenth embodiment described above,
The good signals obtained from both the left and right detection means are averaged, converted into a weight value, and displayed. In addition, it is not necessarily OK to use a ST7 case oscillator as a single converter; other methods of φ converter can also be used. It goes without saying that the same structure can be achieved even if seven types are used.

第6図は参考壕でに示し九計重鶴本体の外観である。そ
の説明は省略する。
Figure 6 shows the external appearance of the Kukei Jutsuru body shown in the reference trench. The explanation will be omitted.

以Fのように本発明にあっては、ビームの大わみ/こよ
J)I[測定物の重量を測定し、表示する1重層におい
て、略ロバ−パル機構を構成する起歪体と、この起歪体
OII由端郁左右両側の変位を検出する二組の検出手段
と、前記起歪体の自由端部に跨設され、かつ被測定物を
載せる上皿と鵠歪体とを連結する起歪体補助材と、信号
処理部とt備え、前記二組の検出手段より得られた信号
を平均し、重量値に変換して表示するようにしたので、
皺橢定物のいかをる偏置によつても誤差を生じることが
なく、種変O高い計重優を提供することかで11番。
As described below, in the present invention, the deflection of the beam is determined by a strain-generating body that constitutes approximately a donkey-pal mechanism in a single layer that measures and displays the weight of the object to be measured, Two sets of detection means for detecting the displacement on both the left and right sides of the strain body OII, and the strain body are connected to an upper plate that straddles the free end of the strain body and on which the object to be measured is placed. The device is equipped with a flexure element auxiliary material and a signal processing section, and the signals obtained from the two sets of detection means are averaged, converted into a weight value, and displayed.
It is number 11 in that it does not cause errors even when the eccentricity of the wrinkled fixed object is measured, and it provides a high weighing accuracy.

4.11 N O簡単な説明 第111は従来O計重ll0II都を示す図画、第2m
、11に3図は本実1lO110−輪例を示す構成図、
1に411.1lISIIdjl!o実施例を示す構成
図、gsaiは計重器O外−を示す参考図である。
4.11 N O Brief explanation No. 111 is a drawing showing the conventional O weighing ll0 II capital, No. 2 m
, Figure 11 and 3 are configuration diagrams showing an example of a real 110110-wheel.
1 to 411.1lISIIdjl! o A configuration diagram showing an embodiment, gsai is a reference diagram showing the outside of the weighing device O.

1・・・趨歪体、la、lk・・・凸部、3・・・上皿
、4・・・燗歪体補助材、 1iia、Sし・・反射植
i 5atsb・・・発光素子、7m、7し・・受光素
子、 @h、fib・・・マルチグレクす、1m、9ト
−ヘッドアンデ、10a 、lek 、17m 、17
k・・・コン/4レータ、11・・・マイコン演算am
、it・・表示素子、13m、1:Th・・・振動弦、
14m、14k・・・振動子、15・・・基準発m回路
、14a、lIk・・・アン1118・・・ステアケー
ス発aS。
1... Straight distorted body, la, lk... Convex portion, 3... Upper plate, 4... Warm distorted body auxiliary material, 1ia, S... Reflective plant i 5atsb... Light emitting element, 7m, 7...light receiving element, @h, fib...multiglex, 1m, 9 toe head unde, 10a, lek, 17m, 17
k...computer/4-rater, 11...microcomputer operation am
, it...display element, 13m, 1:Th...vibrating string,
14m, 14k... Vibrator, 15... Reference generator m circuit, 14a, lIk... Ann 1118... Staircase generator aS.

第1図 第2図Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)  ♂−ムの九わみによ)被測定物の重量七m定
し、表示する計重1)において、略口Δ−・々ル機#t
−構成する起歪体と、この起歪体の自由端部左右両側O
変位を検出する二層の検出手段と、酋紀趨歪体0*m端
部に誇役され、かつ被測定物を載せる上皿とM歪体とを
連結する起歪体補助材と、信号処場蕩とを備え、前記二
組の検出手段よ〕得られ良信号を平均し、重量値に変換
して表示することを特徴とし良計重器。
(1) Determine and display the weight of the object to be measured by 7 meters (according to the angle of ♂-mu).
- Constituting strain-generating body and the free end of this strain-generating body on both left and right sides O
A two-layer detection means for detecting displacement, a flexure element auxiliary member that is placed on the 0*m end of the axial strain body and connects the upper plate on which the object to be measured is placed and the M strain body, and a signal 1. A weighing device which averages the good signals obtained by the two sets of detection means, converts it into a weight value, and displays it.
(2)  前記検出手RFi、起歪体自由端部の左右両
側に配設し走反射板と、この(反射板を介して光l!を
設定し九発光素子および受光素子によって構成した特許
請求の範■第1項記載の計重器。
(2) A patent claim in which the detection hand RFi is constituted by a traveling reflection plate disposed on both left and right sides of the free end of the flexure element, and a light emitting element and a light receiving element in which light l! is set via the reflection plate. Category ■ Weighing device described in item 1.
(3)  前記検出手段は、趨歪体自由端郁の左右両側
の一部を夫々振動弦を介して振動子に接続して構成され
、起歪体の九わみによる弦張力の変化を振動子の振動振
幅の変化として取シ出したTiWfM求の範11項記載
の計重器@
(3) The detection means is configured by connecting a portion of the left and right sides of the free end of the straining body to a vibrator via a vibrating string, and vibrates the change in string tension due to the deflection of the strain body. The weighing device described in item 11 of the TiWfM calculation taken as the change in the vibration amplitude of the child @
JP6059982A 1982-04-12 1982-04-12 Weight measuring device Granted JPS58178223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6059982A JPS58178223A (en) 1982-04-12 1982-04-12 Weight measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6059982A JPS58178223A (en) 1982-04-12 1982-04-12 Weight measuring device

Publications (2)

Publication Number Publication Date
JPS58178223A true JPS58178223A (en) 1983-10-19
JPS6310368B2 JPS6310368B2 (en) 1988-03-07

Family

ID=13146864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6059982A Granted JPS58178223A (en) 1982-04-12 1982-04-12 Weight measuring device

Country Status (1)

Country Link
JP (1) JPS58178223A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081207U (en) * 1988-06-30 1996-07-30 ホーゴベンス・グループ・ベー・ブイ Measuring device for measuring the weight of loads
DE10015311B4 (en) * 1999-03-30 2013-03-28 A & D Co., Ltd. Electronic scale

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993005374A1 (en) * 1991-08-31 1993-03-18 Kyoei Automatic Control Technology Co., Ltd. Method and device for measuring dynamic load

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081207U (en) * 1988-06-30 1996-07-30 ホーゴベンス・グループ・ベー・ブイ Measuring device for measuring the weight of loads
DE10015311B4 (en) * 1999-03-30 2013-03-28 A & D Co., Ltd. Electronic scale

Also Published As

Publication number Publication date
JPS6310368B2 (en) 1988-03-07

Similar Documents

Publication Publication Date Title
US4962669A (en) Method and apparatus for measuring deformations of test samples in a testing machine
CN100520280C (en) Interferometer systems for measuring displacement and exposure systems using the same
US5790255A (en) Transparent light beam detectors
US6055391A (en) Vibration detection and control system for printers
JPH11326194A (en) Surface plasmon sensor
US4815855A (en) Interferometric load sensor and strain gage
JP3706265B2 (en) Surface plasmon sensor
JPH0379642B2 (en)
JPS58178223A (en) Weight measuring device
JPS61254812A (en) Instrument for continuously measuring thickness of nonmagnetic sheet
JPH11190616A (en) Surface shape measuring device
JPH01313705A (en) Thickness measuring instrument
US5777745A (en) Method and apparatus for compensating for noise generated by fluctuation of a medium around an object to be measured
JPH0654220B2 (en) Laser speckle strain measuring device
JPH06273162A (en) Flatness measuring device
JPH02134505A (en) Thickness measuring apparatus
JPH08320264A (en) Method and device for measuring x-ray stress
JPH08304020A (en) Movement-accuracy measuring apparatus
JP2002122419A (en) Flatness measuring device
JPH09178425A (en) Measuring instrument
JPH0522857B2 (en)
JP2906704B2 (en) Manufacturing method of load cell
JPH08152433A (en) Optical acceleration sensor
JPH01232201A (en) Laser interference length measuring instrument
SU887922A1 (en) Deformation measuring method