JPS58177194A - Treating agent formed by synthesizing and granulating powdery body of coralline fossil for adsorbing and removing heavy metal from waste water - Google Patents

Treating agent formed by synthesizing and granulating powdery body of coralline fossil for adsorbing and removing heavy metal from waste water

Info

Publication number
JPS58177194A
JPS58177194A JP5898382A JP5898382A JPS58177194A JP S58177194 A JPS58177194 A JP S58177194A JP 5898382 A JP5898382 A JP 5898382A JP 5898382 A JP5898382 A JP 5898382A JP S58177194 A JPS58177194 A JP S58177194A
Authority
JP
Japan
Prior art keywords
heavy metals
waste water
coral reef
adsorbing
fossils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5898382A
Other languages
Japanese (ja)
Inventor
Hiroshige Mikashima
三ケ島 裕茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5898382A priority Critical patent/JPS58177194A/en
Publication of JPS58177194A publication Critical patent/JPS58177194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To efficiently adsorb and remove heavy metals from waste water, by adding an adsorbing-removing agent obtd. by adding the specified amount of Portland cement to the fine powdery body of coralline fossils having different main components, granulating the mixture and baking it to the waste water containing heavy metals. CONSTITUTION:The fossil of an existing coral reef, the fossil of an upheaval coral reef and the limestone of a coral reef are crushed and mixed into a powdery body of 200-300 meshes. This mixed powdery raw material of coralline fossils is mixed with Portland cement (clinker powder having the composition of silica, alumina, ferric oxide and calcium oxide) as a binder in an amount of 0.8-1.0wt% based on said powdery raw material. Thereafter, the mixture is blended while being damped, granulated with pressure by a briquetting granulator and then sintered at 400-500 deg.C to manufacture the agent for adsorbing and removing heavy metals from waste water. This adsorbing-removing agent is brought into contact with waste water containing heavy metals for 30-60min, to adsorb and remove the heavy metals.

Description

【発明の詳細な説明】 本発明について先に出願57−017466 で提案し
たが、組成質の異なるサンゴ礁化石を微粉体とし、混合
して均一なる原材料とし有効に作用する造粒助剤の適量
添加合成により吸着能とイオン交換反応性を相乗作用さ
せ重金属含有排水溶液から重金属を選択的に効率よく吸
着除去する吸着処理剤の造粒展性に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention was previously proposed in Application No. 57-017466, but coral reef fossils with different compositions are made into fine powder, mixed to form a uniform raw material, and an appropriate amount of an effective granulation aid is added. The present invention relates to the granulation malleability of an adsorption treatment agent that selectively and efficiently adsorbs and removes heavy metals from heavy metal-containing wastewater solutions by synergistically combining adsorption capacity and ion exchange reactivity through synthesis.

サンゴ礁化石は、存在形態あるいは生成年代によって、
現棲すンゴ礁化石、隆起サンゴ礁化石及びサンゴ礁石灰
岩に大別される。これ等のサンゴ礁化石を原材料とする
には、その主成分と組成質の均一化を計る必要がある。
Coral reef fossils vary depending on their form of existence or generation date.
It is broadly divided into living coral reef fossils, raised coral reef fossils, and coral reef limestones. In order to use these coral reef fossils as raw materials, it is necessary to make their main components and composition uniform.

本発明は現棲すンゴ礁化石、隆起サンゴ礁化石及びサン
ゴ礁石灰岩を粉砕し2.00〜300メツシユの微粉体
を混合し均一化された原材料として、有効に作用する粘
結剤ポルトランドセメント(シリカ、アルミナ、酸化第
二鉄、酸化カル7ウムを組成分としたクリンカー粉末)
を粉体比0.8〜1.0重量%添加合成し、均一に混合
、加水捏和、ブリケラティング造粒機で加圧造粒し、4
UO℃〜500 ’C好ましくは500℃に焼結して目
的の重金属排水の吸着除去処理剤を発明製品とした。
The present invention uses Portland cement (silica, Clinker powder containing alumina, ferric oxide, and calcium 7 oxide)
Synthesize by adding 0.8 to 1.0% by weight of powder, mix uniformly, knead with water, pressure granulate with a briquerating granulator,
The product was sintered at UO°C to 500'C, preferably at 500°C, to obtain the desired adsorption and removal treatment agent for heavy metal wastewater as an invention product.

重金属の排水処理は、従来一般的に前処理として酸化法
、還元法、生物処理で処理し硫化物による中和を行い大
部分の重金属を除去した後に残存する低量の重金属をイ
オン交換樹脂や活性炭による吸着処理で行なわれている
が、現在及び将来の総量規制を考えるとき、効率のよい
吸着法が最適と思われる。現実に産業上必要なのは重金
属含有濃度の低い排水の処理であり、しかも簡便で小型
装置によるか、既設の装置をそのまま活用でき操作ミス
のない効率の高い、経済的な処理剤が望まれている。ま
た、使用ずみ処理剤の産業廃棄物の発生が城駿化できる
ものが要求される。
Conventionally, wastewater treatment for heavy metals has generally been carried out using oxidation, reduction, or biological treatment as a pretreatment, followed by neutralization with sulfide to remove most of the heavy metals, and then remove the remaining small amounts of heavy metals using ion exchange resin or other methods. Adsorption treatment is performed using activated carbon, but when considering the current and future total amount regulations, an efficient adsorption method seems to be optimal. What is actually required in industry is the treatment of wastewater with low concentrations of heavy metals, and what is desired is a highly efficient and economical treatment agent that can be used with simple, compact equipment or existing equipment that can be used as is without operational errors. . In addition, there is a need for a treatment agent that can reduce the generation of industrial waste from used treatment agents.

発明の処理剤はこれ等の要請に応え、提供することを目
的とした。
The processing agent of the invention was intended to meet and provide these requests.

詳しく述べれば、現棲すンゴ礁化石、隆起サンゴ礁化石
及びサンゴ礁石灰岩が多孔質で酸化カルシウムを主成分
とする組成質で、カルシウムイオンが重金属イオンと容
易にイオン交換反応を起す性質があ抄、加えて微細孔に
もとづく吸着性があることに着目して現棲すンゴ礁化石
、隆起サンゴ礁化石及びサンゴ礁石灰岩を破砕して30
〜60メツシユの粒形として焼成加工し、カドミウム、
銅、亜鉛、水銀、六価クロムの吸着除去実験を行った実
験では、それぞれ重金属水溶液濃度lO〜/を程度の水
溶液に粒形処理剤209/lを投入60分撹拌処理し規
定の分析方法で処理水を測定した。
To be more specific, existing coral reef fossils, raised coral reef fossils, and coral reef limestone are porous and have a composition mainly composed of calcium oxide, and calcium ions easily undergo ion exchange reactions with heavy metal ions. In addition, focusing on the adsorption properties based on micropores, existing coral reef fossils, raised coral reef fossils, and coral reef limestone were crushed and
It is fired and processed into grains of ~60 mesh, and cadmium,
In an experiment in which copper, zinc, mercury, and hexavalent chromium were adsorbed and removed, 209/l of a particle shape treatment agent was added to an aqueous solution of heavy metals with a concentration of 10~/l, stirred for 60 minutes, and analyzed using the specified analysis method. The treated water was measured.

分析結果ではカドミウム、銅については90%程度の吸
着除去の効率を得たが、亜鉛、水銀、六価クロムでは除
去率の低量することと、破砕による粒形では現棲すンゴ
礁化石、隆起サンゴ礁化石及びサンゴ礁石灰岩の組成質
に若干の差異があるため(表1)常に平均的な吸着除去
能が困難であることが解った〇 また、実験による処理では処理剤の圧摩耗によるスラッ
ジの発生があり実用上処理装置の目詰゛9による稼動マ
イナスの虞れも認められた。
The analysis results showed that adsorption and removal efficiency of about 90% was obtained for cadmium and copper, but the removal rate was low for zinc, mercury, and hexavalent chromium, and that the particle form due to crushing showed that it was difficult to remove existing coral reef fossils. Because there are slight differences in the composition of uplifted coral reef fossils and coral reef limestone (Table 1), it has been found that it is difficult to always achieve an average adsorption removal ability.In addition, in experimental treatments, sludge formation due to pressure abrasion of the treatment agent was found to be difficult. There was a possibility that there was a possibility that the processing equipment would be clogged (9), resulting in negative operational performance.

発明の処理剤はこれ埠の欠点を是正改良し、安全に確実
に吸着能を高め除去効率を増進する方法として粉体とし
て造粒することを考究した。
The treatment agent of the invention corrects and improves the drawbacks of this method, and we have considered granulating it as a powder as a method to safely and reliably increase the adsorption capacity and increase the removal efficiency.

その構成を述べれば、粉体から造粒にする利点は破砕粒
形に比較して吸着能の比表面積が非常に拡大される効果
と組成質の均一化にあり、次いで処理剤として必須の要
件である耐水、耐圧、耐摩耗性を付加した凝結性の高い
強度をつけ不溶性にすることができる。
To explain its composition, the advantages of granulating from powder are that compared to crushed granules, the specific surface area of the adsorption capacity is greatly expanded and the composition is uniform, which is an essential requirement for a processing agent. In addition to water resistance, pressure resistance, and abrasion resistance, it has high coagulability and strength, and can be made insoluble.

発明のサンゴ礁化石粉体は多孔質で微細孔にもとすく吸
着性、可塑性、自愈結合性の特性があるが、多孔質であ
るから圧縮力のみでは成形は困難で有効に作用する粘結
剤が必要であり、その選択が重要である。
The coral reef fossil powder of the invention is porous and has the characteristics of adsorption, plasticity, and self-bonding properties that easily penetrate into microscopic pores. agent is necessary, and its selection is important.

造粒助剤として助剤自身が結合に介在する酸化チタン、
シリカがあ抄、圧密化を助長するものにワックスエマル
ジョン、CMC(カルボキシメチールセルロース)があ
り、また粉体の空隙を充填し粒子間を結合させるコール
タールピッチ、原料粉体を薄膜で覆い粒子間を結合させ
形成後の加熱乾燥で強度をつける液体助剤として水ガラ
ス、パルプ廃液等があるが、実験の結果ポルトランドセ
メントがその組成質としてシリカ、アルミナ、酸化第二
鉄、酸化カルシウムを含有しているセメントクリンカ−
であるから発明の原材料であるサンゴ礁化石粉体との組
成質が同質であり、粉体粒子間を効果的に結合させイオ
ン交換反応を助長するのに最適であることを解明し、粉
体比0.8〜1.0重量%を添加合成し均一に混合し加
水捏和、ブリケラティング造粒機で加圧造粒し48時間
自然乾燥の後400℃〜500℃好ましくは500℃に
焼成して凝結性の高い強度をつけ不溶性の処理剤を完成
製品とした。
Titanium oxide as a granulation aid, with the aid itself intervening in the bond;
There are wax emulsions and CMC (carboxymethyl cellulose) that contain silica to promote compaction and compaction, as well as coal tar pitch that fills the voids in powder and bonds between particles, and particles that cover raw material powder with a thin film. Water glass, pulp waste liquid, etc. are used as liquid auxiliary agents that bind materials and strengthen them by heating and drying after formation, but as a result of experiments, Portland cement contains silica, alumina, ferric oxide, and calcium oxide. cement clinker
Therefore, it was found that the composition of the coral reef fossil powder, which is the raw material for the invention, is the same, and that it is optimal for effectively bonding between powder particles and promoting ion exchange reactions, and the powder ratio is the same. Add and synthesize 0.8 to 1.0% by weight, mix uniformly, add water and knead, pressure granulate using a briquerating granulator, air dry for 48 hours, and then bake at 400°C to 500°C, preferably 500°C. The finished product was made into an insoluble treatment agent with high coagulability and strength.

次に本発明の実施方法を述べる。Next, a method of implementing the present invention will be described.

実施例(1) 実験造粒の過程での造粒助剤の作用では、CMC(カル
ボキシメチールセルロース)t−粉体比0.8〜1.0
重量%を添加混合した場合には加水捏和加圧造粒、焼成
では粒形を成すが水に浸すと短時間で軟弱となり耐水性
がなく吸着処理剤としては不適当であり、また、酸化チ
タンを造粒助剤として添加合成した場合には加水捏和、
加圧造粒では粒形を成すが焼成の段階で砕けて目的の製
品を得られなかった。
Example (1) In the action of the granulation aid during the experimental granulation process, the CMC (carboxymethyl cellulose) t-powder ratio was 0.8 to 1.0.
When % by weight is added and mixed, granules are formed by kneading with water, pressure granulation, and calcination, but when immersed in water, they become soft in a short time and have no water resistance, making them unsuitable as adsorption treatment agents. When titanium is added and synthesized as a granulation aid, water-kneading,
Pressure granulation resulted in a granular shape, but it broke during the firing stage, making it impossible to obtain the desired product.

次いで、発明の造粒助剤ポルトランドセメントの混合比
率については、粉体比1.5〜2−0重量−の添加合成
造粒では吸着能が低下し、粉体比0.3〜0.5311
1%の添加合成造粒では吸着処理実験でスラッジの発生
があり、耐摩耗性の限界があり強度の不安がみられた。
Next, regarding the mixing ratio of the granulation aid Portland cement of the invention, in addition synthetic granulation with a powder ratio of 1.5 to 2-0 weight, the adsorption capacity decreases, and the powder ratio is 0.3 to 0.5311.
With 1% additive synthetic granulation, sludge was generated in the adsorption treatment experiment, and there was a limit to wear resistance and there were concerns about strength.

実施例(2) 発明の粉体比08〜1.0重量%を添加合成し、均一に
混合、加圧捏和、ブリケラティング造粒機で加圧造粒し
400℃〜500℃好ましくは500℃で焼結した造粒
処理剤では従来の重金属排水の一般的処理として行われ
ている前処理としての酸化法、還元法、生物処理法及び
硫化物による中和法の何れも行わずに実験データー表(
2)の水溶液原水の濃度、処理時間、吸着処理水分析の
、重金属水溶液の吸着除去処理実験を行った実験では、
処理時間30分〜60分で銅は99.8%(検出できず
)カドミウムは98.57%、亜鉛は97.5%の吸着
除去の効率を得た、水銀は86.3チと稍や吸着除去率
が低下した。六価クロムは酸性とアルカリ性の形で存在
するので亜硫酸ナトリウムで前処理しその後60分処理
で99.8%(検出できず)の吸着除去効率を示した。
Example (2) The powder of the invention was added at a ratio of 08 to 1.0% by weight, mixed uniformly, kneaded under pressure, and granulated under pressure using a briquerating granulator, preferably at 400°C to 500°C. The granulation treatment agent sintered at 500℃ does not require any of the oxidation, reduction, biological treatment, or sulfide neutralization pretreatment methods that are conventionally used to treat heavy metal wastewater. Experimental data table (
In the experiment of adsorption and removal treatment of heavy metal aqueous solution in 2) concentration, treatment time, and adsorption treatment water analysis of aqueous solution raw water,
In a treatment time of 30 to 60 minutes, we obtained adsorption and removal efficiency of 99.8% (undetectable) for copper, 98.57% for cadmium, 97.5% for zinc, and a slightly lower 86.3% for mercury. The adsorption removal rate decreased. Since hexavalent chromium exists in acidic and alkaline forms, pretreatment with sodium sulfite and subsequent treatment for 60 minutes showed an adsorption removal efficiency of 99.8% (undetectable).

実施例(3) また、ヤシ殻活性炭との吸着除去率の比較実験では表(
3)の如くカドミウム原水溶液濃度538η/lを使用
し、発明処理剤30 ?/lを投入し撹拌時間30分処
理で処理水溶液濃度0.4■/1160分処理で処理水
溶液濃度0.22■/1.吸着除去率で30分で99.
2%、60分で99.5%の効率を得た。
Example (3) In addition, in a comparative experiment of adsorption removal rate with coconut shell activated carbon, Table (
As in 3), using the cadmium raw aqueous solution concentration of 538η/l, the invention treatment agent was 30? /l and stirring for 30 minutes, the concentration of the treated aqueous solution was 0.4■/1,1160 minutes, the concentration of the treated aqueous solution was 0.22■/1. The adsorption removal rate is 99 in 30 minutes.
2%, an efficiency of 99.5% was obtained in 60 minutes.

ヤシ殻活性炭処理では同じく30vを投入し、処理時間
30分処理で処理水濃度Z30IIv/l、60分処理
で処理水濃度1.30■/lで吸着除去率30分で95
7%、60分で97.4%であり、発明処理剤の吸着除
去能がヤシ殻活性炭に優れて有効であることが確認され
た。
In the coconut shell activated carbon treatment, the same 30V was input, the treatment time was 30 minutes, the treated water concentration was Z30IIv/l, the 60 minute treatment was 1.30 ■/l, and the adsorption removal rate was 95 in 30 minutes.
7%, and 97.4% in 60 minutes, confirming that the inventive treatment agent has superior adsorption and removal ability to coconut shell activated carbon and is effective.

実施例(4) また、下記の破砕粒形処理剤と本発明による造粒処理剤
との吸着除去効率の比較実験を行った、分析方法はカド
ミウムはJISK−0102原子吸光光度法、水銀は環
境庁告示第64号原子吸光光度法で行ったものである。
Example (4) In addition, a comparative experiment was conducted on the adsorption and removal efficiency of the following crushed granule treatment agent and the granulation treatment agent of the present invention.The analysis method was JISK-0102 atomic absorption spectrometry for cadmium, and the environmental This was carried out using Office Notification No. 64 atomic absorption spectrophotometry.

発明造粒剤の吸着除去率、20 f/を使用(単位〜/
l)測定項目 原水濃度 処理時間 処理水濃度 吸着
除去率(イ)カドミウム  10.60   60分 
   0.065    99.5水  銀  10.
95   60分   0.21     99.0破
砕粒形の吸着除去率 20 t/を使用(単位〜/l)
測定項目 原水11K  処理時間 処理水濃度 吸着
除去率(イ)カドミウム  10.60   60分 
  2.00      81.0水  銀  10.
95   60分   7.40     30.0実
施例(5) 次いで、発明処理剤の不溶性か否かの実験として使用処
理剤の溶解度を分析測冗した。溶解度実験は上記の発明
造粒剤の吸着処理実験に使用したものを用いた。カドミ
ウム原水溶液濃度10611j?/11遺粒処理剤20
9/lを使用、処理水浴液濃度0065〜7t、吸着除
去率で99,5%吸着除去しているから測定ではカドミ
ウム含有濃度1053■/を飽容している使用処理剤を
そのまま1tの真水に48時間浸漬靜装した後の水溶液
濃度をJISK−0102原子吸光光度法で分析した結
果カドミウムは検出できず(定量限界は0.005■/
を以下である。)水銀は水溶液原水濃[10,95■/
lを発明の処理剤207を使用、60分処理し処理水溶
液濃度021■/1.吸着除去率で99%吸着除去して
いるから測足では、水銀含有濃度1074■/を泊客し
ている処理剤といえる。
The adsorption removal rate of the invention granulating agent is 20 f/ (units ~/
l) Measurement items Raw water concentration Treatment time Treated water concentration Adsorption removal rate (a) Cadmium 10.60 60 minutes
0.065 99.5 Mercury 10.
95 60 minutes 0.21 99.0 Adsorption removal rate of crushed particles 20 t/ is used (unit ~/l)
Measurement item Raw water 11K Treatment time Treated water concentration Adsorption removal rate (a) Cadmium 10.60 60 minutes
2.00 81.0 Mercury 10.
95 60 minutes 7.40 30.0 Example (5) Next, as an experiment to determine whether or not the invention treatment agent was insoluble, the solubility of the treatment agent used was analyzed and measured. The solubility experiment used the one used in the adsorption treatment experiment of the invention granulating agent described above. Cadmium raw aqueous solution concentration 10611j? /11 Grain treatment agent 20
9/l was used, the treated water bath concentration was 0065 to 7 t, and the adsorption removal rate was 99.5%, so the measurement showed that the treatment agent used had a cadmium concentration of 1053/l, and was directly added to 1 t of fresh water. After 48 hours of immersion in water, the concentration of the aqueous solution was analyzed using JISK-0102 atomic absorption spectrophotometry, and cadmium could not be detected (the limit of quantification was 0.005 μ/cm).
is below. ) Mercury is an aqueous solution concentrated in raw water [10,95■/
1 was treated with the treatment agent 207 of the invention for 60 minutes, and the treated aqueous solution concentration was 021/1. Since it has an adsorption removal rate of 99%, it can be said that it is a treatment agent that has a mercury content of 1074 cm/day according to foot measurements.

実験はカドミウムと同じく、1tの真水に48時間浸漬
靜直上た後の水溶液濃度を原子吸光光度法で分析した結
果0.0054〜/lで処理剤から重金属の溶液は殆ん
ど溶出せず不溶性であることが確認された。
As with cadmium, the concentration of the aqueous solution after immersing it in 1 ton of fresh water for 48 hours and then directly above the water was analyzed using atomic absorption spectrophotometry. The result was 0.0054/l, and the heavy metal solution was hardly eluted from the treatment agent, making it insoluble. It was confirmed that

従って、発明処理剤は吸着した重金属溶液を濃縮したま
まの状態で存在しているから、f6#操作により吸着物
質の離脱を行い有用金属の回収ができ省資源となる。
Therefore, since the inventive treatment agent exists in a concentrated state of the adsorbed heavy metal solution, the adsorbed material is removed by the f6# operation and useful metals can be recovered, resulting in resource conservation.

また、使用済み処理剤の最終処分でも不溶性で、一度吸
着した重金属は強酸に接触しない限り溶離しないから廃
棄しても二次公害の虞れがなく、産業上産業廃棄物の城
址となり1.埋立てやセメント骨材等の再利用が可能で
ある。
In addition, even in the final disposal of used processing agents, they are insoluble, and heavy metals once adsorbed do not elute unless they come into contact with strong acids, so there is no risk of secondary pollution even if they are disposed of, and they become a citadel for industrial waste.1. Landfilling and reuse of cement aggregate, etc. are possible.

関連した応用面では、他の種類の異なる重金属又は有害
物質含有の排水処理に効果的に援用が可能であり、例え
ば発明の粉体原材料にアルミノケイ酸塩を添加合成して
放射性排水の吸着処理剤の造粒に適応できると考えられ
る。
In related applications, it can be effectively applied to the treatment of wastewater containing different types of heavy metals or harmful substances, for example, aluminosilicate can be added to the powder raw material of the invention to create an adsorption treatment agent for radioactive wastewater. It is thought that it can be applied to granulation.

Claims (1)

【特許請求の範囲】 (1)主成分の異なる現棲すンゴ嫌化石、隆起サンゴ礁
化石及びサンゴ礁石灰岩の組成質?均一にするため粉砕
して200〜300メツシユの微粉体として、混合し造
粒助剤ポルトランドセメント(白色)を粉体比0.8〜
1.0重量%を添加合成し均一に混合し加水捏和、加圧
造粒して400℃〜500℃好ましくは500℃に焼成
して、2■〜3聾の円筒型に整粒して、凝結性の高い強
度ある造粒処理剤として、従来の重金属排水処理法であ
る前処理(酸化法、還元法、生物処理法及び硫化物によ
る中和剤使用)を省略して重金属排水溶液に30分〜6
0分接触させる事により重金属を効率よく吸着除去する
処理剤の造粒製法。                
  −(2、特許請求の範囲第一項記載の有効に作用す
る造粒助剤ポルトランドセメントは、シリカ、アルミナ
、酸化第二鉄、酸化カルシウムを組成分としたクリンカ
ー粉末を選択し、粉体比0.8〜1.oxt%を添加合
成することKよね粉体吸着能木材にイオン交換反応性を
助長させ、吸着能とイオン交換反応の相乗作用を付加し
た。 (3)特許請求の範囲第一項記載の有効に作用する造粒
助剤を適量に添加合成、加圧造粒し、焼結するこ°とに
より、製品を不溶性化するとともに機械的強度を高め、
発明製品を再賦活し再使用することができる、また一度
吸着した重金属は強酸に接触させない限り溶離しないか
ら、廃棄処分しても二次公害の虞れがなく、産業廃棄物
発生の減量化ができる。
[Claims] (1) Compositional properties of living coral fossils, raised coral reef fossils, and coral reef limestones that have different main components? To make it uniform, grind it into a fine powder of 200 to 300 mesh, mix it, and add Portland cement (white) as a granulation aid to a powder ratio of 0.8 to 300.
Synthesize by adding 1.0% by weight, mix uniformly, add water, knead, pressure granulate, sinter at 400°C to 500°C, preferably 500°C, and size into a cylindrical shape of 2 to 3 deafness. As a strong granulation treatment agent with high coagulability, it can be used as a heavy metal wastewater solution by omitting the pretreatment (oxidation method, reduction method, biological treatment method, and use of sulfide neutralizing agent) of conventional heavy metal wastewater treatment methods. 30 minutes to 6
A granulation method for a processing agent that efficiently adsorbs and removes heavy metals by contacting them for 0 minutes.
-(2. The effectively acting granulation aid Portland cement described in claim 1 is obtained by selecting clinker powder containing silica, alumina, ferric oxide, and calcium oxide as components, and By adding and synthesizing 0.8 to 1.oxt%, K powder adsorption ability promoted ion exchange reactivity in wood, and added a synergistic effect between adsorption ability and ion exchange reaction. (3) Claims No. By adding an appropriate amount of the effective granulation aid described in item 1, granulating it under pressure, and sintering it, the product becomes insoluble and its mechanical strength is increased.
Invented products can be reactivated and reused, and heavy metals once adsorbed will not elute unless they are brought into contact with strong acids, so there is no risk of secondary pollution even when they are disposed of, and the amount of industrial waste generated can be reduced. can.
JP5898382A 1982-04-10 1982-04-10 Treating agent formed by synthesizing and granulating powdery body of coralline fossil for adsorbing and removing heavy metal from waste water Pending JPS58177194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5898382A JPS58177194A (en) 1982-04-10 1982-04-10 Treating agent formed by synthesizing and granulating powdery body of coralline fossil for adsorbing and removing heavy metal from waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5898382A JPS58177194A (en) 1982-04-10 1982-04-10 Treating agent formed by synthesizing and granulating powdery body of coralline fossil for adsorbing and removing heavy metal from waste water

Publications (1)

Publication Number Publication Date
JPS58177194A true JPS58177194A (en) 1983-10-17

Family

ID=13100082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5898382A Pending JPS58177194A (en) 1982-04-10 1982-04-10 Treating agent formed by synthesizing and granulating powdery body of coralline fossil for adsorbing and removing heavy metal from waste water

Country Status (1)

Country Link
JP (1) JPS58177194A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336886A (en) * 1986-07-29 1988-02-17 Shinko Kogyo Kk Adsorbent for water-treatment and its production
US4781841A (en) * 1985-12-20 1988-11-01 Nissho Co., Ltd. Heavy metal adsorbing agent and method of using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781841A (en) * 1985-12-20 1988-11-01 Nissho Co., Ltd. Heavy metal adsorbing agent and method of using same
JPS6336886A (en) * 1986-07-29 1988-02-17 Shinko Kogyo Kk Adsorbent for water-treatment and its production

Similar Documents

Publication Publication Date Title
JP2012240017A (en) Treating material of harmful substance, and treating method of harmful substance
CN106365479A (en) Cement hexavalent chromium compounded reducing agent and preparation method thereof
CN112441804B (en) Preparation method of dephosphorization and denitrification type biological filter material and application of dephosphorization and denitrification type biological filter material in integrated rural domestic sewage treatment equipment
KR20120128624A (en) Method for preparing a composite material from waste and resulting material
KR20130107131A (en) Sludge solidification removal composite and using the covering landfill production method
JP2013088237A (en) Cesium contaminated soil surface solidification method, cesium solidification/insolubilization method, soil solidification agent used therefor, cesium removal method and magnesium-oxide based adsorbent used therefor
JPS58177194A (en) Treating agent formed by synthesizing and granulating powdery body of coralline fossil for adsorbing and removing heavy metal from waste water
EP0384846B1 (en) Process for the chemical fixation of a liquid aqueous sludge making use of a pozzuolanic reaction
JP2757074B2 (en) Treatment method of salt dust from incineration plant
Chindaprasirt et al. Solidification of heavy metal sludge using cement, fly ash and silica fume
JPS6245394A (en) Simultaneous removal of arsenic and silicon
DE19826186B4 (en) Process for producing an iron hydroxide and a polymer-containing adsorbent / reactant and its use
JP5032755B2 (en) Soil treatment material and soil purification method using the same
JP2023025362A (en) Harmful substance treatment agent and method for treating harmful substance-containing waste water
JP4006584B2 (en) Fluorine adsorbent and method for treating fluorine in water
JP3487488B2 (en) Sewage treatment method
KR102453854B1 (en) Method for manufacturing an adsorbent comprising mine drainage sludge and water treatment sludge and adsorbent manufactured through the same
JP3632284B2 (en) Waste treatment material
JPH06240B2 (en) Method of reforming accumulated sludge
KR0182996B1 (en) Absorbent for treating heavy metal using clay mineral
RU2675866C1 (en) Method of obtaining composition sorbent
JPS60187382A (en) Treatment of hazardous waste material
CN115970628A (en) Preparation and application of polyaluminum chloride sludge-based adsorbent product
JPS62254839A (en) Adsorbent for metallic ion and odor
JP4830112B2 (en) Heavy metal-containing aqueous solution purification agent and purification method thereof