JPS58177033A - Frequency dividing circuit - Google Patents

Frequency dividing circuit

Info

Publication number
JPS58177033A
JPS58177033A JP5883482A JP5883482A JPS58177033A JP S58177033 A JPS58177033 A JP S58177033A JP 5883482 A JP5883482 A JP 5883482A JP 5883482 A JP5883482 A JP 5883482A JP S58177033 A JPS58177033 A JP S58177033A
Authority
JP
Japan
Prior art keywords
transistor
differential switch
circuit
differential
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5883482A
Other languages
Japanese (ja)
Inventor
Toshiki Mori
俊樹 森
Haruyasu Yamada
山田 晴保
Kenichi Hasegawa
謙一 長谷川
Kunitoshi Aono
邦年 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5883482A priority Critical patent/JPS58177033A/en
Publication of JPS58177033A publication Critical patent/JPS58177033A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/26Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback
    • H03K3/28Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback
    • H03K3/281Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator
    • H03K3/286Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator bistable
    • H03K3/288Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator bistable using additional transistors in the input circuit
    • H03K3/2885Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator bistable using additional transistors in the input circuit the input circuit having a differential configuration

Abstract

PURPOSE:To improve the yield at manufacture, by constituting a frequency dividing circuit with simple constitution, decreasing the number of elements, current and power consumption, and reducing the size in circuit-integrating the frequency dividing circuit of multi-stage connection. CONSTITUTION:The 1st differential switch comprising transistors (TRs) Q1, Q2 in which the conducting and interrupting state is switched with an input clock pulse, the 2nd differential switch comprising TRQ3-Q6 operated with the state of the 1st switch, and a latch circuit are provided. Further, the 3rd and the 4th differential switches comprising TRs Q7-Q10 the conducting and interrupting state of which is switched with the conducting and interrupting state of the TRQ3-Q6 and the input clock pulse are provided. The output of the 3rd and the 4th differential switches is fed back to the 2nd differential switch via diodes D1, D2. The constitution of the circuit is simplified, and the number of elements, the current and current consumption are reduced.

Description

【発明の詳細な説明】 本発明は高速の分周回路に関するものである。[Detailed description of the invention] The present invention relates to a high-speed frequency divider circuit.

第1図に従来の分周回路の構成を示す。同図において、
トランジスタQ11−o、9 および抵抗R11〜R1
,で構成されるブロックAとトランジスタQ)1〜Q、
19および抵抗h〜%で構成されるブロックBは同一の
回路構成であり、同一番号で示したものはそれぞれ対応
している。101,102はクロックパルス入力端子、
103は基準電圧端子、104,106は出力端子、1
06は電源端子、107はGND端子である。
FIG. 1 shows the configuration of a conventional frequency divider circuit. In the same figure,
Transistor Q11-o, 9 and resistor R11-R1
, block A and transistors Q) 1 to Q,
19 and resistors h~% have the same circuit configuration, and those indicated by the same numbers correspond to each other. 101 and 102 are clock pulse input terminals,
103 is a reference voltage terminal, 104 and 106 are output terminals, 1
06 is a power supply terminal, and 107 is a GND terminal.

まず、ブロックAの動作を説明する。トランジスタQ1
1.Q12  およびQ13.Q14 はエミッタ結合
の差動スイッチを構成し電おり、トランジスタQ16.
Q16  はトランジスタ、91□、Q18  および
抵抗R13+ R14で構成されるエミッタフォロアに
より正帰還がほどこされ、ランチ回路を構成している。
First, the operation of block A will be explained. Transistor Q1
1. Q12 and Q13. Q14 constitutes an emitter-coupled differential switch, and transistors Q16.
Q16 is provided with positive feedback by an emitter follower composed of a transistor, 91□, Q18, and resistors R13+R14, forming a launch circuit.

トランジスタQ19および抵抗R16は端子103に印
加される基準電圧により、定電流回路を構成しており、
トランジスタQ19には定電流工0が流れる。
The transistor Q19 and the resistor R16 form a constant current circuit using the reference voltage applied to the terminal 103.
A constant current of 0 flows through the transistor Q19.

入力端子101.102に印加される差動形式の入カク
ロソクパルスにより、差動スイッチQ11゜Q12が切
り換わることによって、定電流工0が差動スイッチQ1
3.Q14 又はラッチ回路Q16.Q16 のいづれ
か一方から流れ、この定電流Ioが流れる方が動作状態
となり、他方は遮断状態となる。ブロックBはブロック
Aと同一番号のものは、同一動作であるが、差動スイッ
チQ11.Q12  およびQ)1゜Q)2のQllと
Q′12およびQ12とQ′11が同一動作をするため
、差動スイッチQ13.Q14およびQ’+31Q′、
The differential type input clock pulses applied to the input terminals 101 and 102 switch the differential switches Q11 and Q12, so that the constant current switch 0 switches to the differential switch Q1.
3. Q14 or latch circuit Q16. The constant current Io flows from either one of Q16, and the one where this constant current Io flows is in the operating state, and the other is in the cutoff state. Block B has the same number as block A and has the same operation, but differential switch Q11. Since Q12 and Qll and Q'12 of Q)1°Q)2 and Q12 and Q'11 operate in the same manner, the differential switch Q13. Q14 and Q'+31Q',
.

とラッチ回路Q16.Q16およびQ′1.、Q′16
の動作状態がブロックAとブロックBでは入カクロソク
パルスに対して、位相が反転している。
and latch circuit Q16. Q16 and Q'1. , Q'16
The operating states of block A and block B are inverted in phase with respect to the input clock pulse.

第2図は第1図に示す各ノードの電圧波形であり、aお
よびbは差動形式の入カクロノクパルスでそれぞれ端子
101,102に印加される。tlの期間ではQ12と
Q−1が導通状態にあり、プロンへAではラッチ回路Q
16.Q16が、ブロックBでは差動スイッチQ’l 
31Q’14が動作状態となる。この時ブロックAのラ
ンチ回路Q16.Q16の出力c、dの状態をCが’H
igh”レベル、dが”Low”レベルとすると、ブロ
ックBの差動スイッチの出力はeが”High” レベ
ル、fが’Low”レベルとなる。このe、fの信号が
ブロックAの差動スイッチQ13゜Q14の入力信号と
なるが、tlの期間では差動スイッチQ13.Q14は
遮断状態にあるので動作しない。
FIG. 2 shows voltage waveforms at each node shown in FIG. 1, where a and b are differential input clock pulses applied to terminals 101 and 102, respectively. During the period tl, Q12 and Q-1 are in a conductive state, and the latch circuit Q
16. Q16 is the differential switch Q'l in block B.
31Q'14 becomes operational. At this time, launch circuit Q16 of block A. C changes the state of outputs c and d of Q16 to 'H'
When the output of the differential switch of block B is set to "high" level and d is set to "low" level, e is set to "high" level and f is set to "low" level. These e and f signals become input signals to the differential switches Q13 to Q14 of block A, but during the period tl, the differential switches Q13 to Q14. Since Q14 is in the cutoff state, it does not operate.

この状態から入カクロソクパルスa、bが゛反転し+2
の期間に移ると、ブロックAでは差動スイッチQ13.
Q14が、ブロックBではランチ回路Q′+61”+6
が動作状態になる。この時ブロックBでは差動スイッチ
Q’+3 +Q’+ 4の状態をラッチ回路が保持する
ので出力e、fは変化しない。一方、ブロックAでは差
動スイッチQ13.Q14が動作状態となり、出力e、
fが印加されるQ、3のベース入力は’Low’”レヘ
ノ1Q14のベース人力U”Hiqh”レベルでアルの
で出力Cは’Low”レベル、dは”High”レベル
となり、t1期間の状態から反転したことになる。
From this state, the input clock pulses a and b are reversed and +2
Moving on to the period, in block A, the differential switch Q13.
Q14 is the launch circuit Q'+61"+6 in block B.
becomes operational. At this time, in block B, the latch circuit holds the state of the differential switches Q'+3 +Q'+4, so the outputs e and f do not change. On the other hand, in block A, differential switch Q13. Q14 becomes operational, output e,
The base input of Q, 3 to which f is applied is 'Low' and the base human power U of Reheno 1Q14 is 'Hiqh' level, so the output C is 'Low' level and d is 'High' level, from the state of period t1. It would have been reversed.

次に、+3の期間に移ると、ブロックAではラッチ回路
Q1..Q16が、ブロックBでは差動スイッチQ’+
3IQ’+4 が動作状態になり、ブロックAでは差動
スイッチQ13.Q14  の状態をラッチ回路Q16
゜Q16が保持するので出力c、did変化しない。一
方ブロックBでは差動スイッチq3.Qj4  が動作
状態となり、Q10のベース入力は°’Low’“レベ
ル。
Next, when moving to period +3, in block A, latch circuit Q1. .. Q16 is the differential switch Q'+ in block B.
3IQ'+4 becomes operational, and in block A, differential switch Q13. The state of Q14 is latched by the circuit Q16.
゜Since Q16 is held, the outputs c and did do not change. On the other hand, in block B, differential switch q3. Qj4 is in the operating state, and the base input of Q10 is at the °'Low' level.

Q′、4のベース入力は“High”レベルであるので
、出力eはLow”レベルに、f (/i”High”
 レベルとなり、+2期間の状態から反転したことにな
る。
Since the base input of Q', 4 is at "High" level, the output e is at "Low" level, and f (/i"High"
level, which means a reversal from the +2 period state.

この様な動作を繰り返すことにより、各ノードの電圧波
形は第2図に示す様になり、入力端子101.102の
入力クロックパルスa、bに対して、出力端子104,
106の電圧波形e、fは2公爵の波形となる。
By repeating such an operation, the voltage waveform at each node becomes as shown in FIG. 2, and the output terminals 104, 104,
The voltage waveforms e and f of 106 are two duplex waveforms.

以上の様に、従来では差動スイッチとランチ回路を有し
たブロックを2回路備え、動作状態が異る様クロックパ
ルスにより電流を切り換えることにより分局を行ってい
た。この様な回路では回路構成が複雑となり、又電流源
が2系統必要な為、多段の分周回路を集積回路化する場
合、チップサイズが大きくなると共に、消費電流、消費
電力が多くなっていた。
As described above, in the past, two blocks each having a differential switch and a launch circuit were provided, and division was performed by switching currents using clock pulses so that the operating states were different. In such a circuit, the circuit configuration is complicated and two current sources are required, so when integrating a multi-stage frequency divider circuit, the chip size becomes large and the current consumption and power consumption increase. .

本発明はこの様な問題点に鑑みなされたもので、回路構
成が簡単で素子数および消費電流の少ない分周回路を提
供することを目的とするものである。
The present invention has been made in view of these problems, and it is an object of the present invention to provide a frequency divider circuit with a simple circuit configuration, a small number of elements, and a low current consumption.

本発明は、従来の様に差動スイッチとランチ回路を有し
たブロックを2回路設けるのではなく、差動スイッチお
よびラッチ回路とカスコードに入力クロックパルスによ
り導通、遮断状態が切り換わる差動スイッチを設けるこ
とにより、簡単な回路構成で従来と同じ分周動作を行う
分周回路を実現するものである。
Rather than providing two circuits of blocks each having a differential switch and a launch circuit as in the past, the present invention provides a differential switch, a latch circuit, and a cascode with a differential switch that can be switched between conducting and blocking states by an input clock pulse. By providing this, it is possible to realize a frequency dividing circuit that performs the same frequency dividing operation as the conventional one with a simple circuit configuration.

第3図に本発明の実施例を示す。同図において、Ql−
01゜、021〜Q2.はトランジスタ、R1−R9は
抵抗、D1〜D6はタイオート、301〜3o6は端子
を示す。エミッタ艇互いに接続されたトランジスタ対Q
1とQ2.Q3とQ4.Q7とQ8およびQ9とQl。
FIG. 3 shows an embodiment of the present invention. In the same figure, Ql-
01°, 021~Q2. are transistors, R1-R9 are resistors, D1-D6 are tie-outs, and 301-3o6 are terminals. Emitter boat transistor pair Q connected to each other
1 and Q2. Q3 and Q4. Q7 and Q8 and Q9 and Ql.

はそれぞれ差動スイッチを構成しており、この差動スイ
ッチのうち、QlとQ2.Q7とQ8およびQ9とQl
o は入力端子301および302に印η口される入力
クロックパルスにより駆動される。
constitute a differential switch, and among these differential switches, Ql and Q2. Q7 and Q8 and Q9 and Ql
o is driven by an input clock pulse applied to input terminals 301 and 302.

トランジスタQ23.Q24.ダイオードD3〜D6 
 および抵抗R7,R8はエミッタフォロアを構成して
おり、ダイオードD −D  はトランジスタQ1−一
が飽  6 和しない為のレベルシフト用である。トランジスタQ6
.Q6  は互いに正帰還がほどこされランチ回路を構
成している。トランジスタQ21.Q22.ダイオード
D1.D2および抵抗R5,R6はエミッタフォロアを
構成しており、ダイオードD1.D2はトランジスタQ
3.Q4が飽和しない為のレベルシフト用である。30
3は基準電圧端子、304.305は出力端子、306
は電源電圧端子、307ばGND端子である。トランジ
スタQ26および抵抗R9は端子303に印加される基
準電圧により定電流回路を構成しており、トランジスタ
Q26には定電流工。
Transistor Q23. Q24. Diodes D3-D6
The resistors R7 and R8 constitute an emitter follower, and the diode D-D is for level shifting so that the transistor Q1-1 does not become saturated. transistor Q6
.. Q6 are mutually given positive feedback and form a launch circuit. Transistor Q21. Q22. Diode D1. D2 and resistors R5 and R6 constitute an emitter follower, and diodes D1. D2 is transistor Q
3. This is for level shifting to prevent Q4 from becoming saturated. 30
3 is the reference voltage terminal, 304.305 is the output terminal, 306
307 is a power supply voltage terminal, and 307 is a GND terminal. Transistor Q26 and resistor R9 form a constant current circuit using a reference voltage applied to terminal 303, and transistor Q26 has a constant current circuit.

が流れる。差動スイッチQ1.Q2は入力端子301゜
302に印加される差動形式のクロックパルスによりト
ランジスタQ23.Q24.ダイオードD3〜D6オヨ
ヒ抵抗R7,R8で構成されるエミッタフォロアを介し
て駆動され、Qlが導通、Q2が遮断状態の場合には定
電流1oは差動スイッチQ3.Q4がら流れ込み、この
差動スイッチQ3.Q4が動作状態となり、ランチ回路
Q6.Q6は遮断状態となる。又、Q2が導通、Qlが
遮断状態の場合には、ラッチ回路Q5.Q6から定電流
Ioが流れ込み、このラッチ回路Q6.Q6が動作状態
となり、差動スイッチQ3.Q4は遮断状態となる。こ
の様な回路構成とすることにより従来の分周回路と同等
の機能を有することができる。
flows. Differential switch Q1. Q2 is connected to transistors Q23 . Q24. The diodes D3 to D6 are driven via emitter followers composed of Oyohi resistors R7 and R8, and when Ql is conductive and Q2 is cut off, the constant current 1o is driven by the differential switch Q3. Q4 flows into this differential switch Q3. Q4 becomes operational, and launch circuit Q6. Q6 is in a cut-off state. In addition, when Q2 is conductive and Ql is cut off, the latch circuit Q5. A constant current Io flows from Q6, and this latch circuit Q6. Q6 becomes operational, and the differential switch Q3. Q4 is in a cut-off state. With such a circuit configuration, it is possible to have the same function as a conventional frequency divider circuit.

入力クロックパルスに対する動作を第2図に示す各ノー
ドの電圧波形を用いて説明する。各ノードは第3図に示
しである。aおよびbは差動形式の入力クロックパルス
であり、期間t1ではQ2が導通、Qlが遮断となる。
The operation in response to input clock pulses will be explained using the voltage waveforms at each node shown in FIG. Each node is shown in FIG. a and b are differential input clock pulses, and during period t1, Q2 is conductive and Ql is disconnected.

したがって、ラッチ回路Q6.Q6が動作状態となり、
差動スイッチQ3.Q4は遮断状態となる。この時ラッ
チ回路Q5.Q6の状態をQ6が導通、Q6が遮断どす
ると、定電流Ioは抵抗R1,トランジスタQ6を通っ
てトランジスタQ2に流れ、dは抵抗R1の電圧降下に
より”Low”レベルとなり、ノードCは抵抗R2の電
圧降下が無いので”High”レベルとなる。差動スイ
ッチQ7.Q8およびQ9.Qloは入力クロックパル
スにより駆動されQ8.Q9のベースが”High”レ
ベル+07+010のベスが”Low”レベルであるの
でQBl)5導通となり定電流Ioは抵抗R4,トラン
ジスタQ8を通ってトランジスタQ6へ流れる。したが
って、トランジスタQ21のベース電圧は抵抗R4の電
圧降下により“Low’“レベルに、トランジスタQ2
2のベース電圧は抵抗R3の電圧降下が無いので、”H
igh’“レベルとなる。
Therefore, latch circuit Q6. Q6 becomes operational,
Differential switch Q3. Q4 is in a cut-off state. At this time, latch circuit Q5. When Q6 is turned on and Q6 is cut off, constant current Io flows through resistor R1 and transistor Q6 to transistor Q2, d becomes "Low" level due to the voltage drop across resistor R1, and node C is connected to resistor R2. Since there is no voltage drop, the level becomes "High". Differential switch Q7. Q8 and Q9. Qlo is driven by the input clock pulse and Q8. Since the base of Q9 is at the "High" level and the base of +07+010 is at the "Low" level, QB1)5 becomes conductive, and the constant current Io flows through the resistor R4 and the transistor Q8 to the transistor Q6. Therefore, the base voltage of the transistor Q21 goes to the "Low" level due to the voltage drop across the resistor R4, and the base voltage of the transistor Q21 becomes "Low" level.
The base voltage of 2 is “H” because there is no voltage drop across resistor R3.
level.

よってノードeの電圧はトランジスタQ22.ダイオー
ドD2および抵抗R6で構成されるエミッタフォロアを
介してトランジスタQ22のベース電圧が出力されるの
で“High”レベルに、ノードfの電圧はトランジス
タQ21.ダイオードD1および抵抗R6で構成される
エミッタフォロアを介してトランジスタQ21のベース
電圧が出力されるので“Low”レベルとなる。この電
圧がダイオードD1.D2を介して差動スイッチQ3.
Q4のベースへ印加されるが、この時差動スイッチQ3
.Q4は遮断状態にあるので動作はしない。この状態か
ら入力クロックパルスa、bが反転しt2の期間に移る
と、差動スイッチQ1.Q2が切り換わり、Qlが導通
、Q2が遮断となり、差動スイッチQ3.Q4が動作状
態となってラッチ回路Q6.Q6は遮断状態となる。こ
こで、トランジスタQ3のベース電圧は”Low”レベ
ル、トランジスタのベース電圧は”High’“レベル
であったので、Q3が遮断、Q4が導通となり、定電流
Ioは抵抗R2,トランジスタQ4を通ってトランジス
タQ1に流れる。
Therefore, the voltage at node e is the voltage at transistor Q22. Since the base voltage of the transistor Q22 is outputted via the emitter follower composed of the diode D2 and the resistor R6, the voltage at the node f becomes "High" level, and the voltage at the node f is outputted from the transistor Q21. The base voltage of the transistor Q21 is outputted via the emitter follower composed of the diode D1 and the resistor R6, so that it becomes a "Low" level. This voltage is applied to the diode D1. D2 via differential switch Q3.
It is applied to the base of Q4, but at this time differential switch Q3
.. Since Q4 is in the cutoff state, it does not operate. From this state, when the input clock pulses a and b are inverted and the period moves to t2, the differential switch Q1. Q2 switches, Ql becomes conductive, Q2 becomes cut off, and the differential switch Q3. Q4 is activated and the latch circuit Q6. Q6 is in a cut-off state. Here, since the base voltage of the transistor Q3 was at the "Low" level and the base voltage of the transistor was at the "High" level, Q3 was cut off, Q4 was turned on, and the constant current Io passed through the resistor R2 and the transistor Q4. The current flows through transistor Q1.

したがって、ノードCは抵抗R2の電圧降下で”Low
”レベルとなり、ノードdは抵抗R1の電圧降下が無い
ので”High’”レベルとなり、tlの期間より反転
するが、差動スイッチQ7.Q8およびQ9.Ql。
Therefore, node C becomes "Low" due to the voltage drop of resistor R2.
Since there is no voltage drop across the resistor R1, the node d becomes a "High" level and is inverted from the period tl, but the differential switches Q7, Q8 and Q9, Ql.

のベース電圧も入カクロソクパルスa、bにより切り換
わっており、トランジスタQ1oが導通となり、定電流
Ioは抵抗R4,トランジスタQつ。を通ってトランジ
スタQ4へ流れる。したがって、トランジスタQ21の
ベース電圧、は”Low”レベル、トランジスタQ12
のベース電圧は”High”レベルでありノードeば”
High” レベル1.ノードfはLow”レベルであ
り、tlの期間の状態を保っている。このQlが遮断、
Q2が導通となり、ラッチ回路Q6.Q6が動作状態に
、差動スイッチQ3.Q4は遮断状態となる。ラッチ回
路Q5.Q6は差動スイッチQ3.Q4の状態を保持す
るので、Q5が導通、Q6が遮断となり、定電流工0は
抵抗R2,トランジスタQ6を通ってトランジスタQ2
に流れ、ノードCは抵抗R2の電圧降下により”Low
”レベルとなり、ノードdは抵抗R1の電圧降下が無い
ので“High“レベルとなってt2の期間の状態を保
持する。差動スイッチQ7.Q8およびQ9.Qloの
ベース電圧は入力クロックa、bによって切り換わり、
トランジスタQ9が導通となり定電流工0は抵抗R3,
トランジスタQ9を通ってトランジスタQ5に流れ、ト
ランジスタQ12のベース電圧は抵抗R3の電圧降下に
よりLow”レベル、トランジスタQ21のベース電圧
は抵抗R4の電圧降下が無いので“High″レベルと
なる。したがって、ノードe (d ’″Low” レ
ベル、ノードfば’High”レベルとなり、t2の期
間の状態から反転する。
The base voltage of is also switched by the input clock pulses a and b, transistor Q1o becomes conductive, and constant current Io is generated by resistor R4 and transistor Q. and flows to transistor Q4. Therefore, the base voltage of the transistor Q21 is "Low" level, and the base voltage of the transistor Q12 is "Low" level.
The base voltage of is “High” level and the node e”
High" level 1. Node f is at Low" level and maintains the state during the period tl. This Ql is blocked,
Q2 becomes conductive, and the latch circuit Q6. Q6 is in operation, differential switch Q3. Q4 is in a cut-off state. Latch circuit Q5. Q6 is a differential switch Q3. Since the state of Q4 is maintained, Q5 is conductive and Q6 is cut off, and constant current generator 0 passes through resistor R2 and transistor Q6 to transistor Q2.
, and node C becomes “Low” due to the voltage drop across resistor R2.
Since there is no voltage drop across the resistor R1, the node d becomes the "High" level and maintains the state during the period t2.The base voltages of the differential switches Q7, Q8 and Q9.Qlo are based on the input clocks a, b Switched by
Transistor Q9 becomes conductive, and constant current generator 0 becomes resistor R3,
The voltage flows through the transistor Q9 to the transistor Q5, and the base voltage of the transistor Q12 is at the "Low" level due to the voltage drop across the resistor R3, and the base voltage of the transistor Q21 is at the "High" level since there is no voltage drop across the resistor R4. e (d becomes ``Low'' level, and node f becomes ``High'' level, which is reversed from the state during period t2.

この様な動作を繰り返すことにより、各)−ドの電圧波
形は第2図に示す様になり、入力端子301.302の
入力クロックパルスa、bに対温 して出力端子304.305の電圧波形は2分件の波形
となる。第2図で示した各ノードの電圧波形は第1図に
示す従来例での分周回路の動作波形でもあり、第3図に
示す本発明においても従来例と同等の機能を有すること
になる。
By repeating such an operation, the voltage waveform of each node becomes as shown in FIG. The waveform becomes a bipartite waveform. The voltage waveform of each node shown in Fig. 2 is also the operating waveform of the frequency divider circuit in the conventional example shown in Fig. 1, and the present invention shown in Fig. 3 has the same function as the conventional example. .

第3図に示す分周回路を多段接続する場合には、出力端
子304.306の出力信号が次段の入力クロツクパル
スとなる様にすれば良い。したがってトランジスタQ2
1.Q2□ 、ダイオードD1.D2および抵抗R6,
R6で構成されるエミッタフォロアと、トランジスタQ
23.Q24.ダイオードD3〜D6および抵抗R7,
R8で構成されるエミッタフォロアは共用でき、1段当
りの消費電流は定電流回路の電流IOとエミッタプオロ
ア2回路の電流となり、これは第1図に示す従来例の定
電流回路の電流工0および工Φ′とエミッタフォロア4
回路の電流に比べ半分になる。
When the frequency divider circuit shown in FIG. 3 is connected in multiple stages, the output signal of the output terminals 304 and 306 may be set as the input clock pulse of the next stage. Therefore transistor Q2
1. Q2□, diode D1. D2 and resistor R6,
Emitter follower composed of R6 and transistor Q
23. Q24. diodes D3 to D6 and resistor R7,
The emitter follower composed of R8 can be shared, and the current consumption per stage is the current IO of the constant current circuit and the current of the two emitter follower circuits. Φ′ and emitter follower 4
It is half the current of the circuit.

以上説明した様に本発明によれば、簡単な回路で素子数
および消費電流、消費電力の少ない分局回路を実現でき
、多段接続した場合には、消費電流は半分となる。又、
本発明の様な多段接続の分周回路を集積回路化する場合
には、チップサイズが小さくなり、コストの低減2歩溜
りの向−Fとなる。又、消費電力も少なくなるのでパッ
ケージの小型が可能となる。
As explained above, according to the present invention, a branch circuit with a small number of elements, low current consumption, and low power consumption can be realized with a simple circuit, and when connected in multiple stages, the current consumption is halved. or,
When a multi-stage connected frequency divider circuit as in the present invention is integrated into an integrated circuit, the chip size becomes smaller and the cost is reduced by two steps. Furthermore, since power consumption is reduced, the package can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の分周回路図、第2図は動作説明図、第3
図は本発明分周回路図である。 Q1〜Q1o、Q21〜Q26・・・・・・トランジス
タ、R1〜R9…・・・抵抗、D1〜p9・e・…ダイ
オード、3o1゜302・・・eO入力端子、3Q4.
305・・・・・拳出力端子、306・・・・・・電源
端子、307・・・・・・GND端子。
Figure 1 is a conventional frequency dividing circuit diagram, Figure 2 is an explanation diagram of operation, and Figure 3 is a diagram of a conventional frequency dividing circuit.
The figure is a diagram of a frequency dividing circuit according to the present invention. Q1-Q1o, Q21-Q26...Transistor, R1-R9...Resistor, D1-p9.e...Diode, 3o1゜302...eO input terminal, 3Q4.
305...Fist output terminal, 306...Power terminal, 307...GND terminal.

Claims (2)

【特許請求の範囲】[Claims] (1)入カクロノクパルスにより導通および遮断状態が
切り換わる第1の差動スイッチと、前記第1の差動スイ
ッチの状態により、いづれか一方が動墓 作状態となる第2の挙動スイッチおよびラッチ回路と、
前記第2の差動スイッチおよびランチ回路の導通および
遮断状態と前記入カクロソクパルスとにより導通、遮断
状態が切り換わる第3の差動スイッチおよび第4の差動
スイッチと、前記第3の差動スイッチおよび第4の差動
スイッチの出力を前記第2の差動スイッチの入力に帰還
する手段とを有することを特徴とする分周回路。
(1) A first differential switch whose conduction and cutoff states are switched by an input clock pulse, and a second behavior switch and latch circuit in which one of the first differential switches is in a dynamic operating state depending on the state of the first differential switch. ,
a third differential switch and a fourth differential switch whose conduction and cutoff states are switched depending on the conduction and cutoff states of the second differential switch and the launch circuit and the input pulse; and the third differential switch. and means for feeding back the output of the fourth differential switch to the input of the second differential switch.
(2)第1の差動スイッチは第1.第2のトランジスタ
より構成され、第2の差動スイッチは第3゜第4のトラ
ンジスタより構成され、ランチ回路は第5.第6のトラ
ンジスタより構成され、第3゜第4の差動スイッチはそ
れぞれ第7.第8のトランジスタと第9.第1oのトラ
ンジスタより構成されてなり、前記第1のトランジスタ
のコレクタが前記第3.第4のトランジスタの共通エミ
ッタに接続され、前記第2のトランジスタのコレクタが
前記第5.第6の共通エミッタに接続され、前記第6の
トランジスタのベースは前記第3のトランジスタのコレ
クタに、前記第6のトランジスタのベースは前記第4の
トランジスタのコレクタに接続され、前記第5.第6の
トランジスタのコレクタはそれぞれ前記第6.第6のト
ランジスタのベースに接続され、前記第3のトランジス
タのコレクタは前記第7.第8のトランジスタの共通エ
ミッタに、前記第4のトランジスタのコレクタは前記第
9.第10の共通エミッタに接続され、前記第7.第8
のトランジスタのベースはそれぞれ前記第10.第9の
トランジスタのベースに接続され、前記第7.第8のト
ランジスタのコレクタはそれぞれ前記第9.第10のト
ランジスタのコレクタへ接続され、かつそれぞれ前記第
4.第3のトランジスタのベースに接続されることを特
徴とする特許請求の範囲第1項に記載の分周回路。
(2) The first differential switch is the first differential switch. The second differential switch is composed of a third transistor, a fourth transistor, and a launch circuit is composed of a fifth transistor. The 3rd and 4th differential switches are respectively composed of the 7th and 6th transistors. The eighth transistor and the ninth transistor. the collector of the first transistor is the third transistor. the collector of the second transistor is connected to the common emitter of the fourth transistor; a sixth common emitter, the base of the sixth transistor is connected to the collector of the third transistor, the base of the sixth transistor is connected to the collector of the fourth transistor, and the base of the sixth transistor is connected to the collector of the fourth transistor; The collectors of the sixth transistors are respectively connected to the sixth transistors. the base of the sixth transistor, and the collector of the third transistor is connected to the base of the seventh transistor. The common emitter of the eighth transistor and the collector of the fourth transistor are connected to the common emitter of the ninth transistor. the seventh common emitter; 8th
The bases of the transistors 10, . connected to the base of the ninth transistor; The collectors of the eighth transistors are respectively connected to the ninth transistors. the fourth . The frequency divider circuit according to claim 1, wherein the frequency divider circuit is connected to the base of the third transistor.
JP5883482A 1982-04-08 1982-04-08 Frequency dividing circuit Pending JPS58177033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5883482A JPS58177033A (en) 1982-04-08 1982-04-08 Frequency dividing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5883482A JPS58177033A (en) 1982-04-08 1982-04-08 Frequency dividing circuit

Publications (1)

Publication Number Publication Date
JPS58177033A true JPS58177033A (en) 1983-10-17

Family

ID=13095677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5883482A Pending JPS58177033A (en) 1982-04-08 1982-04-08 Frequency dividing circuit

Country Status (1)

Country Link
JP (1) JPS58177033A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635943A2 (en) * 1993-07-23 1995-01-25 Siemens Aktiengesellschaft Output stage for digital current switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635943A2 (en) * 1993-07-23 1995-01-25 Siemens Aktiengesellschaft Output stage for digital current switch
EP0635943A3 (en) * 1993-07-23 1995-10-18 Siemens Ag Output stage for digital current switch.

Similar Documents

Publication Publication Date Title
US4560888A (en) High-speed ECL synchronous logic circuit with an input logic circuit
EP0292148A2 (en) Charge pump circuitry having low saturation voltage and current-limited switch
JPH0629793A (en) Synchronous digital logic circuit
JPS62101116A (en) Pulse delay circuit
JPS58177033A (en) Frequency dividing circuit
US4601049A (en) Integrable semiconductor circuit for a frequency divider
US3917959A (en) High speed counter latch circuit
JP2913670B2 (en) Divider circuit
US5113419A (en) Digital shift register
JPH0618317B2 (en) Flip-flop circuit
US4357546A (en) Integrated frequency divider circuit
JPS62261227A (en) Frequency division circuit
SU1027802A1 (en) D-flip flop
JPS6233769B2 (en)
JP2776201B2 (en) Flip-flop circuit
SU930594A1 (en) Square-wave pulse generator
JP3128661B2 (en) High resolution timing adjustment circuit
JPS6135021A (en) Unitary multiplexer decoder circuit
JPH01126822A (en) Programmable input circuit
US3324310A (en) Transistor tunnel diode high speed ring counter
JPS6072316A (en) Sampling circuit
JP2751387B2 (en) Input circuit of ECL circuit
SU830579A1 (en) Shift register
SU1262717A1 (en) Logic element
SU1525871A1 (en) Synchronous d-flip-flop