JPS58177008A - Reflecting mirror antenna - Google Patents

Reflecting mirror antenna

Info

Publication number
JPS58177008A
JPS58177008A JP5986282A JP5986282A JPS58177008A JP S58177008 A JPS58177008 A JP S58177008A JP 5986282 A JP5986282 A JP 5986282A JP 5986282 A JP5986282 A JP 5986282A JP S58177008 A JPS58177008 A JP S58177008A
Authority
JP
Japan
Prior art keywords
terminal
antenna
circuit
distributor
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5986282A
Other languages
Japanese (ja)
Inventor
Kenichi Kagoshima
憲一 鹿子嶋
Takashi Yamada
隆 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5986282A priority Critical patent/JPS58177008A/en
Publication of JPS58177008A publication Critical patent/JPS58177008A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To suppress the interference wave incoming near a main beam and to decrease the space of antenna installation, by installing plural primary radiators for one antenna and adjusting the power feeding method. CONSTITUTION:A subreflecting mirror 12 is arranged in opposition to a main reflecting mirror 12 and the primary radiators 13a, 13b are arranged near the focus of the mirror 12 between the reflecting mirrors 11, 12. The primary radiators 13a, 13b are connected to each one terminal of a 4-terminal circuit 16 respectively, the other terminal of the circuit 16 is connected to one terminal of a power synthesis and distributor 19, and the rest one terminal 18 of the circuit 16 is connected to the other one terminal of the distributor 19 via a phase shifter 21. A terminal 17 of the circuit 16 is a signal summing terminal and the terminal 18 is a signal subtracting terminal. Intereference waves incoming in the vicinity of the main beam are suppressed and the antenna installation space is decreased, by changing the distribution ratio of the distributor 19 through the constitution above.

Description

【発明の詳細な説明】 この発明は反射鏡アンテナの主ビーム近傍に到来する干
渉波を抑圧する反射鏡アンテナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reflector antenna that suppresses interference waves arriving near the main beam of the reflector antenna.

〈従来技術〉 見通し内電波伝搬においては、直接波のほかに特殊な大
気屈折率分布、大地反射などによシ干渉波が生じる。[
砺波と干渉波の到来角度はかな夛接近しているため、2
つの波が逆相となつ九場合、アンテナ受信レベルは大幅
に低下する。これを防止するため従来は2つのアンテナ
を適尚な間隔をあけて設置し、両者の出力の位相調節を
したのち合成していた。
<Prior art> In line-of-sight radio wave propagation, in addition to direct waves, interference waves are generated due to special atmospheric refractive index distribution, ground reflection, etc. [
Since the arrival angles of the tornado wave and the interference wave are very close to each other, 2
When the two waves are out of phase, the antenna reception level is significantly reduced. In order to prevent this, conventionally, two antennas were installed with an appropriate distance between them, and the outputs of both antennas were combined after adjusting the phase.

第1図にこの従来のアンテナを示す。主反射−111、
llbと対向してそれぞれ副反射111112m、12
bが設けられ、これら主反射−11a、llbと副反射
−12m、12b  − −g     仮4m−1に↓j の間において副反射−の焦点付近に一次放射器l!1m
、13bが配される。−次放射器x a a $ 13
 bでそれぞれ受信された信号は合成器14で合成され
る。その合成前の一方の通路に挿入され九移相器15を
調整して合成出力が最大になるようにされる。通常の地
上固定回線で蝶、ホーンリフレクタ形式のアンテナが用
いられているが、アンテナ開口径は約4傷、アンテナ間
dFilO集であシ、非常に大きなアンテナが2個必要
であシ、かつアンテナ設置スペースが大きいという欠点
があ戟〈発明の概黄〉 この発明の目的は1個のアンテナを用いて干渉Vt抑圧
することができ、かつ大きな設蝋スペースを必賛としな
い反射鏡アンテナを提供することにある。
FIG. 1 shows this conventional antenna. Main reflection-111,
Sub-reflection 111112m and 12, respectively, facing llb
b is provided, and between these main reflections -11a, llb and sub-reflections -12m, 12b - -g tentatively 4m-1 ↓j, a primary radiator l! is placed near the focal point of the sub-reflection -! 1m
, 13b are arranged. -Next radiator x a a $ 13
The signals respectively received at b are combined by a combiner 14. It is inserted into one path before the combination and adjusts the nine phase shifter 15 so that the combined output is maximized. A butterfly or horn reflector type antenna is used in normal terrestrial fixed lines, but the antenna aperture diameter is about 4 holes, dFilO collection between the antennas, two very large antennas are required, and the antenna The drawback is that it requires a large installation space.The purpose of this invention is to provide a reflector antenna that can suppress interference Vt using one antenna and does not require a large installation space. It's about doing.

この発明によれは主反射−と検数の一次放射器又は主反
射−及び−反射艷と複数の一次放射器を用いた反射鏡ア
ンテナにおいて、前記−次放射器について少なくとも二
つは4端子回路の各1端子に接続され、この4端子回路
の他の二つの端子は合成又は分配器の二つの端子にそれ
ぞれ接続される。前記4端子回路は二つの端子からの入
力信号の和信号と差信号とをそれぞれ他の2つの端子に
出力するものであり、この和信号、差信号が得られる各
端子がそれぞれ合成又は分配器の2つO端子に接続され
る。また前記和信号又祉差催号が得られる端子と直列に
等相姦が挿入され鳥とO移相器は#1鵞0°又扛180
の移相量とされる。前記和信号と差信号との相対レベル
を14!lできるようにされる。例えに前記合成又は分
配器における合成比又は分配比がi14竪され、lt線
前記和信号又は差信号のレベルが増幅器、減衰器でe4
!1される。
According to the present invention, in a reflector antenna using a main reflector and a primary radiator or a main reflector and a reflector and a plurality of primary radiators, at least two of the -order radiators are connected to a four-terminal circuit. The other two terminals of this four-terminal circuit are connected to two terminals of the combiner or divider, respectively. The four-terminal circuit outputs the sum signal and difference signal of the input signals from two terminals to the other two terminals, and each terminal from which the sum signal and difference signal are obtained is connected to a combiner or a divider, respectively. are connected to the two O terminals. In addition, an equal incest is inserted in series with the terminal from which the sum signal or the difference signal is obtained, and the bird and O phase shifter are #1 0° and 180°.
It is assumed that the amount of phase shift is . The relative level between the sum signal and the difference signal is 14! I will be able to do it. For example, the combination ratio or distribution ratio in the combination or divider is i14, and the level of the sum signal or difference signal on the lt line is e4 in the amplifier or attenuator.
! 1 will be given.

く第1実施例〉 第2図及び第4図はこの発明の一実施例を示し主反射−
11と対向して一反射[12が配され、これら反射−間
において一反射@120焦点付近に一次放射器13m、
13bが配される。これら−次放射器131L、13b
は4端子回路16の各1端子にそれぞれ接続され、4端
子回路16の他の1端子17Fi電力合成又は分配(以
下合成分配と記す)器19の一電子に接続され、4端子
回路16の残りの1端子1Bは合成分配器19の他の1
)Il!子に移相器21を介して接続される。合成分配
器19の残りの端子は受信又は送信(以下送受信と記す
)器22に*続される。4端子回路19社例えばマジッ
クTが用いられ、受信アンテナとして用いられる時は、
端子17fd−次放射器13m、13bよりの受信信号
の和が得られる和信号端子であり、端子18は一次放射
器13m、13bよシの受傷信号の差が得られる差信号
端子である。
FIRST EMBODIMENT> FIGS. 2 and 4 show an embodiment of the present invention.
One reflection [12 is arranged opposite to 11, and between these reflections, one reflection @ 120, a primary radiator 13m near the focal point,
13b is arranged. These-order radiators 131L, 13b
are connected to each one terminal of the four-terminal circuit 16, and the other one terminal of the four-terminal circuit 16 is connected to one electron of the power combiner or distributor (hereinafter referred to as composite distribution) device 19, and the remaining one terminal of the four-terminal circuit 16 is One terminal 1B of the synthesizer/distributor 19
) Il! It is connected to the child via a phase shifter 21. The remaining terminals of the combiner/distributor 19 are connected to a receiving or transmitting (hereinafter referred to as transmitting/receiving) device 22. When a 4-terminal circuit (for example, Magic T) is used and used as a receiving antenna,
Terminal 17fd is a sum signal terminal from which the sum of received signals from the primary radiators 13m and 13b is obtained, and terminal 18 is a difference signal terminal from which the difference between the damage signals from the primary radiators 13m and 13b is obtained.

次に第2図に示したアンテナの動作原理を説明する。こ
の発明アンテナは送信アンテナとしても受信アンテナと
しても創作するが、創作原理は同じであるから、と\で
は送イrAアンテナとして説明する。なお送(Nアンテ
ナとして動作する場合は、和信号端子17の毎号は一次
放射器13a、13 bの開口面では等振幅、同相、差
信号端子18の16号は等振幅、逆相となる。
Next, the principle of operation of the antenna shown in FIG. 2 will be explained. Although the antenna of this invention is created as both a transmitting antenna and a receiving antenna, the principle of creation is the same, so it will be described as a transmitting rA antenna. Note that when operating as a transmission (N antenna), each number of the sum signal terminal 17 has equal amplitude and the same phase at the aperture plane of the primary radiators 13a and 13b, and the number 16 of the difference signal terminal 18 has the same amplitude and opposite phase.

いま−次放射器は13m、13bの2個でアンテナを正
面方向から見て縦方向(y軸方「ム」)に釜べられてい
るとする。送受(g器22から出た電波は電力合成分配
器19によって2つに分けられ、4端子回路16の和信
号端子17及び差信号端子18に入る。このとき差信号
端子18には移相器21が接続されておシ、移相器21
にはソ0又は180の値をとる。和信号端子17から4
端子(ロ)路16に入った信号は一次放射器13m、1
3bに等振幅、同相で伝えられ、そのときのアンテナ放
射パターン#i第4図の夾紡23のようになる。
It is assumed that there are two radiators, 13 m and 13 b, mounted in the vertical direction (in the y-axis direction) when the antenna is viewed from the front. The radio waves output from the transmitter/receiver (G unit 22) are divided into two by the power combiner/divider 19, and enter the sum signal terminal 17 and difference signal terminal 18 of the four-terminal circuit 16. At this time, the difference signal terminal 18 is connected to a phase shifter. 21 is connected, the phase shifter 21
takes a value of 0 or 180. Sum signal terminals 17 to 4
The signal entering the terminal (b) path 16 is sent to the primary radiator 13m, 1
3b with the same amplitude and the same phase, and the antenna radiation pattern #i at that time becomes like that shown in 23 in Fig. 4.

一方、差信号亀子18から4端子(ロ)路16に入った
1d号は一次放射器13m、13bに等振幅、逆相で伝
えられ、そのときのアンテナ放射パターンは第4図の点
縁24のようになる。パターン23は仰角に関して対称
なパターンとなるが、パターン24は反対称なパターン
となり、移相621がO″となるか180°となるかに
よってEA)00−城で負又は正<E、1<00題域で
はこの逆)となるっなおパターン25m、25btjそ
れぞれ一次放射器13m、13bのみのパターンでその
ピークは仰角0の位1126からそれぞれ0dのところ
にある。
On the other hand, the signal 1d entering the four-terminal (b) path 16 from the difference signal Kameko 18 is transmitted to the primary radiators 13m and 13b with equal amplitude and opposite phase, and the antenna radiation pattern at that time is the dotted edge 24 in FIG. become that way. Pattern 23 is a symmetrical pattern with respect to the elevation angle, while pattern 24 is an antisymmetrical pattern, depending on whether the phase shift 621 is O'' or 180°. In addition, patterns 25m and 25btj have only the primary radiators 13m and 13b, respectively, and their peaks are located at 0d from the elevation angle 0 digit 1126.

パターン23及びパターン24の相対的なレベルは電力
合成分配器19の分配比を変えることによって任意に変
えることができる。いま和信号端子17と差信号端子1
8とへの電力分配比をA:(1−A)とし、−次放射器
13&又は13bを副反射1ill!12の焦点位置に
置いたときの放射パターンをi l1tlとすると、ア
ンテナ全体の放射パターンE(#lii次式で与えられ
る。
The relative levels of the patterns 23 and 24 can be arbitrarily changed by changing the distribution ratio of the power combiner/distributor 19. Now sum signal terminal 17 and difference signal terminal 1
8 and the power distribution ratio to A: (1-A), the -order radiator 13 & or 13b is sub-reflected 1ill! If the radiation pattern when placed at the focal position of 12 is i l1tl, then the radiation pattern of the entire antenna E (#lii is given by the following equation.

こ\でφは移相621の位相量で、面に述べたように通
常φ〜O又は180°である。式(1)においてA=0
.2(和イd号電カニ差信号電力=1 : 4 )とし
たときのパターンは第5図のパターン27のとう)であ
る。第5図において、いま希望放射方向を1即角0°の
方向26、不振放射力向を28とすると和侶号電カニ差
伯号′龜力に1:4とすることにより、希望放射方向の
レベルをわずかには下させるのみで、希望放射方向に近
接した不要放射方向28への放射を零とすることができ
る。パターン27の零点は式(1)かられかるように電
力合成分配器13の分配比A:(1−A)を変えること
Kよって希望放射方向に近接した方向で自由に変化させ
ることができる。ゆえに不買放射方向が変化した場合で
も分配比を変えるだけで他への干渉を防ぐことができる
Here, φ is the phase amount of the phase shift 621, which is usually φ˜O or 180° as described above. In formula (1), A=0
.. 2 (sum i-d electric crab difference signal power=1:4), the pattern is pattern 27 in FIG. 5). In Fig. 5, if the desired radiation direction is now the direction 26 of 1 immediate angle 0°, and the slump radiation force direction is 28, then by setting the ratio of 1:4 to the 1:4 direction of the sluggish radiation force, the desired radiation direction By only slightly lowering the level of radiation, radiation in the unnecessary radiation direction 28 close to the desired radiation direction can be reduced to zero. The zero point of the pattern 27 can be freely changed in a direction close to the desired radiation direction by changing the distribution ratio A:(1-A) of the power combiner/distributor 13, as seen from equation (1). Therefore, even if the unpurchased radiation direction changes, interference with others can be prevented by simply changing the distribution ratio.

以上2つの一次放射器13m、13bがy@拠沿って並
べられた場合について龜明したが、−次放射器13a 
、13bがX軸又はこれを傾斜して並べられた場合も同
様の動作IjA理に基づいて、−次放射器131.13
klの並べられ九面内でパターンの零点を形成し、不費
放射をなくすことができる。史に4個以上偶数鯛の一次
放射器を用いれば、これらの任意の2@を第2図のよう
に組み合わせ、かつ各組の端子に適当に電力を分配する
ことによシすべての方向にパターンの零点を形成できる
The case where the two primary radiators 13m and 13b are arranged along the y@base has been explained above, but the -order radiator 13a
, 13b are arranged on the X axis or tilted to the
The zero points of the pattern can be formed within the nine planes of the array of kl, and unnecessary radiation can be eliminated. If four or more even-numbered primary radiators are used, by combining any two of these as shown in Figure 2 and distributing power appropriately to each set of terminals, it will be possible to radiate power in all directions. It can form the zero points of the pattern.

〈第2実施例〉 和信号電力と差信号電力とを相対的に変化させるKは前
述したように合成分配器19の合成又は分配比を調整す
るのみならず、例えば第6図に第2図と対応する部分に
同一符号を付けて示すように1移相器21と直列に増幅
器29を挿入する。
<Second Embodiment> K, which relatively changes the sum signal power and the difference signal power, not only adjusts the combination or distribution ratio of the combiner/distributor 19 as described above, but also adjusts the combination or distribution ratio of the combination/distributor 19, for example, as shown in FIG. An amplifier 29 is inserted in series with the 1 phase shifter 21, as shown by assigning the same reference numerals to the corresponding parts.

移相器21t−0に設定し、増幅器29の増幅度は第7
図で干渉波の方向31における差パターン24のレベル
が和パターン230レベルに等しくなるように選ぶ。こ
のように移相器21、増幅器29を設定して2つの信号
を合成分配器19で合成すればパターン27のように干
渉波到来方向31に零点をもつパターンが得られ、干渉
波を抑圧できる、干渉波到来方向がEl<0のときには
移相器21を180°に設定し、増−器29の増一度を
過当に選ぶことにより、E、1<0の範囲にノ(ターン
の零点を杉成し干渉波を抑圧できる。干#波の方向が変
化するときは、移相器21の位相量と増−器29の増幅
度を変化させることにより常に干渉波を抑圧できる。
The phase shifter 21t-0 is set, and the amplification degree of the amplifier 29 is set to 7th.
In the figure, the level of the difference pattern 24 in the interference wave direction 31 is selected to be equal to the sum pattern 230 level. If the phase shifter 21 and amplifier 29 are set in this way and the two signals are combined by the combiner/distributor 19, a pattern with a zero point in the interference wave arrival direction 31 like pattern 27 can be obtained, and the interference wave can be suppressed. , when the interference wave arrival direction is El<0, the phase shifter 21 is set to 180°, and the increment of the amplifier 29 is selected excessively, so that the zero point of the turn is set in the range of E,1<0. When the direction of the interference wave changes, the interference wave can always be suppressed by changing the phase amount of the phase shifter 21 and the amplification degree of the amplifier 29.

以上の説明は軸対称カセグレンアンテナの場合について
行ったが、反射−形式としては軸対称でもオフセットで
もよく、また一枚一でも二枚鏡でも同様の効果がある。
The above explanation has been made regarding the case of an axially symmetrical Cassegrain antenna, but the reflection type may be axially symmetrical or offset, and the same effect can be obtained with one mirror or two mirrors.

一枚一の例を第8図にjI2図と対応する部分に同一符
号を付けて示し、説明は省略する。
An example of each sheet is shown in FIG. 8 with the same reference numerals attached to the parts corresponding to those in FIG. jI2, and the explanation thereof will be omitted.

以上説明したようにこの発明のアンテナは、1個のアン
テナに複84−の一次放射器を設置し、その給電法をI
!LMするだけで主ビームに近接して到来する干渉波を
抑圧できる利点がある。しかもアンテナ設置スペースは
小さなもので済む。さらに必資に応じて給電電力比又は
増幅器29の増幅度を変えることによシアンテナパター
ンの零点方向を変化させることができるので干渉波到来
方向が変化するような場合において41常に干渉波を抑
圧することかできる。ゆえに本アンテナを使用すれば他
の回線と同−At1ieの共用かρ」北となり、周波数
の有効利用の銭点から大きな利点がある。
As explained above, in the antenna of the present invention, multiple 84- primary radiators are installed in one antenna, and the feeding method is
! There is an advantage that interference waves arriving close to the main beam can be suppressed simply by LM. Moreover, the antenna installation space can be small. Furthermore, by changing the feeding power ratio or the amplification degree of the amplifier 29 according to the necessary resources, the zero point direction of the antenna pattern can be changed, so even when the direction of arrival of the interference wave changes, the interference wave is constantly suppressed. I can do something. Therefore, if this antenna is used, it can be used in common with other lines, and there is a great advantage in terms of effective use of frequencies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のアンテナを示す図、第2図はこの発明の
一実施例を示す仙面図、第3図は第2図の正面図、第4
図はアンテナの放射パターンを説明するための図、第5
図はこの発明のアンテナのパターンの例を示す図、第6
図はこの発明の他の例を示す@面図、第7図は第6図の
アンテナパターンの例を示す図、第8図はこの発明の更
に他の例を示す図である。 11:主反射鏡、12:1li11反射鏡、13m、1
3bニ一次放射器、16:4m端子mM、i7:和信号
端子、18:差信号端子、19:合成分配器、2X:S
相器、22:送受1!器。 特許出願人 日本電信1m公社 代理人草野 阜 木 1 図 第2 反 lr’5 図
Fig. 1 is a diagram showing a conventional antenna, Fig. 2 is a sacral view showing an embodiment of the present invention, Fig. 3 is a front view of Fig. 2, and Fig. 4 is a diagram showing a conventional antenna.
Figure 5 is a diagram for explaining the radiation pattern of the antenna.
Figure 6 is a diagram showing an example of the antenna pattern of the present invention.
7 is a diagram showing an example of the antenna pattern of FIG. 6, and FIG. 8 is a diagram showing still another example of the invention. 11: Main reflector, 12: 1li11 reflector, 13m, 1
3b primary radiator, 16: 4m terminal mm, i7: sum signal terminal, 18: difference signal terminal, 19: synthesis distributor, 2X: S
Phaser, 22: Sending/receiving 1! vessel. Patent Applicant Nippon Telegraph 1m Public Corporation Agent Fuki Kusano 1 Figure 2 Anti-lr'5 Figure

Claims (1)

【特許請求の範囲】[Claims] (1)  反射鏡とIM叙の一次放射器、又は主反射鏡
、副反射−と複数の一次放射器から栴成される反射鏡ア
ンテナにおいて、上記−次放射器のうち少なくとも2個
がそれぞれ接続された4端子回路と、この4端子回路の
和悟号端子差イぎ号端子とそれぞれ接続された電力合成
又は分配器とを具備することを特徴とする反射鏡アンテ
ナ。
(1) In a reflector antenna consisting of a reflector and an IM primary radiator, or a main reflector, a sub-reflector, and a plurality of primary radiators, at least two of the above-mentioned secondary radiators are connected to each other. 1. A reflector antenna comprising: a four-terminal circuit; and a power combiner or divider connected to the Wago terminal and the Igi terminal of the four-terminal circuit.
JP5986282A 1982-04-09 1982-04-09 Reflecting mirror antenna Pending JPS58177008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5986282A JPS58177008A (en) 1982-04-09 1982-04-09 Reflecting mirror antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5986282A JPS58177008A (en) 1982-04-09 1982-04-09 Reflecting mirror antenna

Publications (1)

Publication Number Publication Date
JPS58177008A true JPS58177008A (en) 1983-10-17

Family

ID=13125405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5986282A Pending JPS58177008A (en) 1982-04-09 1982-04-09 Reflecting mirror antenna

Country Status (1)

Country Link
JP (1) JPS58177008A (en)

Similar Documents

Publication Publication Date Title
US6268828B1 (en) Cylindrical antenna coherent feed system and method
US5038147A (en) Electronically scanned antenna
EP0390350B1 (en) Low cross-polarization radiator of circularly polarized radiation
JP3602258B2 (en) Multi-beam radar antenna
US4388626A (en) Phased array antennas using frequency multiplication for reduced numbers of phase shifters
JP3284837B2 (en) Distribution combining device and antenna device
EP0100466B1 (en) Dual-band antenna system of a beam waveguide type
US3044063A (en) Directional antenna system
US4509055A (en) Blockage-free space fed antenna
US3521288A (en) Antenna array employing beam waveguide feed
JPH0534841B2 (en)
JP3429355B2 (en) Continuous wave radar system
US3496569A (en) Phased array multibeam formation antenna system
JPS58177008A (en) Reflecting mirror antenna
JP3322897B2 (en) Mirror modified antenna
JPH10322121A (en) Array-feeding reflecting mirror antenna
JPS6382003A (en) Multibeam antenna system for transmission and reception
US3028591A (en) Directive antenna systems
JPH03172003A (en) Movable beam antenna system and its operation
JPS58177006A (en) Reflecting mirror antenna
JP2909452B1 (en) Antenna device
JP2981087B2 (en) Beam antenna
WO2023162241A1 (en) Transmission device and wireless spatial multiplex transmission method
WO2023162242A1 (en) Transmission device and wireless spatial-multiplexing transmission method
JPS5994903A (en) Phased array antenna