JPS58176421A - Power generation by gas turbine engine - Google Patents

Power generation by gas turbine engine

Info

Publication number
JPS58176421A
JPS58176421A JP5845682A JP5845682A JPS58176421A JP S58176421 A JPS58176421 A JP S58176421A JP 5845682 A JP5845682 A JP 5845682A JP 5845682 A JP5845682 A JP 5845682A JP S58176421 A JPS58176421 A JP S58176421A
Authority
JP
Japan
Prior art keywords
air
compressor
gas turbine
pipe
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5845682A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishii
博 石井
Hidetake Okada
岡田 英武
Teruji Kaneko
金子 輝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP5845682A priority Critical patent/JPS58176421A/en
Publication of JPS58176421A publication Critical patent/JPS58176421A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • F02C3/305Increasing the power, speed, torque or efficiency of a gas turbine or the thrust of a turbojet engine by injecting or adding water, steam or other fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enable the shifting between a no load operation and a loaded operation of the titled engine to be made only by the switching operation of a valve by a method wherein the compressor is evacuated or the air in the compressor is substituted with helium when air vaporized from liquid phase air is supplied so that the requiried driving power is applied on a generator to thereby increase the power generation output of the generator. CONSTITUTION:The liquid phase air 1 is stored in a storage vessel 3 from a pipe 2 and is introduced into the air turbine 13 through a liquid phase air vaporizer 6 and an air heater 9 via a pipe 2 and a pump 5 when the electric power demand reaches its peak so that the vaporized air expands adiabatically. Then the air sucked into the compressor 21 of the gas turbine 20 is introuced into a burner 22 after being compressed to about 12atm. and the resulatant combustion gas is introduced into the gas turbine 25 to generate a driving power so that the generator 24 is driven to generate electric power through a shaft 36 and at the same time, the compressor 21 is driven through a shaft 37. Further, after closing an inlet valve 27 of the compressor 21 to the full, the air in the compressor 21 and an air circulation passage is substituted with helium gas by opening a valve 50 provided in a pipe 49 leading to a helium gas vessel 51 whereby the compressor is operated in substantially a no-load operation condition.

Description

【発明の詳細な説明】 本発明は予め液体空気を製造し貯溜しておき、電力のピ
ーク需要時にその液体空気を昇圧、気化して得られた加
圧空気を圧縮機よりの燃焼用加圧空気に代えて燃焼器に
供給して燃料を燃焼しガスタービンを駆動させることに
より発電出力を増大させるガスタービン発電方法に於て
上記圧縮機の無負荷運転およびその相互切換を容易にし
た方法である。
Detailed Description of the Invention The present invention produces and stores liquid air in advance, and pressurizes and vaporizes the liquid air during peak demand for electricity.The resulting pressurized air is then pressurized for combustion by a compressor. A method that facilitates no-load operation of the compressor and mutual switching in a gas turbine power generation method that increases power generation output by supplying fuel to a combustor instead of air to burn it and drive a gas turbine. be.

従来より液体空気を製造、貯蔵してお1!!電力需要の
ピーク時間帯にこの液体空気をポンプにより昇圧し気化
して得られた圧縮空気を圧縮機による燃焼用加圧空気と
切換えて供給することにより、通常の運転時に該圧縮機
を駆動するために必要とするガスタービンの発生動力を
不要とし発電用とすることによって発電効率を略倍増さ
せたガスタービン発電法が提案されている(例えば特開
昭52−34148号)。
We have been manufacturing and storing liquid air for a long time! ! The compressed air obtained by boosting the pressure of this liquid air with a pump and vaporizing it during peak electricity demand hours is switched to supply the compressed air for combustion by the compressor, thereby driving the compressor during normal operation. A gas turbine power generation method has been proposed in which power generation efficiency is almost doubled by eliminating the need for the generated power of a gas turbine and using it for power generation (for example, Japanese Patent Laid-Open No. 52-34148).

即ち、ガスタービン発電は圧縮機とタービンが結合され
た構成になっているため、タービンの発生動力より圧縮
機が空気を圧縮するに要する動力を差引いたものが発電
出力として取出されている。
That is, since gas turbine power generation has a configuration in which a compressor and a turbine are combined, the power generated by the turbine minus the power required for the compressor to compress air is extracted as the power generation output.

一般に圧縮機に要する動力はタービン発生動力の約60
%を占めており、例えば出カフ万kWのガスタービンに
於てはタービン発生動力は約17.5万kWであり圧縮
機消費動力は10.5万kwである。そこで圧縮空気を
外部より供給すれば理想的にはタービンの出力17.5
万kW全てを取り出すことが出来る様になり、ガスター
ビンユニットの増設なしに10.5万kWの出力増が可
能になる。
Generally, the power required for a compressor is approximately 60% of the power generated by a turbine.
For example, in a gas turbine with an output capacity of 10,000 kW, the power generated by the turbine is approximately 175,000 kW, and the power consumed by the compressor is 105,000 kW. Therefore, if compressed air is supplied from the outside, the ideal turbine output will be 17.5
It will now be possible to extract all 10,000 kW, making it possible to increase output by 105,000 kW without installing an additional gas turbine unit.

一方従来方法で10,5万kWの出力増を期すには例え
ば7万kWのガスタービンユニットとその排熱回収用の
3.5万kwの蒸気タービンの設置による容量増加が必
要となる。上記外部より圧縮空気を供給するためには例
えば海水に放出されている液化天然ガス(LNG)の冷
熱を利用して予め液体空気を製造しておくが、この冷熱
を利用して液体空気を低電力原単位で製造する方法とし
て特開昭51−140880号等の方法が提案されてい
る。
On the other hand, in order to increase the output by 105,000 kW using the conventional method, it is necessary to increase the capacity by installing, for example, a 70,000 kW gas turbine unit and a 35,000 kW steam turbine for recovering its exhaust heat. In order to supply compressed air from the outside, for example, liquid air is produced in advance using the cold energy of liquefied natural gas (LNG) released into seawater. As a method for manufacturing based on electric power consumption, methods such as Japanese Patent Laid-Open No. 140880/1983 have been proposed.

これらの方法で製造された液体空気を貯槽に貯え、電力
需要のピーク時にその液化空気をポンプで昇圧し、その
後気化して昇温し、得られた加圧空気を圧縮機による加
圧空気の代りにガスタービンに供給する。然してこの外
部加圧空気によるガスタービン発電方法を行うに際して
は圧縮機による燃焼用空気と液体空気の気化空気との供
給切換をガスタービンの運転を中止せずにスムースに行
なうことが困難である等の不都合がおった。即ち従来は
圧縮機とガスタービンとの間に軸連結機を設けておき、
液体空気の気化空気をガスタービンに供給する場合は該
軸連結機を断状態にすることにより圧縮機の作動を停止
していた。従ってガスタービンへの圧縮空気の供給源の
切換時は軸連結機の操作のためにガスタービンの運転を
一時停止しなければならない等の不都合があった。
The liquid air produced by these methods is stored in a storage tank, and the pressure of the liquefied air is raised by a pump during peak electricity demand, and then it is vaporized and heated, and the resulting pressurized air is used to generate pressurized air using a compressor. Instead, it is fed to a gas turbine. However, when performing this gas turbine power generation method using externally pressurized air, it is difficult to smoothly switch between the supply of combustion air by the compressor and the vaporized liquid air without stopping the operation of the gas turbine. There was an inconvenience. That is, conventionally, a shaft coupling device was provided between the compressor and the gas turbine.
When vaporized liquid air is supplied to a gas turbine, the operation of the compressor is stopped by disconnecting the shaft connector. Therefore, when switching the supply source of compressed air to the gas turbine, there are inconveniences such as having to temporarily stop the operation of the gas turbine in order to operate the shaft coupler.

本発明はこの従来法の欠点に鑑み液体空気の気化空気の
供給時は圧縮機内を真空状態またはヘリウムで置換して
無負荷運転することによりその所要動力を発電機へ負荷
して発電出力を増加させ、該無負荷運転への移行および
その逆の負荷運転への移行は弁切換操作のみによってス
ムースに行い得る様にしたものである。以下本発明の詳
細な説明する。第1図は本発明の一実施例の系統図であ
る。前記の方法等により製造された液体空気1は管2よ
り貯槽3に導入され貯溜されているが、電力需要のピー
ク時管4より950T/11の割合で導出され液ポンプ
5により約200気圧に昇圧し液中気化器6に入って管
7より導入され管8より排出される空気と熱交換して気
化・昇温し、さらに空気加温器9に入って管10よυ入
り管11より排出される海水わるいは温排水と熱交換し
て常温(20C)まで加温した後管12より導出して空
気タービン13に導入して断熱的に膨張する。該空気タ
ービン13による発生動力は回収されて他に有効に使用
さtLる。該空気タービン13により約12気圧迄膨張
し降温した空気は管14より再び空気加温器9に入って
前記海水あるいは温排水と熱支換して加温され管15よ
り後記するガスタービンユニット20へ送られる。
In view of the drawbacks of this conventional method, the present invention increases the power generation output by loading the required power to the generator by replacing the inside of the compressor with vacuum or helium and operating with no load when supplying vaporized liquid air. Thus, the transition to no-load operation and vice versa to load operation can be smoothly performed only by a valve switching operation. The present invention will be explained in detail below. FIG. 1 is a system diagram of an embodiment of the present invention. Liquid air 1 produced by the method described above is introduced into a storage tank 3 through a pipe 2 and stored therein, but during peak power demand, it is drawn out from a pipe 4 at a rate of 950T/11 and pumped to a pressure of about 200 atm by a liquid pump 5. The pressure is increased, the air enters the submerged vaporizer 6, is introduced through pipe 7, and is vaporized and heated by exchanging heat with the air discharged from pipe 8. It then enters air warmer 9, enters pipe 10, and enters pipe 11. After exchanging heat with the discharged seawater or heated waste water and warming it to room temperature (20C), it is drawn out from the pipe 12, introduced into the air turbine 13, and expanded adiabatically. The power generated by the air turbine 13 is recovered and used for other purposes. The air, which has been expanded to about 12 atmospheres by the air turbine 13 and cooled, enters the air warmer 9 again through a pipe 14, where it is heated by exchanging heat with the seawater or heated waste water, and then sent through a pipe 15 to a gas turbine unit 20, which will be described later. sent to.

ガスタービンユニット20は通常空気圧縮機21と燃焼
器22、ガスタービン23、A[iz4、排熱回収ボイ
ラー25より成り、管26、弁27、管28を経て空気
圧縮機21に吸入された空気は約12気圧に圧縮されて
管29,30、弁31、管32.33i経、燃焼器22
に入って管34より導入される燃料を燃焼させ、1燃焼
生成ガスは管35を経てガスタービン23に入りここで
動力を発生する。発生した動力は軸36ft介して発電
機24を駆動して発電し、同時に軸37を介して上記空
気圧縮機21を駆動する。
The gas turbine unit 20 normally consists of an air compressor 21, a combustor 22, a gas turbine 23, an exhaust heat recovery boiler 25, and the air sucked into the air compressor 21 through a pipe 26, a valve 27, and a pipe 28. is compressed to approximately 12 atmospheres and is passed through pipes 29 and 30, valve 31, pipe 32.33i, and combustor 22.
The combustion product gas enters the gas turbine 23 through the pipe 35, where it generates power. The generated power drives the generator 24 through the shaft 36ft to generate electricity, and at the same time drives the air compressor 21 through the shaft 37.

然してガスタービンユニット20内の空気圧縮機21に
よる加圧空気を前記管15を経て供給される加圧空気に
切換えるには、まず弁40を開き管41.33を通して
燃焼器22に管15よりの加圧空気を送り込み、この際
管33の圧力が一定になる様に弁42を制御し且つ圧縮
機21よりの加圧空気の送出管30.32に設けられた
升31を閉方向に操作する。管41J:りの空気量が定
格値に達した時弁31は全閉とするがその間圧縮機21
の吐出圧力は放出弁43により制御する。この様にして
燃焼器22に導入される空気が全量管14.41を経て
来九ものに切り換った後、空気圧縮機21を無負荷状態
に移行させる。即ち空気圧縮機送出弁31が全閉になっ
た時弁43は開になっているがこの開度を調節して空気
圧縮機21の吐出圧を可能な限りの液底圧力まで低下さ
せ、その後圧縮機人口弁27を閉方向にすることにより
圧縮機吸入側を減圧しその吸入圧力と吐出圧力の比をサ
ージング現象に入らない安全な域にある様に更に放出弁
43を調節する。圧縮機21の吐出圧力が大気圧に至っ
た時その状態を保ちつつ、吸入側と吐出側の間のバイパ
スラインに設は九弁44を開方向へ、大気への放出弁4
3を閉方向に操作し、最終的に該放出弁43を全閉にす
る。かくして圧縮機21を吐出した空気は管29.クー
ラー45.弁44.管28の径路を循環するがこの後圧
縮機人口弁27を全閉にし、上記微積径路を閉鎖系とす
る。然る後、真空排気装置48に至る管46に設けられ
た弁47を開方向に操作し、上記閉鎖系内を真空排気装
置48により減圧して行く。この真空排気操作は上記閉
鎖系内の真空度が空気圧縮機21のほぼ無負荷運転状態
が得られるに至る進行なう。上記の如く圧縮機21内を
真空状態にすることによって無負荷運転状態を得る方法
以外に圧縮機21内をヘリウムガスで置換することによ
っても同様な効果が得られる、即ち上記圧縮機人口弁2
7を全閉にした後、ヘリウムガス容器51に至る管49
に設けられた弁50を開にし圧縮機21および前記微積
径路内の空気をヘリウムガスで置換することによって無
負荷運転に近い状態を得ることが出来る。
However, in order to switch the pressurized air from the air compressor 21 in the gas turbine unit 20 to the pressurized air supplied via the pipe 15, first the valve 40 is opened and the air is supplied from the pipe 15 to the combustor 22 through the pipe 41.33. Pressurized air is sent in, and at this time, the valve 42 is controlled so that the pressure in the pipe 33 becomes constant, and the square 31 provided in the pressurized air delivery pipe 30.32 from the compressor 21 is operated in the closing direction. . When the amount of air in the pipe 41J reaches the rated value, the valve 31 is fully closed, but during that time the compressor 21
The discharge pressure is controlled by a discharge valve 43. After the air introduced into the combustor 22 has passed through the pipes 14 and 41 in this manner and has been switched to the next nine, the air compressor 21 is brought into a no-load state. That is, when the air compressor delivery valve 31 is fully closed, the valve 43 is open, but this opening degree is adjusted to reduce the discharge pressure of the air compressor 21 to the lowest possible liquid bottom pressure, and then By turning the compressor valve 27 in the closing direction, the pressure on the suction side of the compressor is reduced, and the release valve 43 is further adjusted so that the ratio of the suction pressure to the discharge pressure is within a safe range that does not cause a surging phenomenon. When the discharge pressure of the compressor 21 reaches atmospheric pressure, while maintaining that state, the nine valves 44 installed in the bypass line between the suction side and the discharge side are opened, and the discharge valve 4 to the atmosphere is opened.
3 in the closing direction, and finally the discharge valve 43 is fully closed. The air discharged from the compressor 21 is thus transferred to the pipe 29. Cooler 45. Valve 44. After circulating through the path of the pipe 28, the compressor artificial valve 27 is fully closed to make the above-mentioned differential flow path a closed system. Thereafter, the valve 47 provided in the pipe 46 leading to the evacuation device 48 is operated in the opening direction, and the pressure inside the closed system is reduced by the evacuation device 48. This evacuation operation progresses until the degree of vacuum within the closed system reaches a state in which the air compressor 21 is operating under almost no load. In addition to obtaining a no-load operating state by creating a vacuum inside the compressor 21 as described above, the same effect can be obtained by replacing the inside of the compressor 21 with helium gas, that is, the compressor artificial valve 2
7 is fully closed, the pipe 49 leading to the helium gas container 51
A state close to no-load operation can be obtained by opening the valve 50 provided in the compressor 21 and replacing the air in the compressor 21 and the differential path with helium gas.

この様に外部で別途製造された圧縮空気を、ガスタービ
ンユニッ)20内の圧縮機21による加圧空気の代りに
使用することにより、そして該圧縮機21を無負荷運転
とすることによシ、短時間のピーク電力需要に応するこ
とが出来るが、その為には発電機24は例えば従来では
7万kWの容量であったものを17.5万kWの容量に
しておく必要がある。あるいは第2図に示す如く7万k
Wの発電機24の他に10.5万kWの附加発電機24
′を軸38を介して結合するが、この附加発電機24′
の結合位置は軸端側に限らず、ガスタービンの形式によ
り1軸上の最適位置に連結する。
By using the compressed air separately produced in this way in place of the pressurized air by the compressor 21 in the gas turbine unit 20, and by causing the compressor 21 to operate under no load, , it is possible to meet short-term peak power demand, but to do so, the generator 24 needs to have a capacity of 175,000 kW, for example, compared to the conventional capacity of 70,000 kW. Or 70,000k as shown in Figure 2
In addition to the W generator 24, there is also a 105,000 kW auxiliary generator 24.
' is coupled via a shaft 38, but this additional generator 24'
The connection position is not limited to the shaft end side, but is connected at an optimal position on one axis depending on the type of gas turbine.

本発明は以上の様にガスタービンユニット外より加圧空
気を供給し、該ユニット内圧縮機による加圧空気に代え
て燃焼器へ導入す戸ガスタービン発電装置の該ユニット
内圧縮機の空気径路を密閉系とし、この系内を真空状態
又はヘリウム置換することにより圧縮機の無負荷運転を
可能にし、これによって発電出力の略倍増を実現したも
のであり、同時に該無負荷運転への移行および逆の負荷
運転への移行を弁操作のみによってスムースに行い得る
様にしたことにより、上記の切換え操作を運転中任意に
行い得、これによって電力のピーク需要に容易に対処し
得る様になった。
As described above, the present invention provides an air path for the in-unit compressor of a gas turbine power generation system in which pressurized air is supplied from outside the gas turbine unit and introduced into the combustor instead of the pressurized air by the in-unit compressor. The compressor is made into a closed system, and the system is vacuumed or replaced with helium to enable no-load operation of the compressor, thereby almost doubling the power generation output. By making it possible to smoothly shift to reverse load operation only by operating the valve, the above switching operation can be performed at any time during operation, making it possible to easily cope with peak demand for electricity. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例を示す系統図、第2図は
付加発電機を設置した場合の要部を示す図である。 3は貯槽、5は液ポンプ、6は液中気化器、9は空気加
熱器、13は空気タービン、20はガスタービンユニッ
ト、21は空気圧縮機、22は燃焼器、23はガスター
ビン、24.24’は発電機、25に排熱回収ボイラー
である。 特 許 出 願 人  日本酸素株式会社代理人弁理士
 木戸傳一部 同                 木  戸   
−音間     版部 重徳 同     鶴若 俊雄
FIG. 1 is a system diagram showing one embodiment of the method of the present invention, and FIG. 2 is a diagram showing the main parts when an additional generator is installed. 3 is a storage tank, 5 is a liquid pump, 6 is a submerged vaporizer, 9 is an air heater, 13 is an air turbine, 20 is a gas turbine unit, 21 is an air compressor, 22 is a combustor, 23 is a gas turbine, 24 .24' is a generator, and 25 is an exhaust heat recovery boiler. Patent applicant Denki Kido, patent attorney representing Nippon Sanso Co., Ltd.
-Otoma Banbe Shigenori Toshio Tsuruwaka

Claims (1)

【特許請求の範囲】[Claims] ■、燃料および圧縮機により得られた加圧空気を燃焼器
に供給して燃焼せしめ、燃焼ガスをガスタービンに導入
して動力を得、発電機を駆動するガスタービン発電方法
において予め製造、貯蔵されている液体空気をポンプに
より昇圧抜気化して得られる加圧空気を電力需要増大に
応じて前記圧縮機による加圧空気に代えて上記燃焼器に
供給し且つ前記圧縮機の空気経路を閉鎖系とし、該閉鎖
系内を真空状態またはヘリウムガスで置換することによ
り該圧縮機を無負荷運転し、その駆動用動力を発電機の
負荷増大または附加発電機の駆動用に転用するようにし
たことを特徴とするガスタービン発電方法。
■Produced and stored in advance in a gas turbine power generation method in which fuel and pressurized air obtained by a compressor are supplied to a combustor for combustion, and the combustion gas is introduced into a gas turbine to obtain power and drive a generator. The pressurized air obtained by pressurizing and deaerating the liquid air with a pump is supplied to the combustor in place of the pressurized air by the compressor in response to an increase in power demand, and the air path of the compressor is closed. system, the compressor is operated under no load by vacuuming the closed system or replacing it with helium gas, and the driving power is diverted to increase the load on the generator or to drive the auxiliary generator. A gas turbine power generation method characterized by the following.
JP5845682A 1982-04-08 1982-04-08 Power generation by gas turbine engine Pending JPS58176421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5845682A JPS58176421A (en) 1982-04-08 1982-04-08 Power generation by gas turbine engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5845682A JPS58176421A (en) 1982-04-08 1982-04-08 Power generation by gas turbine engine

Publications (1)

Publication Number Publication Date
JPS58176421A true JPS58176421A (en) 1983-10-15

Family

ID=13084918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5845682A Pending JPS58176421A (en) 1982-04-08 1982-04-08 Power generation by gas turbine engine

Country Status (1)

Country Link
JP (1) JPS58176421A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198144A (en) * 1993-12-30 1995-08-01 Kawasaki Heavy Ind Ltd Device for producing high-temperature high-pressure gas for driving turbine
JPH0913918A (en) * 1995-07-03 1997-01-14 Mitsubishi Heavy Ind Ltd Liquid air utilizing power generating facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198144A (en) * 1993-12-30 1995-08-01 Kawasaki Heavy Ind Ltd Device for producing high-temperature high-pressure gas for driving turbine
JPH0913918A (en) * 1995-07-03 1997-01-14 Mitsubishi Heavy Ind Ltd Liquid air utilizing power generating facility

Similar Documents

Publication Publication Date Title
CA2175034C (en) Liquefied gas supply system
JP4166822B2 (en) Combined cycle power plant using liquefied natural gas (LNG) as fuel and gas turbine plant using LNG as fuel
JP3178961B2 (en) Compressed air energy storage method and system
US5457951A (en) Improved liquefied natural gas fueled combined cycle power plant
US7530235B2 (en) Heat pump, heat pump system, method of pumping refrigerant, and rankine cycle system
JPH07259510A (en) Cooling method of thermally loaded component of gas turbine group
JPS6026107A (en) Power generation plant with multistage turbine
KR20140054258A (en) Direct fuel injection diesel engine apparatus
JP2014104847A (en) Cold use device for low-temperature liquefied fuel
JP2018512529A (en) Hybrid combustion turbine power generation system
JPS6040707A (en) Low boiling point medium cycle generator
JPS58176407A (en) Multi spindle compound cycle power generating method
JPS58176421A (en) Power generation by gas turbine engine
JPH0688538A (en) Gas turbine plant
KR20150138995A (en) A Treatment System of Liquefied Gas
JPH07332109A (en) Compressed air storage type power generating plant
KR102654114B1 (en) Pressure control for closed Brayton cycle
JP2001090509A (en) Cryogenic power generating system using liquid air
JP3533512B2 (en) Liquefied gas supply system
JPH11270347A (en) Gas turbine combined generating set using lng
JP3547169B2 (en) Liquefied gas supply equipment
JP3368487B2 (en) Inlet air cooling device in gas turbine power generation system and method of operating the same
JPH05302504A (en) Low temperature power generating device using liquefied natural gas
JPS63223310A (en) Generator
JPS6143945Y2 (en)