JPS58175918A - Breaker control system - Google Patents

Breaker control system

Info

Publication number
JPS58175918A
JPS58175918A JP57056541A JP5654182A JPS58175918A JP S58175918 A JPS58175918 A JP S58175918A JP 57056541 A JP57056541 A JP 57056541A JP 5654182 A JP5654182 A JP 5654182A JP S58175918 A JPS58175918 A JP S58175918A
Authority
JP
Japan
Prior art keywords
phase
zero
breaker
fault
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57056541A
Other languages
Japanese (ja)
Inventor
野原 哈夫
益雄 後藤
渡部 篤美
功 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57056541A priority Critical patent/JPS58175918A/en
Publication of JPS58175918A publication Critical patent/JPS58175918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、電力系統の電流零なし現象発生の際のしゃ断
器制御方式に係り、特に、高速しゃ断に好適な方式に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a breaker control method when a no-current phenomenon occurs in a power system, and particularly to a method suitable for high-speed shutoff.

電力系統事故発生の際に、事故1lEfL中の直流分が
交流分を上まわると数サイクル以上の期間にわたって′
WLft、の零点が生じない。係る零なし状態のどきに
、しゃ断器を機構的に開極することは可能であるが電気
的には直流によるアークが継続しており、しゃ断器破損
の恐れがやる。このため従来のしゃ新方式では、係る電
流零なしを検出すると、しゃ断器保護の目的でその開放
を阻止し、電流零なしが解消された時点で、しゃ断器の
開゛放の阻止を解除していた。このような方式の場合に
は、零なしが解消された時点で、しゃ断器にしゃ断指令
を発するため、しゃ断時間がのび、事故状態が長くつづ
きよって系統安定度を悪化させるとい1うような問題が
あった。
When a power system fault occurs, if the DC component in the fault 1lEfL exceeds the AC component, it will last for several cycles or more.
The zero point of WLft does not occur. In such a non-zero state, it is possible to mechanically open the circuit breaker, but electrically, arcing due to direct current continues, and there is a risk of damage to the circuit breaker. For this reason, in conventional breaking systems, when such a lack of current zero is detected, the circuit breaker is prevented from opening for the purpose of protecting the breaker, and once the current zero condition is eliminated, the blocking of the breaker from opening is released. was. In the case of this type of system, a shutdown command is issued to the circuit breaker as soon as the non-zero condition is resolved, which increases the shutdown time, causing the accident condition to continue for a long time and worsening system stability. was there.

以上のことから、本発明は、しゃ断器に影響を与える零
なし時間を事故様相から判別ししゃ断器のしゃ断時間の
遅れを最少限にするための方式を提供することにある。
In view of the above, an object of the present invention is to provide a method for determining the zero-time period that affects the circuit breaker based on the nature of the accident and minimizing the delay in the circuit breaker's shutoff time.

送電線におけるttlft、零なしの継続時間は進相運
転時の2線短絡の時に最も長くなシ、かつ、遅れ相(例
えばbe短絡ではC相)に生じやすいことが解析により
明らかとなった。本発明では2組事故時の零なしの解消
法として、事故相の零点を有する各所をしゃ断し、その
後零なししゃ断器に開放指令を与えるものである。
Analysis has revealed that the duration time of ttlft without zero in a power transmission line is the longest when two wires are shorted during phase-advanced operation, and that it is more likely to occur in the lagging phase (for example, C phase in the case of a BE short-circuit). In the present invention, as a method for resolving the zero failure at the time of a two-set accident, the various locations having the zero point of the fault phase are shut off, and then an opening command is given to the zero failure breaker.

第1図に示すように一般の送電系統は発電機Gより送電
縁L1変圧器Trを介して、系統Sに電力を供給してい
る。同図において、電流変成器CTI及びCT2により
、しや@器CBI及びCB2fr通過する電流を伝送回
線Cによシ互に伝送しあい、共に、内部方向、すなわち
CBIとCB2の間に事故Fがあると判断した場合には
、保膿継電装置R,Yl及びRYZよシしゃ断器CBI
及びCB2にしゃ断指令を発し、事故を除去する。
As shown in FIG. 1, in a general power transmission system, power is supplied from a generator G to a system S via a transmission edge L1 transformer Tr. In the same figure, current transformers CTI and CT2 mutually transmit the current passing through CBI and CB2fr to transmission line C, and there is a fault F in the internal direction, that is, between CBI and CB2. If it is determined that
and issues a cutoff command to CB2 to eliminate the accident.

前記したように最も過酷な零なしのケースは、進相運転
時の2線事故であシ、かつ電源側遅れ相が最長零なし時
間となる。
As mentioned above, the most severe case without zero is a two-wire accident during phase-leading operation, and the lagging phase on the power supply side has the longest zero-free time.

第2図は、第1図の送電線の部分を更に鮮細に示したも
ので地点FでbeC相線短絡が生じたとする。この時は
発電機が進相運転で多るほど零なしとなシ易く、かつC
相に電流零なしが生じ易い。
FIG. 2 shows the part of the power transmission line in FIG. 1 in more detail, and it is assumed that a beC phase line short circuit occurs at point F. At this time, the more the generator is in phase advance operation, the easier it is to avoid zero, and the C
Zero current is likely to occur in the phase.

以上の零なし現象は、発電機が進み力率であるため、事
故発生角により生ずる最大の交流分と同一値の過渡直流
分と事故前汐流より定まる過渡直流分が同符号で重なり
あうことにより生ずるものである。
The above non-zero phenomenon occurs because the generator has a leading power factor, so the transient DC component with the same value as the maximum AC component caused by the accident angle and the transient DC component determined by the pre-fault tide current overlap with the same sign. This is caused by

第3図(i) + (b) e (c)u 2線事故の
際に4組のしゃ断器のうちしゃ断可能な事故相のしゃ断
器CBI。
Figure 3 (i) + (b) e (c) u Breaker CBI of the fault phase that can be cut out among the four sets of circuit breakers in the event of a 2-line fault.

CB2.CB3をこの順序で開放するときの組合せを示
している。このCBI、CB2.CB3の開放後、零な
ししゃ断器CB4が開放されるまでの時間は第3図(d
)のように示される。この第3図(d)の横軸は3組の
しゃ断器の開放順序の組合せ(a)。
CB2. The combinations when CB3 is opened in this order are shown. This CBI, CB2. The time required for zeroless circuit breaker CB4 to open after opening CB3 is shown in Figure 3 (d).
). The horizontal axis in FIG. 3(d) represents the combination (a) of the opening order of the three circuit breakers.

(b)、 (C)を示す。同図@)に示すように、事故
点に対して、系統側の2相のしゃ断器が開放された場合
(同図(a)のケース)には、発11機側遅れ相しゃ断
器CB4に零点のくるまでの時間は、CB1゜CB2.
CB3Lや断器2Qmsecにも達するケースがあシ、
現行のしゃ断器では問題がある。この念め、本発明では
第4図に示す条件のアンドをとり、条件が全て満足した
場合にのみ、そのリレーの動作時間をあらかじめ定めた
時間遅らせてしゃ断器にしゃ断指令を発するようにしよ
うとするものでおる。伺、各相の保護纒電器ごとに第4
図の論理が付加されている。
(b) and (C) are shown. As shown in Figure @), when the two-phase breaker on the grid side opens at the fault point (case in Figure 11(a)), the delayed phase breaker CB4 on the generator 11 side opens. The time it takes to reach the zero point is CB1°CB2.
There are cases where it reaches CB3L or disconnection 2Qmsec.
There are problems with current circuit breakers. To keep this in mind, the present invention performs an AND operation on the conditions shown in Fig. 4, and only when all the conditions are satisfied, the relay's operation time is delayed by a predetermined period of time and a cutoff command is issued to the breaker. I have something to do. 4th line for each protective wire for each phase.
The logic of the diagram is added.

このうち、事故前力率は、すでに矧られているように電
圧、1[流の積よシ算出することが可能である。ま九、
2相短絡の遅れ相の検出は、高速リレーの動作結果又は
、電圧、電流より第5図に示す方法により可能である。
Of these, the pre-fault power factor can be calculated as the product of voltage and current. Maku,
The delayed phase of a two-phase short circuit can be detected by the method shown in FIG. 5 based on the operation results of high-speed relays, voltages, and currents.

つまシ、事故検出している相が2相アシ、かつこの2相
について進み遅れ関係を判別すればよい。
However, it is only necessary to determine that the phase in which the accident is being detected is two-phase, and the lead/lag relationship for these two phases.

第3図のケース(a)の判定は、第6図、第7図に示す
ような方法で行なう。つまり、第3図(1)、 (b)
The determination of case (a) in FIG. 3 is made by the method shown in FIGS. 6 and 7. In other words, Figure 3 (1), (b)
.

(C)の各しゃ断順序の組合せのうち、長時間零なしが
問題となる系統側先行開放のケース(1)に対してのみ
、しゃ断器ロックの措置を採用する。fIA6図はa相
についてのみ示したものであシ、a相の事故検出リレー
の出力(II−1)と、電流atにスス ライムレベルL、 、 L、 ヲ設けて検出し九零点(
1−2)とのANDをとる。この値を各相について、第
7図のA、B、Cのように求め、これらの出力のオアを
Dでとる。信号りは事故時にのみ得られる。2相短絡の
場合には、該当する事故tjIL流は4組あるが、零な
しのしゃ断器では零なしのため、零点はあられれ々い。
Among the combinations of the shutdown order in (C), the breaker locking measure is adopted only for case (1) of the grid-side advance opening where no zero is a problem for a long time. The fIA6 diagram shows only the a-phase, and the output (II-1) of the a-phase accident detection relay and the current at are provided with slime levels L, , L, and detected at the nine zero point (
1-2). This value is obtained for each phase as shown in A, B, and C in FIG. 7, and the OR of these outputs is taken as D. Signals can only be obtained in the event of an accident. In the case of a two-phase short circuit, there are four sets of corresponding fault tjIL flows, but since there is no zero in a breaker without a zero, the zero points are numerous.

この事故後に得られる信号りの最初の出力よシ各々信号
A、B、Cが得られるまでの順序を判定する。この信号
A、B、Cが4組得られるときは、零点のある通常事故
である。
The order in which signals A, B, and C are obtained is determined from the first output of the signals obtained after this accident. When four sets of signals A, B, and C are obtained, it is a normal accident with a zero point.

この場合、第4図の論理回路の出力は保饅継電装置に作
用せず、従来と同様に系統保腰される。ま念信号A、B
、Cが3組しか得られないときでも、自己相が2相短絡
の遅れ相でなければ従来と同様に系統保稀出力を与える
。自己相が遅れ側であり、入力信号がA、B、Cの3組
しか得られないときであって、事故発生後零点の生ずる
時刻の最もおそい、同図“C″が発電機側の進み相(a
相)の場合(ab相短絡時)には、第3図(a)のケー
スに対応しており、発電機′ll1b相のしゃ断器が破
壊するおそれがある。このため、第4図の他の2つの条
件を満足している場合には、該当するb相のしゃ断指令
をおくらせる。
In this case, the output of the logic circuit shown in FIG. 4 does not act on the protection relay device, and the system is maintained as in the conventional case. True signal A, B
Even when only three sets of , C are obtained, if the self phase is not a delayed phase due to a two-phase short circuit, a system maintenance output is given as in the conventional case. When the own phase is on the lagging side and only three sets of input signals A, B, and C are obtained, "C" in the figure is the slowest time at which the zero point occurs after the accident occurs, and "C" is the progress on the generator side. Phase (a)
In the case of phase) (when the ab phase is short-circuited), this corresponds to the case shown in FIG. Therefore, if the other two conditions shown in FIG. 4 are satisfied, a corresponding b-phase cutoff command is sent.

この発明によれば各相の零点のパルスの到来順序によっ
て、系統llI2相が先行開放されると判断するが、実
際上も前記零点パルスの到来順に開放される。つまり、
しゃ断器の投入指令から機構開放までの時間を均一とし
て考えると、投入指令は第4図の判断によって零点、l
とされたものから順次与えられることによる。
According to the present invention, it is determined that the system IIII2 phase is to be opened in advance according to the order in which the zero point pulses of each phase arrive, but in reality, the system is also opened in the order in which the zero point pulses arrive. In other words,
Assuming that the time from the breaker closing command to the opening of the mechanism is assumed to be uniform, the closing command will be at zero point and l according to the judgment in Figure 4.
This is due to the fact that they are given sequentially starting from what was given.

本発明によれば、これまでのべたように簡単な判断の附
加で、特殊なケースの特定のしゃ断器のしゃ断時間をの
ばすことによシ、シゃ断器の破壊を防止できる。その上
、しゃ断器のしゃ断時間をのばすケースを限定している
ため、無差別にしゃ断時間をのばすケースに比べ安定度
上に与える効果は極めて大きい。
According to the present invention, with the addition of simple judgment as described above, destruction of a breaker can be prevented by extending the breaker time in special cases. Furthermore, since the cases in which the cutoff time of the circuit breaker is extended are limited, the effect on stability is much greater than in the case where the cutoff time is extended indiscriminately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本願の対象とする系統図、第2図は、送電線
両端のしゃ断器と零なし発生の関係を示す図1、第3図
は、開放するしゃ断器と零なし解消するまでの時間の関
係を示す図、#!4図は、特定のしゃ断器のしゃ断時間
を遅らせるための条件を示す図、第5図は、2相短絡時
の遅れ相を検出するための処理フロー、第6,7図は、
同一地点の2相のしゃ断器を開放すべきか否かを判定す
るための回路を示す図である。 1Y・・・保護継電装置、CB・・・しゃ断器つ代理人
 井理士 高楕明夫 ケース 季     第i り 7m
Figure 1 is a system diagram that is the subject of this application, Figure 2 is a diagram showing the relationship between circuit breakers at both ends of the transmission line and the occurrence of zero zero, and Figure 3 is a diagram showing the relationship between the circuit breaker at both ends of the transmission line and the occurrence of zero zero. Diagram showing the time relationship of #! Figure 4 is a diagram showing conditions for delaying the cutoff time of a specific breaker, Figure 5 is a processing flow for detecting a delayed phase when two phases are shorted, and Figures 6 and 7 are:
FIG. 2 is a diagram showing a circuit for determining whether or not two-phase circuit breakers at the same location should be opened. 1Y...Protective relay device, CB...Cutoff switch agent Roshi Ii Akio Takao Case 7m

Claims (1)

【特許請求の範囲】[Claims] 1、 事故前潮流が発電でめシ進相状態であった端子の
しゃ断器のうち、2線事故時に遅れ相となるしゃ断器に
ついては、相手端の事故相の電流零点の発生時点が自端
の他の事故相の電流零点の発生時点よりも早いことをも
ってしゃ断器への投入指令を一定時間遅らせることを特
徴とするtや断器制御方式。
1. Among the circuit breakers whose terminals had phase leading currents before the fault due to power generation, for circuit breakers that become lagging phase in the event of a two-wire fault, the point at which the current zero point of the faulty phase at the other end occurs is at its own end. t or breaker control method characterized by delaying the closing command to the breaker for a certain period of time earlier than the point of occurrence of the current zero point of other fault phases.
JP57056541A 1982-04-07 1982-04-07 Breaker control system Pending JPS58175918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57056541A JPS58175918A (en) 1982-04-07 1982-04-07 Breaker control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57056541A JPS58175918A (en) 1982-04-07 1982-04-07 Breaker control system

Publications (1)

Publication Number Publication Date
JPS58175918A true JPS58175918A (en) 1983-10-15

Family

ID=13029941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57056541A Pending JPS58175918A (en) 1982-04-07 1982-04-07 Breaker control system

Country Status (1)

Country Link
JP (1) JPS58175918A (en)

Similar Documents

Publication Publication Date Title
Paithankar et al. Fundamentals of power system protection
CN1032835C (en) Method of and device for protecting electrical power system
US3530360A (en) High-speed protective means for uninterruptible power systems
JPS58175918A (en) Breaker control system
EP3301771B1 (en) Fault current handling in an electrical plant
Phadke et al. Power System Protection
Thompson et al. New voltage-based breaker failure scheme for generators
Horowitz Transmission line protection
Redfern et al. A review of pole slipping protection
JPH0327716A (en) Method and apparatus for reclosing of transmission system
US2361208A (en) Current balance relay system
JP2799065B2 (en) Reclosing method of current differential protection relay
JP2003209925A (en) System for preventing zero-point transition current interrupting accident and method therefor
JPS6242448B2 (en)
Peggs et al. Innovations for protection and control of high voltage capacitor banks on the Virginia power system
Baker A System Protection Perspective for Connected Generation
JPS6222215B2 (en)
JP3290245B2 (en) How to re-install the instantaneous voltage drop countermeasure
JPS605727A (en) Defect current breaking system
Apostolov Improving power quality by optimizing the protection of distribution systems
Bishop et al. Device miscoordination affects plant reliability
KR930008837B1 (en) Sectionalizer control
Franco Sympathetic interaction between three-winding transformers and impact in ground relaying in a giant oil and gas field environment
SU1001286A1 (en) Method of protecting overhead power transmission line from break
Henville et al. Summary of Transients (Old and New) Affect Protection Applications