JPS58175493A - Preparation of guanosine by fermentation process - Google Patents

Preparation of guanosine by fermentation process

Info

Publication number
JPS58175493A
JPS58175493A JP57058438A JP5843882A JPS58175493A JP S58175493 A JPS58175493 A JP S58175493A JP 57058438 A JP57058438 A JP 57058438A JP 5843882 A JP5843882 A JP 5843882A JP S58175493 A JPS58175493 A JP S58175493A
Authority
JP
Japan
Prior art keywords
resistance
guanosine
adenine
dna
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57058438A
Other languages
Japanese (ja)
Other versions
JPH0428357B2 (en
Inventor
Takayasu Tsuchida
隆康 土田
Shigeatsu Shimizu
清水 栄厚
Nobuki Kawashima
川嶋 伸樹
Takashi Tanaka
崇 田中
Hitoshi Ei
仁 江井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP57058438A priority Critical patent/JPS58175493A/en
Publication of JPS58175493A publication Critical patent/JPS58175493A/en
Publication of JPH0428357B2 publication Critical patent/JPH0428357B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To improve the productivity of guanosine, by adding a vector integrated with a genetic field of purine analogue resistance or dechoinine resistance to a variant belonging to the genus Bacillus, having adenine demanding properties. CONSTITUTION:Chromosome DNA taking part in purine analogue resistance or dechoinine resistance is extracted from variant belonging to the genus Bacillus, having purine analogue resistance or dechoinine resistance. The chromosome DNA is connected to vector DNA, and the prepared recombined vector DNA integrated with a chromosome DNA piece is introduced to a variant belonging to the genus Bacillus, having adenine demanding properties. The transformed substance thus obtained is cultivated in a liquid medium containing a carbon source, nitrogen source, inorganic salt, adenine, etc., and guanosine is accumulated in the culture.

Description

【発明の詳細な説明】 本発明は発酵法によるグアノシンの製造法に関する。[Detailed description of the invention] The present invention relates to a method for producing guanosine by fermentation.

発酵法によるグアノシンの生産tこ関しては、アデニン
要求性、又はそれtこ各種のプリンアナログ耐性を付学
したバチルス属の微生物(特公昭39−16347)、
ブレビバクテリウム属の微生物(特開昭5l−12)、
史にこサルファ剤(特開昭5O−70592)、デコイ
ニン又はサイコフラニン(特開昭5(1−126886
)あるいはメチオニン又はアザセリン(特開昭50 =
1358(J)への耐性が付す−されたバチルス属の微
生物がグアノシンを生産−す2ことが知られている。
Regarding the production of guanosine by fermentation methods, microorganisms of the genus Bacillus with adenine auxotrophy or resistance to various purine analogs (Japanese Patent Publication No. 39-16347),
Microorganisms of the genus Brevibacterium (Japanese Unexamined Patent Publication No. 51-12),
History of sulfa drugs (Japanese Patent Application Laid-open No. 50-70592), decoinine or psychofuranine (Japanese Patent Application Laid-open No. 5(1973) 1-126886)
) or methionine or azaserine (Japanese Patent Application Laid-Open No. 1973 =
It is known that microorganisms of the genus Bacillus that have been made resistant to 1358 (J) produce guanosine.

木発% 者らは1−述のような従来のグアノシンの製造
法に対し、プリンアナログ耐性又はデコイニン耐性を有
するバチルス属の染色体より得たプリンアナログ耐性又
はデコイニン耐!1′1こ関グする遺伝子領域が組み込
まれているベクターをアデニン要求性のバチルス属の変
異株Vこ含有せしめたグアノシン生産性バチルス属の微
生物が著量のグアノノンを蓄積することを見い出した。
In contrast to the conventional guanosine production method as described above, we have developed purine analog resistance or decoinine resistance obtained from Bacillus chromosomes that have purine analog resistance or decoinine resistance! It has been found that a guanosine-producing microorganism of the genus Bacillus, in which a mutant strain V of the genus Bacillus auxotrophic for adenine contains a vector into which a gene region relating to 1'1 has been incorporated, accumulates a significant amount of guanonone.

本発明はこの知見に基づいて完成されたものである。本
発明でいうプリンアナログとはバチルス属の微生物の増
殖を抑制し、かつその抑制がヒポキサンチン、イノシン
、51−イノシン酸、グアニン、グアノシン 51−グ
アニル酸、アデニン、アデノンン、5−アデニル酸等を
培地中に添加すれGi′全体的又は部分的Eこ解除され
るようなものである。例えば、8−アザグアニン、8−
アザヒポキサンチア、8−アザアデニン、2,6−ジア
ミツプリン、6−メルカプトプリン、6−メルカブトブ
リンリボシド、8−メルカプトグアノシン等がある。
The present invention was completed based on this knowledge. Purine analogs as used in the present invention inhibit the growth of microorganisms belonging to the genus Bacillus, and the inhibition inhibits the growth of hypoxanthine, inosine, 51-inosinic acid, guanine, guanosine, 51-guanylic acid, adenine, adenone, 5-adenylic acid, etc. When added to the culture medium, Gi' is completely or partially released. For example, 8-azaguanine, 8-
Examples include azahypoxanthia, 8-azaadenine, 2,6-diamitpurine, 6-mercaptopurine, 6-mercaptobulin riboside, and 8-mercaptoguanosine.

プリンアナログ耐性又はデコイニン耐性に関す−する染
色体遺伝子の供手菌は・(チルス属のプリンアナログ耐
性又はデコイニン耐性を有する変異株ならどのような菌
株でもよいが、耐性度のより高いものが望ましい。又、
アデニン9.永住であってグアノ7ン生産能を有する菌
株を親株として、プリンアナログ耐性又はデコイニン耐
性を有する変顕株を誘導すれば、グアノシン生産能がよ
り高い変異株を得ることができ、このような変異株を遺
伝f“供恨菌として用いればよりよい結果が得られる。
The donor strain for the chromosomal gene related to purine analog resistance or decoinine resistance may be any mutant strain of the genus Chirus that has purine analog resistance or decoinine resistance, but one with a higher degree of resistance is preferable. or,
Adenine9. If a mutant strain with purine analog resistance or decoinine resistance is induced using a permanent resident strain with guano7-producing ability as a parent strain, a mutant strain with higher guanosine-producing ability can be obtained. Better results can be obtained if the strain is used as a genetic f“contributor.

又、遺伝子供学菌として、アデニン要求性及びプリンア
ナログ又デコイニン耐性変異株1こ、さらツこ従来知ら
れているようなグアノシン生産能を向−1−させるよう
な性質、例えばンチオニンスルホキッド耐性、アザセリ
ン耐性、サイフフラニン耐性、サルファグアニジン耐性
等を付加した菌株を誘導して用いれば、グアノシンの生
産能がより高い菌株を得ることができ、このような菌株
を染色体遺伝子供学菌として用いれば、より好ましい結
果が得られる。
In addition, as genetic bacterium, adenine auxotrophic and purine analog or decoinine resistant mutant strains, Saratsuko, etc. By inducing and using strains with added resistance, azaserine resistance, saifufuranine resistance, sulfaguanidine resistance, etc., it is possible to obtain strains with higher guanosine production ability, and if such strains are used as chromosomal genetic pediatric bacteria. , more favorable results are obtained.

鷹伝子供ケ、菌より染色体DNAを抽出する方法は、例
えばJ、 Racteriol、+  89 +  ]
 O65(1’965)  に記載されているような通
常の方法tこより行うことができる。
For example, J. Racteriol, +89+]
This can be carried out by conventional methods such as those described in J. O. 65 (1'965).

ベクターDNAとしては、バチルス属の菌体中でa製す
るプラスミド又はファージならば、どのようなものでも
よい。例えばスタフイロフツカス属微生物由来のpT+
2’7 、pc]94 、pc221゜pc223.p
UBII2  (以」−1Proc、 Na1l。
The vector DNA may be any plasmid or phage that is produced in the cells of the genus Bacillus. For example, pT+ derived from microorganisms of the genus Staphylofthucus
2'7, pc]94, pc221°pc223. p
UBII2 (hereafter "-1Proc, Na1l.

Acad、Sci、U、S、A、+   74. 16
80(+977)参照)、 p U B 1. I O
(J、 Bacteriol、。
Acad, Sci, U, S, A, +74. 16
80 (+977)), p U B 1. I O
(J, Bacteriol.

134、 318(1978)参照)、pTP4+pT
P5(以上Microbiol Letters+  
5 +  55(+978)参照)、 枯草菌由来のp
Ls+5゜I)LS28(以−に、J、 Bacter
iol、+  I 31 。
134, 318 (1978)), pTP4+pT
P5 (Microbiol Letters+
5 + 55 (+978)), p derived from Bacillus subtilis
Ls+5゜I) LS28 (hereinafter, J, Bacter
iol, + I 31 .

699(+977)参照)、pLsI3(J、Bact
eriol、+   129.  1487(+977
)参照)、pPLl 、pPL2(以上、J、 Bac
teriol、+124、 484(1975)参照)
、テンペレートファージとしても知られるrho l 
l  (Gene、+上、  89(+9’79)’)
+phi+05(Gene、。
699 (+977)), pLsI3 (J, Bact
eriol, +129. 1487 (+977
), pPLl, pPL2 (see above, J, Bac
teriol, +124, 484 (1975))
rho l, also known as temperate phage
l (Gene, + upper, 89 (+9'79)')
+phi+05(Gene,.

5、87(1979))、5PO2(Gene、、ユ。5, 87 (1979)), 5PO2 (Gene, Yu.

5](+979))等がある1、更?こヒ記プラスミド
なもとにして構築した複合プラスミドも当然のことなが
らベクターDIぐAとして利用できうる。
5] (+979)) etc. 1, more? Naturally, a composite plasmid constructed based on the plasmid described above can also be used as a vector DIAG.

染色体DNA及びベクターDNAはそれぞれ制限エンド
ヌクレアーゼを用いて切断する。それぞれのベクター1
こけ適した制限工ンドヌ ンアーゼがあるが、それは−
ト記ベクター1こついての記載がある文献等[こ示され
である。染色体DNAについては制限エンドヌクレアー
ゼtこよるす断が部分的1こ行なわれるようにこ反応条
件t・調節すれば多くの種プ、11の制限1糸が利用で
きる。
Chromosomal DNA and vector DNA are each cut using restriction endonucleases. each vector 1
There is a restriction enzyme enzyme suitable for moss, but it is −
There are documents etc. that describe the problem of vector 1 [hereinafter referred to]. For chromosomal DNA, many species and 11 restriction threads can be used if the reaction conditions are adjusted so that cleavage by restriction endonucleases is performed only partially.

かくして得らJた染色体DNA断片と、切断されたベク
ターDNAとを連結せしめる方法は、リガーゼを用いる
通常の方法が使用できる。一方、ターミナルトランスフ
ェラーゼを用いて染色体DNA断片と開裂したベクター
DNAと1こデオキノアデニール酸とデオキノンチジル
酸をそれぞれ付加し、混合した後アニーリングして連結
せしめる方法も利用し得る。
A conventional method using ligase can be used to link the thus obtained chromosomal DNA fragment and the cut vector DNA. On the other hand, it is also possible to use a method in which a chromosomal DNA fragment and cleaved vector DNA are added with monodeoquinoadenyl acid and deoquinone tidylic acid using terminal transferase, mixed, and then annealed to ligate.

かくして得られた染色体DNA断片を組み込んり組換え
ベクターDNAの受容菌はバチルス属のアデニン要求性
を有する変異株ならどのようなものでもよいが、プリン
アナログ耐性又はデコイニン耐性を有していない菌株を
用いれば、形質転換株を選択する際に好都合である。更
に組換えDNA受容菌としてプリンアナログ耐性又はデ
コイニン耐性を有し、より高いグアノシン生産能を有す
る菌株を用いれば、よりグアノ7ン生産能の高い形質転
換株を得ることができる。受容菌としては当然グアノ7
ン生産能がより低いものを用いなければならない。
The recipient strain of the recombinant vector DNA by integrating the chromosomal DNA fragment thus obtained may be any mutant strain of the genus Bacillus that has adenine auxotrophy, but strains that do not have purine analog resistance or decoinine resistance may be used. If used, it is convenient when selecting transformed strains. Furthermore, if a strain having purine analog resistance or decoinine resistance and a higher guanosine-producing ability is used as a recombinant DNA recipient, a transformed strain with a higher guano7-producing ability can be obtained. Of course, the receptor bacteria is guano 7.
A product with a lower production capacity must be used.

染色体DNAとベクターの混合物をDNA受容1Y41
こ導入する1こは例えばMalec、 Gene、 G
enet、+168.  l11(+979)に記載さ
れているような通常の形質転換法が利用できる。
DNA recipient 1Y41 mix of chromosomal DNA and vector
For example, Malec, Gene, G
enet, +168. Conventional transformation methods can be used, such as those described in 111 (+979).

グアノシン生産能を有し、プリンアナログ耐性又はデコ
イシン耐性に二関学する遺伝子領域が組み込まれている
ベクターを含有する形質転換株を選択する電こは、例え
ばベクター受容菌としてアデニン要求性変異株を用いて
形質転換し、プリンアナログ又はデコイシンを含有する
培地で生育してくる菌株を選択すればよい。又、ベクタ
ーD N A 、、、l。
For example, an adenine auxotrophic mutant strain can be used as a vector recipient to select a transformed strain that has the ability to produce guanosine and contains a gene region that is involved in purine analog resistance or decoycin resistance. A strain that grows in a medium containing a purine analog or decoisin may be selected. Also, vector DNA...l.

の抗生物質耐性等の性質を併せもつ菌株を選択できるよ
うな培地を用いればより選別が容易である。
Selection will be easier if a culture medium is used that allows selection of bacterial strains with properties such as antibiotic resistance.

このようにして、一旦選別されたプリンアナログ耐性等
tこ関(j、する遺伝子領域が組み込まれている組換え
ベクターDNAは、形質転換株より抽出後、他の組換え
ベクターDNA受容菌、例えばグアノシン生産能を有す
る菌株に導入することによりグアノシン蓄積量をさらに
増大させるこ七ができる。
In this way, the once selected recombinant vector DNA into which the gene region for purine analog resistance, etc. By introducing it into a strain capable of producing guanosine, it is possible to further increase the amount of guanosine accumulated.

かくして得られたグアノシン生産菌を培養してグアノシ
ンを製造する方法は従来知られている方法と特1こ変ら
ない。
The method for producing guanosine by culturing the guanosine-producing bacteria thus obtained is not particularly different from conventionally known methods.

即ち、このような微生物を培身する培地は、炭素源、窒
素源、無機塩類、アデニ/および必要ならば更1こその
他の微量栄養素を含有する通常の液体培地である。炭素
源としては、グルコース、糖蜜、デンプン加水分解液な
どの炭水化物が望ましい。窒素源としては硫安、硝安、
次女、リン安等のアンモニウム塩、硝安等の硝酸急、尿
素、アンモニアガス等が使用できる。また教養要求物質
としてのアデニンはアデニン、アデニン鉱II a< 
、アデノシン、アデニル酸等のいずれも使用可能である
。また必要に応じてビタミン類、アミノ酸、アデニン以
外の核酸塩基などの微量栄養素を添加すればグアノシン
蓄積量を増すことができる場合が多い。
That is, the medium in which such microorganisms are cultivated is a conventional liquid medium containing a carbon source, a nitrogen source, inorganic salts, adenium/and, if necessary, other micronutrients. Carbohydrates such as glucose, molasses, and starch hydrolyzate are preferred as carbon sources. Nitrogen sources include ammonium sulfate, ammonium nitrate,
Ammonium salts such as ammonium phosphorus, nitric acid salts such as ammonium nitrate, urea, ammonia gas, etc. can be used. In addition, adenine as a substance required for education is adenine, adenine mineral II a<
, adenosine, adenylic acid, etc. can be used. Furthermore, it is often possible to increase the amount of guanosine accumulated by adding micronutrients such as vitamins, amino acids, and nucleobases other than adenine as needed.

培養方法は好気的条件がよく、また、培養湿度は27な
いし38Cの範囲が好適である。場合によっては培養途
中tこて培養温度を変更させてもよい。培養開始時およ
び培養中に培養液のp l−fを5.0ないし9.01
こ調節し培養するのが望ましい。
The culture method is preferably carried out under aerobic conditions, and the culture humidity is preferably in the range of 27 to 38C. Depending on the case, the trowel culture temperature may be changed during the culture. At the start of culture and during culture, the p lf of the culture solution is set to 5.0 to 9.01.
It is desirable to adjust and culture this.

pIIの調整tこは無機酸、有機酸あるいはアルカリさ
ら1こ尿素、炭酸カルシウム、アンモニア水、アンモニ
アガスなどを使用することが出来る。かくして2ないし
5日間培養すれば著かのグアノ/7が培゛地中tこ蓄積
される。
For adjustment of pII, an inorganic acid, an organic acid or an alkali, urea, calcium carbonate, aqueous ammonia, ammonia gas, etc. can be used. Thus, after 2 to 5 days of culture, a significant amount of guano/7 accumulates in the culture medium.

培養液からグアノシンを採取する方法は、イオン交換樹
脂を用いる等通常の方法てよい。
Guanosine may be collected from the culture solution by a conventional method such as using an ion exchange resin.

実施例 ・〈チルス・ズブチリスAJ’11711(アルギニノ
、ロイシン複要求株)からN−メチル−N−ニトロ−N
−ニトロソグアニン変異処理(5001+ y /lr
iのN−メチル−N−二トローN−二トロソグアニジン
1こOCにて30分間10″個/−tの菌体を接触せし
めた)によってアデニン要求株の中からグアノシン生産
能を有する菌株AJ11862(FpRM−p  64
’ll−) (アルギニ/要求性、ロイシン要求性、ア
デニン要求性)を得た。ざら1′このアデニン要求株か
ら同様の変異処理によって誘導したグアノ/7生産菌A
J I I 863(FERM−P  ら4A’E)(
アルギニシン要求性、ロイシン要求性、アデニン要求性
、8−アザグア怪 シン耐性)、AJ11864(FERM−P G俸9@
)(アルキニン要求性、ロイシン要求性、アデニン要求
性、デフイニン耐性) 、A J l + 865 (
−f ルギニン要求性、ロイシン要求性、アデニン要求
性、8−アザグアニン耐性、デコイシン耐性)を得た。
Example: N-methyl-N-nitro-N from Chillus subtilis AJ'11711 (Arginino, Leucine multi-requiring strain)
-Nitrosoguanine mutation treatment (5001+ y/lr
A bacterial strain AJ11862 having the ability to produce guanosine from adenine auxotrophs was obtained by contacting 10''/-t bacterial cells with 1 OC of N-methyl-N-nitrosoguanidine for 30 minutes. (FpRM-p 64
'll-) (arginine/auxotrophy, leucine auxotrophy, adenine auxotrophy) was obtained. Zara1' Guano/7 producing bacteria A derived from this adenine auxotrophic strain by similar mutation treatment
J I I 863 (FERM-P et al. 4A'E) (
arginisine requirement, leucine requirement, adenine requirement, 8-azagua-requirement), AJ11864 (FERM-PG price 9@
) (alkinine auxotrophy, leucine auxotrophy, adenine auxotrophy, definine resistance), A J l + 865 (
-f luginine requirement, leucine requirement, adenine requirement, 8-azaguanine resistance, decoycine resistance).

(1)  染色体DNAの調製 AJl’+863、AJl!864、AJ +1865
を各々llのr Bacto −Penassay B
roth 1(Difco社製)中で30C1約2時間
振盪培養を行い、対数増殖期の菌体を集菌後、通常のD
NA抽出法(J、 Bacteriol、+  89+
  1065(+965))により染色体DNAを抽出
、精製し、最終AJ11863から2.c+mg、A 
Jl 1864から3.6my、AJ11865から3
.3■を得た。
(1) Preparation of chromosomal DNA AJl'+863, AJl! 864, AJ +1865
Bacto-Penassay B
Shaking culture was performed in 30C1 for about 2 hours in roth 1 (manufactured by Difco), and after collecting the cells in the logarithmic growth phase, they were cultured in a normal D
NA extraction method (J, Bacteriol, +89+
1065 (+965)), chromosomal DNA was extracted and purified from the final AJ11863. c+mg, A
Jl 1864-3.6my, AJ11865-3
.. I got 3 ■.

+21  染色体DNA断片のベクターへの挿入プリン
アナログ耐性又はデコイニノ耐性を支配する遺伝子領域
をクローニングするため、そのベクターとして自律増殖
性のプラスミド1) L、I B l I O(カナマ
イノン耐性、ネオマイノン耐性を発現する)を用いた。
+21 Insertion of a chromosomal DNA fragment into a vector In order to clone the gene region governing purine analog resistance or decoinino resistance, an autonomously replicating plasmid is used as the vector 1) L, I B l I O (expressing kanamayone resistance, neomynon resistance) ) was used.

ulで用いた染色体D N Aを各々5μfずつとプラ
スミドpUB11057ifずつをそれぞれ制限エンド
ヌクレアーゼEcoRIを3?rtこて60分作用させ
てr)NA鎖を切断した。65Cで10分間熱処理後、
各両反応液を混合し、ATPおよびジチ。
5 μf each of the chromosomal DNA used in UL and 3 μf each of the plasmid pUB11057if and 3 μf of the restriction endonuclease EcoRI. The r) NA chain was cut by using an rt trowel for 60 minutes. After heat treatment at 65C for 10 minutes,
Both reaction solutions were mixed to obtain ATP and dithi.

オスライトール存在下、T4ファージ由来のDNA リ
ガーゼ1こて10C1こて24時間、DNA鎖の連絡反
応を行なった。
In the presence of Oslytol, DNA strands were ligated using T4 phage-derived DNA ligase using a 10C1 trowel for 24 hours.

(;1)  組換えプラスミドDNAtこよる形質転換
バチルス・ズブチリスAJII862をI P、ena
ssay−Broth j (Difco社製)」こ接
種して30rで1晩振とう培養を1行ない、第1培養培
地(グルコースs y/l、  (N114)、、5o
42? / L1KH2PO469/’tS’に2HP
O4149711Mg504・7H,OO,2f / 
t 、  クエン酸ナトリウム+y/lS酵母エキス2
t/1SL−アルギニン250扉9./1%L−ロイ・
7750厘y / t 。
(;1) Transforming Bacillus subtilis AJII862 with recombinant plasmid DNAt, IP, ena
Ssay-Broth j (manufactured by Difco) was inoculated and cultured with shaking overnight at 30R, and the first culture medium (Glucose sy/l, (N114), 5O
42? / L1KH2PO469/2HP to 'tS'
O4149711Mg504・7H,OO,2f/
t, sodium citrate + y/lS yeast extract 2
t/1SL-Arginine 250 doors9. /1%L-Roy・
7750 y/t.

アデニン5011g/lを含む)に接種し、37rにて
4時間振盪培養を行なった姿、さらに第1培養培地(f
 ルコ75 、 f / l −(Nf4< )250
42  ?/l  1  KH2P0.  6  f/
l、   °<、、HPo、  6 タ /l、”:’
に、HPO,I 4 f/1%MS、)、、a7H20
+、2y/l、 クエン酸ナトリウムIf/’tsfl
f−P4エキス0.2f/l、L−アz+; 4::、
 50 mg/ l sI、−ロイシン5my/z、7
’>’、z750my/1を含む)へ接種し、37rt
こて】5時間振盪培養を打なうこと1こよって、いわゆ
るコンピテントな(DNA取込能を有する)細胞をり^
j製した(参考文献 J、 BacLeriol、+ 
 81 +  741(+961))。このコンピテン
ト細胞懸濁液に+21で得たDNA溶液を各々、別々に
加えて37Cでさらtこ2時間振盪培養を行なって形質
転換反応を完了させた。
containing 5011 g/l of adenine) and cultured with shaking at 37R for 4 hours, and the first culture medium (f
Luco 75, f/l − (Nf4<) 250
42? /l 1 KH2P0. 6 f/
l, °<,,HPo, 6 ta/l,”:'
, HPO, I 4 f/1% MS, ), a7H20
+, 2y/l, sodium citrate If/'tsfl
f-P4 extract 0.2f/l, L-az+; 4::,
50 mg/l sI,-leucine 5my/z, 7
'>', including z750my/1), 37rt
trowel] Incubate with shaking for 5 hours 1. This results in so-called competent cells (having the ability to take in DNA).
(Reference J, BacLeriol, +
81 + 741 (+961)). The DNA solutions obtained in Step 21 were separately added to this competent cell suspension, and the cells were further cultured with shaking at 37C for 2 hours to complete the transformation reaction.

次tこ菌株AJ11862のDN、A形質転換株を含む
懸濁液をカナマイシン51t9/m118−7 fグア
ニン100μf1ml含有する最小培地(最小培地10
)、カナマイシフ5μ97m1 及びデコイニノ含有す
る最小培地(最小培地■)、カナマイノン5 ltf7
ml及び8−アザグアニンl OO1t9/me及びデ
コイシフ1000 pf、/d金含有る最小培地(最小
培地■)のプレート」−tこ塗抹し37Cで培養した。
Next, a suspension containing the DNA and A transformants of strain AJ11862 was added to a minimal medium (minimum medium 10
), minimal medium containing Kanamaishifu 5μ97ml and decoinino (minimum medium ■), Kanamainone 5 ltf7
A plate of minimal medium (minimal medium ■) containing ml and 8-azaguanine OO1t9/me and 1000 pf,/d gold was plated and cultured at 37C.

(最小培地はグルコース59/l、  (NH4)2S
o42 f/l、 KH,Po、  6 ?/l。
(The minimal medium is glucose 59/l, (NH4)2S
o42 f/l, KH, Po, 6? /l.

K2HPO4149711MgSO4・7H20・ o
、zy/11クエン酸ナトリウムly/l、L−アルギ
ニン1100tn/l、L−ロイシン100■/1゜ア
デニン50■/を及び寒天2oy/l。
K2HPO4149711MgSO4・7H20・o
, zy/11 sodium citrate ly/l, L-arginine 1100 tn/l, L-leucine 100/1° adenine 50/l and agar 2 oy/l.

(pH7,2)の組成を有するものである。)培養3日
後には」−記最小培地用上tこ4個のコロニーが、最小
培地■−1〕に3個のコロニーが、最小培地■Lvこ5
個のコロニーがそれぞれ出現したので、これらを釣菌し
各クローンをそれぞれ純粋に分離した。
(pH 7.2). ) After 3 days of culture, 4 colonies were found on the minimum medium (Lv 5), 3 colonies were found on the minimum medium (1), and 3 colonies were found on the minimum medium (Lv 5).
As individual colonies appeared, these were harvested and each clone was isolated.

得られた形質転換株の性質をよいずれもアルギニン要求
性、ロイノン要求性、・アデニン要求性、カナマイノン
耐性を有し、かつ最小培地■から得られた形質−・・ζ
換株は8−7ザグアニン耐性、最小培地■から得られた
形質転換株はデフイシン耐性、最小培地■から得られた
形質転換株は8−アザグアニン耐性及びデコイシフ耐性
の性質をそれぞれ併せもつ菌株であった。
The properties of the obtained transformed strain are as follows: arginine auxotrophy, leunon auxotrophy, adenine auxotrophy, kanamayone resistance, and the traits obtained from the minimal medium ■...ζ
The transformed strain was resistant to 8-7zaguanine, the transformed strain obtained from minimal medium (■) was resistant to defuicin, and the transformed strain obtained from minimal medium (■) was resistant to 8-azaguanine and decoysif. Ta.

このようにして最小培地■上のクローンAJ+ 186
6(FERM−P らキャら  )、最小培地■ヒのク
ローンAJ I + 867 (,12ERM−Pム4
97)、最小培地v上のクローンAJ11868(FE
RM−P  (l、<’ig  )を得た。
In this way, clone AJ+ 186 on minimal medium ■
6 (FERM-P), minimal medium h clone AJ I + 867 (, 12ERM-P 4)
97), clone AJ11868 (FE
RM-P (l,<'ig) was obtained.

(4)  組換えプラスミドDNAの抽出AJ1186
8を用いてC,1,Kada  らの方法(J、 Ba
cLeriol、+ ユ4上、  1365(1981
))tこ基づいたDNA抽出法1こより各々別々tこ菌
体DNAを抽出l−、アガロース電気泳動によってプラ
スミドDNAと染色体DNAを分111シ、プラスミド
DNA区分を各4分1d、採取し、精製した。得られた
プラスミドを(3)で述べたのと同様の方法tこよって
AJ11865  へ形質転換反応こより再導入し、対
応するカナマイシン耐性株AJ + 1.869(FE
RM−P  ら499)を得た。
(4) Extraction of recombinant plasmid DNA AJ1186
8 using the method of C, 1, Kada et al. (J, Ba
cLeriol, + Yu 4, 1365 (1981
)) DNA extraction method based on the method 1 Extract the DNA of each bacterial cell separately, separate the plasmid DNA and chromosomal DNA by agarose electrophoresis, collect 4 minutes each of the plasmid DNA, and purify. did. The obtained plasmid was reintroduced into AJ11865 by a transformation reaction using a method similar to that described in (3), and the corresponding kanamycin-resistant strain AJ + 1.869 (FE
RM-P et al. 499).

(5)  グアノ7ンの生産 AJ+1862、ΔJ11863、AJl+864、A
J11865、AJ+1866、AJ11867、ΔJ
I+868、AJ11869  を培養した結果を第1
表Vこ示す。培養方法は500m/容肩付フラスコにグ
アノンン生産培地(グルコース80?/l、 NH,N
o3151/l、 KH2PO40,2? / L 、
 Mg5O,・7H200,4y / t 1FeSO
4・7H2010m9 / L 、 MnSO4・7H
2010m9/ ASCaC+2 ・2H202f 、
/ t1アデニン20otng/l、大豆蛋白加水分解
液4011/、/11アルギニン100禦g/110イ
シン100mg / 1及び!+−グルタミン酸yot
/lを含みp H6,5In KOHで調製しり。)を
20m/ずつ分注し、115Cで10分間加圧殺菌した
後、予め斜面培地で培養して得た各種菌体を接種後、3
4Cでh日間振盪培養を行った。
(5) Guano 7 production AJ+1862, ΔJ11863, AJl+864, A
J11865, AJ+1866, AJ11867, ΔJ
The results of culturing I+868 and AJ11869 were
Table V is shown here. The culture method is to use guanone production medium (glucose 80?/l, NH,N
o3151/l, KH2PO40,2? / L,
Mg5O, 7H200, 4y/t 1FeSO
4・7H2010m9/L, MnSO4・7H
2010m9/ASCaC+2 ・2H202f,
/ t1 adenine 20otng/l, soy protein hydrolyzate 4011/, /11 arginine 100g/110 isine 100mg/1 and! +-glutamic acid yot
/l, pH 6,5 In KOH. ) was dispensed at 20m/each, sterilized under pressure at 115C for 10 minutes, and then inoculated with various bacterial bodies previously cultured on slant culture medium.
Shaking culture was performed at 4C for h days.

第  1  表 arg+アルギニン、要求性 8AGr; 8−7ザグ
アニン耐性leu;ロイシン要求性  Decr;デコ
イシフ耐性ade;7−F’ニン要求性 Kmr ;カ
ナヤイノン耐性特許出願人 味の素株式会社
Table 1 arg + arginine, auxotrophy 8AGr; 8-7 zaguanine resistance leu; leucine auxotrophy Decr; decoysif resistance ade; 7-F' auxotrophy Kmr; Kanayainone resistance patent applicant Ajinomoto Co., Inc.

Claims (1)

【特許請求の範囲】[Claims] バチルス属のプリンアナログ耐性又はデプイニン耐性を
有する変異株の染色体遺伝子より得たプリンアナログ耐
性又はデコイニン耐性伊こ関ケ、する遺伝子領域が組み
込まれているベクターをバチルス属のアデニン要求性変
異株tこ含有せしめたグアノシン生産性微生物を培養し
、培地中1こ蓄積されたグアノシンを採取することを特
徴とするグアノシンの製造法。
A vector incorporating a gene region for purine analog resistance or decoinine resistance obtained from the chromosomal gene of a mutant strain of Bacillus genus that has purine analog resistance or depuinine resistance is used as an adenine auxotrophic mutant strain of Bacillus genus. A method for producing guanosine, which comprises culturing the guanosine-producing microorganism containing the guanosine and collecting guanosine accumulated in the medium.
JP57058438A 1982-04-08 1982-04-08 Preparation of guanosine by fermentation process Granted JPS58175493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57058438A JPS58175493A (en) 1982-04-08 1982-04-08 Preparation of guanosine by fermentation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57058438A JPS58175493A (en) 1982-04-08 1982-04-08 Preparation of guanosine by fermentation process

Publications (2)

Publication Number Publication Date
JPS58175493A true JPS58175493A (en) 1983-10-14
JPH0428357B2 JPH0428357B2 (en) 1992-05-14

Family

ID=13084399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57058438A Granted JPS58175493A (en) 1982-04-08 1982-04-08 Preparation of guanosine by fermentation process

Country Status (1)

Country Link
JP (1) JPS58175493A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749650A (en) * 1984-01-27 1988-06-07 Takeda Chemical Industries, Ltd. Bacillus containing a 5'inosinate dehydrocenase gene
EP1700910A2 (en) 2005-03-10 2006-09-13 Ajinomoto Co., Inc. Purine-derived substance-producing Bacillus and a method for producing purine-derived substance therewith
WO2007125782A1 (en) 2006-04-24 2007-11-08 Ajinomoto Co., Inc. Bacterium capable of producing purine substance, and process for production of purine substance
WO2007125783A1 (en) 2006-04-24 2007-11-08 Ajinomoto Co., Inc. Bacterium capable of producing purine substance, and process for production of purine substance
US8034767B2 (en) 2006-12-22 2011-10-11 Ajinomoto Co., Inc. Method for producing purine nucleosides and nucleotides by fermentation using a bacterium belonging to the genus Escherichia or Bacillus
US9012182B2 (en) 2004-03-31 2015-04-21 Ajinomoto Co., Inc. Method for producing purine nucleosides and nucleotides by fermentation using bacterium belonging to the genus Bacillus or Escherichia

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749650A (en) * 1984-01-27 1988-06-07 Takeda Chemical Industries, Ltd. Bacillus containing a 5'inosinate dehydrocenase gene
US9012182B2 (en) 2004-03-31 2015-04-21 Ajinomoto Co., Inc. Method for producing purine nucleosides and nucleotides by fermentation using bacterium belonging to the genus Bacillus or Escherichia
EP1700910A2 (en) 2005-03-10 2006-09-13 Ajinomoto Co., Inc. Purine-derived substance-producing Bacillus and a method for producing purine-derived substance therewith
US7326546B2 (en) 2005-03-10 2008-02-05 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing purine-derived substance
US8298791B2 (en) 2005-03-10 2012-10-30 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing purine-derived substance
WO2007125782A1 (en) 2006-04-24 2007-11-08 Ajinomoto Co., Inc. Bacterium capable of producing purine substance, and process for production of purine substance
WO2007125783A1 (en) 2006-04-24 2007-11-08 Ajinomoto Co., Inc. Bacterium capable of producing purine substance, and process for production of purine substance
US8236531B2 (en) 2006-04-24 2012-08-07 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing a purine-derived substance
US8409563B2 (en) 2006-04-24 2013-04-02 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing a purine-derived substance
US8034767B2 (en) 2006-12-22 2011-10-11 Ajinomoto Co., Inc. Method for producing purine nucleosides and nucleotides by fermentation using a bacterium belonging to the genus Escherichia or Bacillus

Also Published As

Publication number Publication date
JPH0428357B2 (en) 1992-05-14

Similar Documents

Publication Publication Date Title
US4757009A (en) Recombinant DNA having a phosphoenol pyruvate carboxylase gene inserted therein, bacteria carrying said recombinant DNA and a process for producing amino acids using said bacteria
US4388405A (en) Method for producing L-histidine by fermentation
DE60025976T2 (en) DNA encoding a mutated isopropylmalate synthase, microorganism producing L-leucine, and methods of producing L-leucine
GB2075056A (en) L-proline-producing Microorganisms
JPH024276B2 (en)
HU196843B (en) Process for producing l-lysine
JPS63233798A (en) Production of 5&#39;-guanylic acid
FR2484448A1 (en) PROCESS FOR PRODUCING L-ARGININE BY FERMENTATION
JPH0129559B2 (en)
US4946781A (en) Recombinant DNA, bacteria carrying said recombinant DNA and a process for producing L-threonine or L-isoleucine using said bacteria
JPS6066989A (en) Production of l-arginine
JPS58175493A (en) Preparation of guanosine by fermentation process
EP0412688A1 (en) Modified DNA and its use
JPS6368091A (en) Production of amino acid
JPS5931691A (en) Preparation of l-threonine by fermentation
DE10137815A1 (en) Process for the production of a marker-free mutant target organism and suitable plasmid vectors
CA1187430A (en) Mutant strain of escherichia coli and its use for the preparation of glutathione
JPH0333318B2 (en)
EP0080378A2 (en) L-tryptophan-producing microorganisms
JPS6070093A (en) Production of l-tyrosine by fermentation process
JPS58107192A (en) Preparation of l-histidine by fermentation
JPS6178378A (en) Coryne-type bacteria having recombinant dna, and production of aromatic amino acid using same
ES2728970T3 (en) Microorganisms that have an enhanced L-amino acid productivity and Lamino acid production process in which they are used
JPS58175492A (en) Preparation of guanosine-5&#39;-monophosphoric acid by fermentation process
JPS58134994A (en) Preparation of l-phenylalanine by fermentation