JPS58174849A - Novel bioliquid carrier - Google Patents

Novel bioliquid carrier

Info

Publication number
JPS58174849A
JPS58174849A JP5885082A JP5885082A JPS58174849A JP S58174849 A JPS58174849 A JP S58174849A JP 5885082 A JP5885082 A JP 5885082A JP 5885082 A JP5885082 A JP 5885082A JP S58174849 A JPS58174849 A JP S58174849A
Authority
JP
Japan
Prior art keywords
carrier
blood
bioliquid
substance
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5885082A
Other languages
Japanese (ja)
Inventor
Seiji Miyata
宮田 征司
Akira Kataobe
片伯部 旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP5885082A priority Critical patent/JPS58174849A/en
Publication of JPS58174849A publication Critical patent/JPS58174849A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE:To obtain a bioliquid carrier in place of filter paper for carrying the bioliquid by a method wherein a layer of hydro-swelling fibrous substance is provided on the carrier where a hydrophilic inorganic substance has been dispersed in gaps between hydrophobic porous substances. CONSTITUTION:The bioliquid carrier is prepared by providing a layer of a hydro-swelling fibrous substance on a carrier where a hydrophilic inorganic substance has been dispersed in gaps between hydrophobic porous substances. When it is used, the bioliquid is first taken in the upper layer becuase of the hydrophile property with which the hydro-swelling fibrous substance has been provided and gradually allowed to penetrated in the lower layer, whereas the moisture as a whole is dried, so that it can offer dryness superior to filter paper. Moreover, when the carrier is used for blood, because the fibrous substance in the upper layer is expansive and because it is not allowed to contact the blood component while being hard and fibrous and because there exists no hard fibrous substance even in the lower layer formed with the porous substance, the blood component is not damaged and preserved in a good condition as a whole. In addition, because the bioliquid is prevented from disseminating in its surface direction, it is readily extracted and traces of fiber are hardly mixed with the extracted liquid.

Description

【発明の詳細な説明】 本発明は採取した生体液を搬送するだめの新しい生体液
搬送体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new biological fluid carrier for transporting collected biological fluids.

生体液、例えば血液、血漿、血清等の検査のひとつの形
態にマス・スクリーニング(多数健診)検査というのが
ある。例えば新生児に対してh5先天性代鮒異常検査、
妊婦・新生児に対して行う周産期感染症検査等がこれで
ある。
One type of testing for biological fluids such as blood, plasma, serum, etc. is called mass screening testing. For example, H5 congenital carp abnormality test for newborns,
This includes tests for perinatal infections performed on pregnant women and newborns.

これらの検査はマス・スクリーニングである故に被検者
が広域に分布し、検査を行うセンターにまで検体(例え
ば血液)を集配するシステムがないと受検率が上がりに
くい。そこで、欧米でも我が国でもp紙採血法という方
法がとられているのが特徴である。通常、これは厚手の
1紙を血液搬送体として用い、その1紙に血液(全血)
をしみこませ、乾燥してから検査センターに郵送し・検
査センターではp紙上の乾燥血斑の一定縫切片を取り出
し水性抽出剤(液又はゲル)に浸し、その抽出分をもっ
て検査を行う方法である。
Since these tests involve mass screening, test subjects are distributed over a wide area, and unless there is a system to collect and deliver specimens (for example, blood) to the testing center, it is difficult to increase the test take rate. Therefore, it is characteristic that both Europe, the United States, and Japan use the p-paper blood collection method. Normally, a piece of thick paper is used as a blood carrier, and blood (whole blood) is placed on that piece of paper.
The test center soaks it in water, dries it, and then mails it to a testing center.The testing center takes out a section of the dried blood spot on the paper and soaks it in an aqueous extractant (liquid or gel), and then tests the extracted portion. .

この1紙法は幾つかのすぐれた特長と共に短所も持って
いる。通常の病院での検体集配法が試験管を介するもの
であることを思えば、検体の集配上の簡便さを長所とし
てあげることができる。しかし、この血液搬送体を用い
る検体集配法は、現在側われているν紙がいくつかの欠
点をもつが故に、検査法上からも集配性上からも改良を
望まれ −− ている点が種々見受けられる。p紙の血液吸収性はすぐ
れており、更にその厚みを変化して、吸収容量的には種
々の仕様のものをつくることができるのは長所である。
This one-paper method has several advantages as well as disadvantages. Considering that the normal method of collecting and delivering specimens at hospitals is via test tubes, the simplicity of collecting and delivering specimens can be cited as an advantage. However, the specimen collection and delivery method using this blood carrier has some drawbacks with the currently available ν paper, so improvements are desired in terms of both the testing method and collection and delivery. Various types can be found. P paper has excellent blood absorption properties, and its advantage is that it can be made with various specifications in terms of absorption capacity by changing its thickness.

この性質はp紙が血液に対してもつ深い親和性と媒体と
しての均質性によるものと思われるが、血液をp紙に滴
下吸収せしめるときの観察現象として、血液成分は滴下
点より表面方向に拡散し停止性が乏しい。この点に関し
、検査のときに、加珪部内と加珪部外とで一定量のp紙
を切り取り検査をそれぞれに行ったとき、加珪部外の1
紙からも血液検査値が裏側され、加珪部内P紙が血液を
正しく代表していないことを証明している。更に集配上
は、血液搬送体であるp紙はすぐれた血液吸収性を有す
る反面、乾燥性が低く改良が望まれる。又、検査上は抽
出性が低いこと、血液成分の保全性が低いこと、抽出液
へ微細せんいが混入することなどの諸欠点が列挙される
This property is thought to be due to the deep affinity that P paper has for blood and its homogeneity as a medium, but as a phenomenon observed when blood is dripped onto P paper and absorbed, blood components move toward the surface from the point of drop. Diffuses and has poor stopping properties. Regarding this point, when inspecting a certain amount of paper inside the cutout and outside the cutout and inspected each, one of the pieces outside the cutout
The blood test values were also reversed from the paper, proving that the paper in the paper did not accurately represent blood. Furthermore, in terms of collection and delivery, P paper, which is a blood carrier, has excellent blood absorption properties, but has low drying properties, and improvements are desired. In addition, various drawbacks are enumerated in terms of testing, such as low extractability, low integrity of blood components, and contamination of microfibers into the extract.

抽出による再生はむろん短時間に起る方がよいが、1紙
の場合一般に長時間を要するため、通常p紙切片を細片
化してから抽出を竹いその促進をはかるが必ずしも十分
でない。又、血液搬送体である1紙にとって検査に供し
うる血液成分が抽出の後に保全されて再生することが望
ましいが、一般に血球成分が損傷しやすく(溶血現象)
、抽出物中に溶血液が混入する現象が観測され、検査上
の妨害となる。更に、抽出液への混入物としてはp紙微
細せんいかあり、これも検査にとって好ましくない。
Of course, it is better for regeneration by extraction to occur in a short period of time, but since it generally takes a long time in the case of one piece of paper, the extraction is usually promoted by cutting the paper sections into small pieces, but this is not always sufficient. In addition, for paper, which is a blood carrier, it is desirable that blood components that can be used for testing are preserved and regenerated after extraction, but generally blood cell components are easily damaged (hemolysis phenomenon).
, the phenomenon of contamination of hemolysate into the extract has been observed, which interferes with testing. Furthermore, there are fine particles of P paper as a contaminant in the extract, which is also unfavorable for testing.

本発明の目的は血液などの生体液を送るためのE紙に代
る新しい生体液搬送体を提供することである。すなわち
、乾燥し易く、生体液吸収性がすぐれており生体液成分
の表面方向拡散も少く、抽出性がよいのみならず抽出液
への微細せんい混入もなく、血液損傷なども少ない生体
液搬送体を提供することである。
An object of the present invention is to provide a new biological fluid carrier to replace E-paper for transporting biological fluids such as blood. In other words, it is a biological fluid carrier that dries easily, has excellent biofluid absorption properties, has little surface direction diffusion of biofluid components, has good extractability, does not mix fine fibers into the extracted solution, and is less likely to cause blood damage. The goal is to provide the following.

即ち、本発明は、疎水性の多孔性物質の空隙内に親水性
の無機物質が分散された担体上に水膨潤性繊維状物質の
層が設けられてなることを特徴とする生体液搬送体に関
するものである。
That is, the present invention provides a biological fluid carrier comprising a layer of water-swellable fibrous material provided on a carrier in which a hydrophilic inorganic material is dispersed in the pores of a hydrophobic porous material. It is related to.

生体液成分はこの両層にわたって吸着保持される。Biological fluid components are adsorbed and retained across both layers.

更に、上層の繊維状物質の層及び、又は下層の担体層を
重層化することによって、全体をより多層化することも
可能である。
Furthermore, by layering the upper fibrous material layer and/or the lower carrier layer, it is possible to make the entire structure more multilayered.

父、下層の担体の下に更に底層を設けて、シート全体の
機械的強度を補強したり、記号を附するための全面を上
層、下層もしくは底層に設げることもできる。
A bottom layer may be further provided under the carrier of the lower layer to reinforce the mechanical strength of the entire sheet, or the entire surface for attaching symbols may be provided on the upper layer, the lower layer, or the bottom layer.

生体液はまず水膨潤性繊維状物のもつ親水力によって上
部層にとりこまれ、やがて下部層にも浸透し、全体とし
て水分が乾燥していくが、このときの乾燥性はp紙より
もすぐれている。これは下部層に到達した生体液成分が
層内の′g!、隙に分散された親水性無機物質(例えば
無機粒子の形で分散した物質)の働きで浸透していくと
、生体液成分は多孔かつ疎水性物質の空隙間に吸着保持
される形になるため下部層での水分乾燥は速く、その結
果が上部繊維層の乾燥も促して全体として速乾性になる
と思われる。
Biological fluids are first absorbed into the upper layer by the hydrophilic power of the water-swellable fibrous material, and eventually permeate into the lower layer, drying the water as a whole, but the drying properties are superior to that of P paper. ing. This means that the biological fluid components that have reached the lower layer are inside the layer'g! When the biological fluid components penetrate through the action of hydrophilic inorganic substances (for example, substances dispersed in the form of inorganic particles) dispersed in the gaps, the biological fluid components become adsorbed and retained in the voids of the porous and hydrophobic substances. Therefore, the moisture in the lower layer dries quickly, which in turn promotes the drying of the upper fibrous layer, resulting in quick drying as a whole.

j− この搬送体では生体液成分移動のパターンが上下方向に
なっており、表面方向への拡散は少いがこれは上部層線
維秋物が水膨潤性であり繊維としては水分の毛細管移動
を起こさせにくいためと思われ、下部層では、親水性無
機物質が分散状態のため表面方向への水分の拡散は起り
にくいと思われる。
j- In this carrier, the pattern of movement of biological fluid components is vertical, and there is little diffusion toward the surface, but this is because the upper layer fibers are water-swellable and the fibers cause capillary movement of water. In the lower layer, since the hydrophilic inorganic substance is in a dispersed state, diffusion of water toward the surface is thought to be difficult.

また、本発明の生体液搬送体を血液に用いた場合、血球
成分の損傷が少いが、これは上部層線紐状物が膨潤性で
あり、硬い繊維状形態のまま血球成分と接触することが
少いためと思われる。下部層の多孔性物質の担体部でも
血球を損傷せしめるような硬い繊維様物がなく全体とし
て血液成分はよく保存される。
Furthermore, when the biological fluid carrier of the present invention is used for blood, there is little damage to blood cell components, but this is because the upper layer string-like material is swellable and comes into contact with blood cell components while remaining in a hard fibrous form. This seems to be because there are few cases. Even in the carrier portion of the porous material in the lower layer, there is no hard fiber-like material that could damage blood cells, and blood components are well preserved as a whole.

水性抽出剤による抽出は迅速に起るが、これは下部層繊
維状物が膨潤状態になり抽出剤中の水分との交換が非膨
潤繊維よりも速やかに起るためと思われる。下部層疎水
性物質も抽出剤水分が多孔部に置換されると生体液成分
は親水性であり、疎水性物質と共存するよりも、水分へ
溶出して移行していく方向にあるため、全体として抽出
性がよいと思われる。又、水性抽出液での抽出の場合、
本搬送体では繊維状物が水膨潤性のため微細線維が抽出
液に浮遊して除去しにくいということがなく、遠心分離
法で下層に搬送体切片部と抽出上澄液とを明瞭に分離す
ることができる。
Extraction with the aqueous extractant occurs rapidly, probably because the lower layer fibrous material becomes swollen and exchange with water in the extractant occurs more rapidly than with non-swollen fibers. When the extractant water is replaced by the pores of the hydrophobic substance in the lower layer, the biological fluid component is hydrophilic and tends to elute and migrate into the water rather than coexist with the hydrophobic substance. It seems that the extractability is good. In addition, in the case of extraction with an aqueous extraction solution,
In this carrier, the fibrous material is water-swellable, so fine fibers do not float in the extract solution and are difficult to remove, and the centrifugation method clearly separates the cut section of the carrier and the extraction supernatant in the lower layer. can do.

本発明における水膨潤性の繊維状物とは繊維の形態をと
りながらその材質としての特性が水分を吸収してゲル状
に膨潤し抱水状態になるものである。膨潤度の定義とし
て、 膨潤度(倍)=(吸収水分重量)/(自重量)を用い、
1重姻パーセント食塩水を水分としたときの膨潤度が3
〜jO倍の範囲のものが使われ、生体液の吸収、乾燥、
抽出等の諸機能のバランスからj−21倍のものが好ま
しい。具体的には411i−開昭it−/jr’1.!
tr号公報に記述されるような再生セルロースのカルボ
キシメチル化物、エクスラン−WAF(日本エクスラン
工業(株)発売)として知られるアクリルニトリル加水
分解物を架橋重合した繊維状物、アクアロン(パーキュ
レース社発売)として知られる天然セルロースのカルボ
キシメチル化架橋物による繊維状物などが該尚する。
The water-swellable fibrous material in the present invention is a material that takes the form of a fiber and has the characteristics of a material that absorbs water, swells into a gel-like state, and becomes hydrated. As a definition of swelling degree, use swelling degree (times) = (absorbed water weight) / (own weight),
Swelling degree when water is 1% salt solution is 3
~jO times the range is used, and is used for absorbing biological fluids, drying,
In view of the balance of various functions such as extraction, it is preferable to use j-21 times. Specifically, 411i-Kaishoit-/jr'1. !
A carboxymethylated product of regenerated cellulose as described in the TR publication, a fibrous material obtained by crosslinking and polymerizing acrylonitrile hydrolyzate known as Exlan-WAF (sold by Japan Exlan Kogyo Co., Ltd.), and Aqualon (sold by Perculase). This includes fibrous materials made of carboxymethylated cross-linked natural cellulose known as .

この繊維状物を形成I〜てシート状にする方法は本発明
の効果を限定するものではないが、シート状化は編織に
よる加工や不織布加工によって達成できる。
The method of forming this fibrous material into a sheet shape does not limit the effects of the present invention, but forming a sheet can be achieved by knitting or weaving or non-woven fabric processing.

また、繊維状シートの厚み・繊維密度・繊維径等はそれ
ぞれに生体液の吸収・乾燥・抽出に影譬するが、実用的
な生体液搬送体のために厚み0./〜0.7rata、
好ましくは0.λ〜O0S絽、繊維密度IO? −/2
0 ff/ml、好ましくは弘o 、 ioo ff/
lr? 、Ml 維174IOμ〜jθμ、好ましくは
72〜2jμが用いられる。
In addition, the thickness, fiber density, fiber diameter, etc. of the fibrous sheet each affect the absorption, drying, and extraction of biological fluids, but for a practical biological fluid carrier, the thickness is 0. /~0.7rata,
Preferably 0. λ~OOS, fiber density IO? -/2
0 ff/ml, preferably Hiroo, ioo ff/
lr? , Ml fibers of 174IOμ to jθμ, preferably 72 to 2jμ are used.

疎水性の多孔性物質としては、プラスチック、ケイ酸カ
ルシウムのボード、ガラス焼結体、アルミナ焼結体及び
アル安す、ケイ酸アルミニウム、ケイソウ土、カーボン
等から作ることのできる多孔性セラミック等も用い得る
Examples of hydrophobic porous materials include plastics, calcium silicate boards, glass sintered bodies, alumina sintered bodies, and porous ceramics that can be made from aluminum, aluminum silicate, diatomaceous earth, carbon, etc. Can be used.

多孔性で疎水性の物質の空隙内に親水性無機物質、例え
ばその微粒子を分散させたシートにおいて、多孔性とは
連通孔からなる網目状構造を持ち、良好な血液の保持と
乾燥・抽出のために平均孔径o、oi + o、rμ、
好ましくは0.0/ 、 0.λμの多孔を有するもの
である。更に好ましくは次式で定義される気孔率が30
−40%、好ましくはto −to%の範囲 気孔率−C(空孔溶積)/(多孔質プラスチック容積)
〕X100但し、壁孔容積は含水重量−乾燥重量より算
出のものである。好ましい材料は疎水性のプラスチック
である。疎水性のプラスチックの好ましいものはプラス
チックの主要構成元素がc、H、ハロゲン元素よりなり
、プラスチックとしてほとんど吸水、透湿性をもたない
ものであって、従って水分を吸収保持するかわりに、乾
燥のために寄与する性質なもつもので、具体的にはポリ
エチレン、ポリプロピレン、ポリブテンおよびこれらの
混合物、またはエチレン、プロピレンブテン、ヘキセン
の二種以上の共重合物、ポリ塩化ビニル等が市販品とし
て入手できるか製造法公知のため実施しやすい。
In sheets in which hydrophilic inorganic substances, such as fine particles thereof, are dispersed in the pores of a porous and hydrophobic substance, porosity means that the sheet has a network structure consisting of communicating pores, which allows for good blood retention, drying, and extraction. For the average pore size o, oi + o, rμ,
Preferably 0.0/, 0. It has pores of λμ. More preferably, the porosity defined by the following formula is 30
-40%, preferably in the range porosity -C (pore volume)/(porous plastic volume)
]X100 However, the wall pore volume is calculated from water-containing weight - dry weight. A preferred material is a hydrophobic plastic. Preferred hydrophobic plastics are those whose main constituent elements are C, H, and halogen elements, and which have almost no water absorption or moisture permeability as plastics. Therefore, instead of absorbing and retaining moisture, they dry out. Specifically, polyethylene, polypropylene, polybutene, mixtures thereof, copolymers of two or more of ethylene, propylene butene, hexene, polyvinyl chloride, etc. are commercially available products. Since the manufacturing method is well known, it is easy to implement.

このような材料はシートとして、厚み0.0J−−OJ
龍、好ましくはo、1z−o、≠關のものが使われるが
、これは機能をバランスよく発揮できる範囲であって、
発明の範囲を限定するものでない。親水性無機物質は該
疎水性プラスチックに対し水湿潤性を賦与゛できるもの
であって親水性であるが、水に可溶であってはならない
。本発明に用いうる無機物質の好ましい例としてはシリ
カ、アルミナ、白土、酸化チタン、炭酸カルシウム等の
微粒子があげられる。その粒子の大きさや分散密度は、
適度に湿潤性を賦与する観点から粒子平均直径j−jθ
Omμ、好ましくは10−100 mμ、次式で定義さ
れる見かけ分散密度がj−1,0%、好ましくはj〜す
1のものが使われる。
Such material can be used as a sheet with a thickness of 0.0J--OJ
Dragons, preferably o, 1z-o, ≠, are used, but this is within the range where the functions can be demonstrated in a well-balanced manner,
It is not intended to limit the scope of the invention. The hydrophilic inorganic substance can impart water wettability to the hydrophobic plastic and is hydrophilic, but must not be soluble in water. Preferred examples of inorganic substances that can be used in the present invention include fine particles of silica, alumina, clay, titanium oxide, calcium carbonate, and the like. The particle size and dispersion density are
From the viewpoint of imparting appropriate wettability, the particle average diameter j−jθ
0 mμ, preferably 10-100 mμ, and an apparent dispersion density defined by the following formula: j-1.0%, preferably j-1.

見かけ分散密度(%)− 〔(微粒予審*)/(多孔質プラスチック客積) ) 
×100本発明の好ましい下層、即ち、多孔性で疎水性
のプラスチック空隙内に親水性無機微粒子を分散させた
シートは、特開昭52−1sA7yA g公報の記載の
ように、疎水性プラスチックと親水性無機微粒子と可塑
剤とを混合溶融成形した後可塑剤を抽出除去して製造す
る方法とか特公昭37−2922号公報−ノθ〜 に記載のように1疎水性プラスチツクに親水性無機微粒
子、溶剤可塑剤等を混合後乾燥して製造する方法などで
作ることができるが、本発明にとって特定の方法によっ
て、効果が左右されるものでない。また、多孔性無機物
質への親水性微粒子を担持するには、例えばシリカ、ア
ルミナ等の微粒子の水スラリー液に多孔性無機物質を浸
漬後、乾燥することにより可能である。又、スラリー液
に少量のエポキシエマルジョン等の有機バインダーを添
加して、微粒子の担持性をよくすることもできる。
Apparent dispersion density (%) - [(Preliminary examination of fine particles *) / (Porous plastic volume) )
×100 A preferable lower layer of the present invention, that is, a sheet in which hydrophilic inorganic fine particles are dispersed in porous and hydrophobic plastic voids, is a sheet made of a hydrophobic plastic and a hydrophilic plastic, as described in Japanese Patent Application Laid-open No. 52-1sA7yAg. As described in Japanese Patent Publication No. 37-2922-No. θ~, there is a method in which hydrophilic inorganic fine particles and a plasticizer are mixed, melt-molded, and then the plasticizer is extracted and removed. Although it can be produced by a method of mixing and drying a solvent plasticizer, etc., the effect of the present invention is not dependent on the specific method. Further, hydrophilic fine particles can be supported on a porous inorganic substance by, for example, immersing the porous inorganic substance in an aqueous slurry of fine particles such as silica or alumina, and then drying the porous inorganic substance. Further, a small amount of an organic binder such as an epoxy emulsion may be added to the slurry liquid to improve the ability to support the fine particles.

上下両層の一体化は本発明にとって必ずしも必須ではな
いが実用的には一体化されていた方が使い易く、例えば
プラスチックの場合、下層のプラスチックの溶融温度附
近で瞬間加熱・加圧すれば上層の繊維状物がくいこみ、
実用的な一体化物が得られるので、上下層一体化物を作
ることができる。
Although the integration of both the upper and lower layers is not necessarily essential for the present invention, it is easier to use if they are integrated in practice. For example, in the case of plastic, the upper layer can be separated by instantaneous heating and pressure near the melting temperature of the lower plastic layer. The fibrous material gets stuck,
Since a practical integrated product can be obtained, it is possible to create an integrated product with upper and lower layers.

実際例として、熱圧着p−ル法、エンボス加工法等にお
ける上下2段の熱ロールに該両層を重ねながら供与して
ゆくと一体化されてくるが、例えばプラスチックとして
ポリエチレンが使われている場合、上ロール(繊維側)
 /60−170℃、下ロール(プラスチック側) 1
0〜IOθ℃、ロールのすき間間隔0.2〜0.j i
im 、 ロー /l/線速度はJ−−,20m/II
で作ることができる。
As a practical example, when the two layers are stacked and applied to two layers of heat rolls in the thermocompression bonding method, embossing method, etc., they become integrated.For example, polyethylene is used as the plastic. In case, upper roll (fiber side)
/60-170℃, lower roll (plastic side) 1
0~IOθ℃, roll gap 0.2~0. j i
im, low /l/linear velocity is J--, 20m/II
It can be made with.

次に本発明の実施態様を示すため、実施例によって詳細
に説明する。
EXAMPLES Next, in order to show embodiments of the present invention, examples will be described in detail.

実施例/ 血液搬送体として上層に特開昭J′+ −iJ′ii、
n号公報の実施例/の方法で製造した水膨潤性銅アンモ
ニアレーヨン不織布、すなわち、銅アンモニアレーヨン
の連続フィラメントよりなる不織布をプロパ/−ル、水
、苛性ソーダ、モノクロル酢酸からなる処理液に浸漬処
理後、メタノール水で洗浄処理して得た不織布として、
繊維径ll声、#J!維智度弘Otlrd、厚み0.3
3鶴のものを用いた。
Example/ Unexamined Japanese Patent Publication J'+ -iJ'ii in the upper layer as a blood carrier
A water-swellable cuprammonium rayon nonwoven fabric produced by the method of Example/of Publication No. Then, as a nonwoven fabric obtained by washing with methanol water,
Fiber diameter ll voice, #J! Michihiro Otlrd, thickness 0.3
I used one from Mitsuru.

下層に%開昭si−’−’isぶ77j号公報の実施例
/の方法で製造したシリカ分散多孔性ポリエチレンシー
ト(すなわちポリエチレンを平均直径/1mμのシリカ
と可塑剤(ジオクチルフタレート)とを混合後トリクロ
ルエタンで浸漬、可塑剤を抽出除去して得たシート)と
して、シリカの見かげ分散密度3r係、平均孔径0.0
2μ、気孔率jざ饅、厚み0./1IIIのものを用い
た。
In the lower layer, a silica-dispersed porous polyethylene sheet (i.e., polyethylene mixed with silica having an average diameter of 1 mμ and a plasticizer (dioctyl phthalate) produced by the method described in Example 77J of Publication No. 77J) was used. After dipping in trichloroethane and extracting and removing the plasticizer, the sheet had an apparent silica dispersion density of 3r and an average pore diameter of 0.0.
2μ, porosity: 0. /1III was used.

両者の一体化は熱圧着法により、上ロールljO℃、下
ロールlOO℃に設定し、両ロールすき間0.26+u
tx、ロール線速度、tm珈で行った。コj℃、湿度5
0%下で作られたが、特に乾燥はせず、lj關長さの正
方形シート片を切り出して、そのまま使用した。シート
片に対し、注射筒に採集された健康人血(ヘマトクリッ
ト値弘5%)を直径10ru程gの大きさにしみるよう
に滴下する。o、ii 、1を要した。
The two are integrated by thermocompression bonding, with the upper roll set at ljO℃ and the lower roll lOO℃, with a gap of 0.26+u between the two rolls.
The test was performed using tx, roll linear velocity, and tm. ℃, humidity 5
Although it was made under 0%, it was not particularly dried, and a square sheet piece with a length of lj was cut out and used as it was. Healthy human blood (hematocrit value: 5%) collected in a syringe is dripped onto the sheet piece so that it soaks into the sheet to a size of about 10 ru in diameter and 1 g. It took o, ii, 1.

上記室内条件下で全体を弘θ分間風乾したところ、血液
滴下直後における増分質量の減量割合が7j%に達した
ので、実用上の乾燥状態と判断した。
When the entire body was air-dried for 10 minutes under the above indoor conditions, the percentage loss in incremental mass immediately after blood drop reached 7j%, which was determined to be in a dry state for practical use.

抽出液として、リン酸緩衡液を下記のように調製した。As an extract, a phosphoric acid buffer solution was prepared as follows.

NaC1O,≠ f/l KH,Po、      0.0/  t/l13− Na、HPO4’/、2′H400,/4’j  f/
LKC10,01f/L P H7,Ir この抽出液0.弘−を試験管に取り、健康人血を吸収し
た上記血液搬送体シートより乾燥生成した直径10w1
mの加珪ディスクを切り取って加え、IO分間靜直置後
3000回転/分で5分間遠心分離すると、試験管下底
にシート残片、それより上部に透明な抽出液が観察され
、肉眼的判定によって溶血が起永でいないこと、繊維片
、プラスチック片が浮遊していないことが確認された。
NaC1O, ≠ f/l KH, Po, 0.0/ t/l13- Na, HPO4'/, 2'H400, /4'j f/
LKC10,01f/L P H7,Ir This extract 0. A diameter of 10w1 was obtained by drying the above blood carrier sheet that had absorbed healthy human blood by taking Hiroshi in a test tube.
Cut out and add a 300-mm thick disk, let it stand for 10 minutes, and then centrifuge it at 3,000 rpm for 5 minutes.A sheet residue was observed at the bottom of the test tube, and a clear extract was observed above it, which could be visually determined. It was confirmed that there was no hemolysis and that no fiber or plastic pieces were floating.

次いで、この抽出液中の血漿成分の抽出移動量を定量す
る目的で、屈折針法により総タン白量を測定しく診照】
医学書院、石井鴨編[臨床化学検査II J p、27
)同一検体で同一量の血漿分を同一抽出液に添加して得
た液o、11を−を標準液として同じく測定し比較した
Next, in order to quantify the amount of extracted transfer of plasma components in this extract, the total protein amount was measured using the refracting needle method.]
Igaku Shoin, edited by Kamo Ishii [Clinical Chemistry Test II J p, 27
) Solutions o and 11 obtained by adding the same amount of plasma from the same sample to the same extract were measured in the same manner and compared using - as the standard solution.

その結果、血液搬送体シートからの抽出液中の総タン白
量1.θf/a!−%標準液中の総タン白普/、/f7
at  であった。
As a result, the total protein content in the extract from the blood carrier sheet was 1. θf/a! -% total protein in standard solution /, /f7
It was at.

続いて、この搬送体シートを使用し同じように健康人血
を吸収・乾燥せしめてできた直径10gmの加速部分と
加珪直近外の部分とを一定量切り取り、同じように抽出
後締タン日量を各々測定して、血液成分の表面方向への
拡散性を観察した。その結果・100 (加珪部分内)
対O(加珪直近外)であった。
Next, using this carrier sheet, healthy human blood was absorbed and dried in the same way, and a certain amount of the accelerated part with a diameter of 10 gm and the part immediately outside the keratin was cut out, and after extraction in the same way, it was tightened. The amount of each was measured, and the diffusibility of blood components toward the surface was observed. Result: 100 (inside the part)
It was against O (just outside Kakei).

比較例1 血液搬送体として、厚みO1j關のP紙(第一化学薬品
(銅発売)を用いて実施例1と同じように血液を吸収せ
しめ、乾燥させた。
Comparative Example 1 Blood was absorbed in the same manner as in Example 1 using P paper (Daiichi Kagaku Yakuhin Co., Ltd.) with a thickness of O1j as a blood carrier and dried.

その結果、血液滴下直後における増分質量の減twu合
が7jチに達するには2時間を要した。又、実施例1と
同じく抽出したところ、遠心分離後の抽出液の色調には
明らかに赤色が観察され、血球の損傷が起きた。また、
細い繊維の浮遊が顕著に見られた。
As a result, it took 2 hours for the incremental mass reduction to reach 7j immediately after the blood was dropped. Further, when extraction was performed in the same manner as in Example 1, a clear red color was observed in the extract after centrifugation, indicating that damage to blood cells had occurred. Also,
Floating of thin fibers was clearly observed.

次いで、抽出液中の総タン日量を測定したところθ、り
ff/dtであった。加珪部と加珪S直近外とで総タン
白普を測定したところ、1OO(加珪部)対♂(加珪部
直近外)であった。
Next, the total amount of tanned water in the extract was measured and found to be θ, ff/dt. When the total protein was measured between the Kakebe and the area immediately outside the Kakei S, it was 1OO (Kakebe) versus male (the area immediately outside the Kakebe).

実施例2 血液搬送体として、上層に実施例/と同じ銅アンモニア
レーヨン不織布を用意し、下層には特開昭32−#A7
77号公報の実施例/と同じだが樹脂としてポリエチレ
ンの代りにポリプロピレン、親水性粒子としてアルミナ
を分散させた多孔性、疎水性プラスチックシートを製造
した。気孔率6o%、平均孔径0.02μ、シート厚み
0.2龍、アルミナ粒子の平均粒子径20mμ、アルミ
ナの見かけ分散密度140%であった。上下両層の一体
化はエンボス加工法により、上ロールiro℃、下ロー
ル/、3−0℃に設定し、両ロールすきまo−5mm、
ロール線速度10m /mvrで行った。実施例1と同
じ条件でシート片を作り、血液を滴下した。次いで全体
を風乾したが血液滴下直後における増分質量の減量割合
が7jチに運するには≠θ分間を要した。実施例1と同
様に遠心分離後の抽出□液の状態は溶血が観察されず、
繊維片・プラスチック片も浮遊していないことが確認さ
れた。
Example 2 As a blood carrier, the same copper ammonia rayon nonwoven fabric as in Example/ was prepared for the upper layer, and JP-A-32-#A7 was prepared for the lower layer.
A porous, hydrophobic plastic sheet was produced in the same manner as in Example 77, except that polypropylene was used as the resin instead of polyethylene, and alumina was dispersed as the hydrophilic particles. The porosity was 60%, the average pore diameter was 0.02μ, the sheet thickness was 0.2μ, the average particle diameter of the alumina particles was 20μ, and the apparent dispersion density of alumina was 140%. The upper and lower layers are integrated by embossing, with the upper roll set at iro°C, the lower roll set at 3-0°C, and the gap between both rolls o-5mm.
The test was carried out at a roll linear velocity of 10 m/mvr. A sheet piece was made under the same conditions as in Example 1, and blood was dropped onto it. The whole was then air-dried, but it took ≠θ minutes for the rate of increase in weight loss to reach 7j immediately after the blood was dropped. As in Example 1, no hemolysis was observed in the extracted solution after centrifugation.
It was confirmed that no fiber or plastic pieces were floating.

抽出液中の総タン日量は/、/ ff/atであった。The total tan-day amount in the extract was /, /ff/at.

加速部分と加珪部直近外における総タン日量の比率はl
θθ(加珪部)対θ(加珪部直近外)であった。
The ratio of the total daily tanning amount in the acceleration part and the area immediately outside the recessed part is l.
The difference was θθ (in the recess) versus θ (immediately outside the recess).

実施例3 血液搬送体として上層に、特開昭j≠−/316り3号
公報の実施例1の方法で製造したアクリルニトリル加水
分解物な架橋重合した繊維即ち、アクリルニトリルとア
クリル酸メチルとからなるアクリル繊維を苛性ソーダに
浸漬煮沸後水洗乾燥して得られた繊維径lりμの繊維を
湿式不織布製造法により、厚み0..2J−111繊維
密度100 ff/、Iのシート状物に加工した。湿式
不織布製造法は上記乾燥後のアクリル繊維(繊維長2I
ll+i)のメタノールスラリー(繊維濃度として繊維
容積のスラリー容積に対する百分率で定義し、0.0J
%のもの)をガラスフィルター(細孔分布IOθ〜7.
20μ)の上に加え、p過圧、fOuImHgで1時間
かげてメタノールを除去し、2J′℃、湿度50%下で
風乾して行った。下層に特公昭37一コタ22号公報の
実施例の方法で製造したシリカ分散多孔性ポリ塩化ビニ
ルシートすなわち、ボり塩化7フー ビニルを平均直径/1mμのシリカと溶剤(シクロヘキ
サノンおよびキジロール)、可塑剤(ジオクチルフタレ
ート)等と共に混合したのち乾燥することによって得た
シートとして、シリカの見かけ分散密度70%、平均孔
径0.O/μ、気孔率y−o%、シート厚み0.2mm
のものを用意した。
Example 3 A cross-linked polymerized fiber of acrylonitrile hydrolyzate produced by the method of Example 1 of JP-A No. 316-3, ie, acrylonitrile and methyl acrylate, was used as a blood carrier in the upper layer. Acrylic fibers made of acrylic fibers were immersed in caustic soda, boiled, washed with water, and then dried. Fibers with a diameter of 1μ were obtained by a wet nonwoven fabric manufacturing method to a thickness of 0. .. 2J-111 was processed into a sheet-like product with a fiber density of 100 ff/I. The wet nonwoven fabric manufacturing method uses the above-mentioned dried acrylic fiber (fiber length 2I).
ll+i) methanol slurry (fiber concentration is defined as the percentage of fiber volume to slurry volume, 0.0J
%) to a glass filter (pore distribution IOθ~7.
The methanol was removed by heating under p overpressure and fOuImHg for 1 hour, followed by air drying at 2 J'°C and 50% humidity. The lower layer contains a silica-dispersed porous polyvinyl chloride sheet produced by the method described in the example of Japanese Patent Publication No. 37-1 Kota No. 22, i.e., 7-fuvinyl chloride, silica with an average diameter of 1 mμ, a solvent (cyclohexanone and quidylol), and a plasticizer. (dioctyl phthalate), etc., and then dried to obtain a sheet with an apparent silica dispersion density of 70% and an average pore size of 0. O/μ, porosity yo%, sheet thickness 0.2mm
I prepared something for you.

両者の一体化はエンボス加工法によりエンボスローラの
上ロール/gθ℃、下ロール/jO℃ニ設定し、両ロー
ル間0.rrn、ロール線速度20m/Mで行った。一
体化されたシートは23℃、湿度50%下で作られたが
、特に乾燥はせず/jTIJm長さの正方形シート片を
切り出して、そのまま使用した。シート片に対して注射
筒に採集された健康人血(ヘマトクリット値pt%)に
は別個に弘my/atになるようフェニルアラニンを添
加しておいてから、直径10m/m程度の大きさにしみ
るように滴下する。O1//−を要した。次いで、全体
を風乾したが、血液滴下直後における増分質量の減量割
合が7j%に達するには、pt分間を要した。
To integrate the two, use the embossing method to set the upper roll/gθ℃ and lower roll/jO℃ of the embossing roller, and set the temperature between the two rolls to 0. rrn, and the roll linear velocity was 20 m/M. The integrated sheet was made at 23° C. and 50% humidity, but was not particularly dried, and square sheet pieces with a length of /jTIJm were cut out and used as they were. Phenylalanine is separately added to healthy human blood (hematocrit value pt%) collected into a syringe from the sheet piece so that the syringe becomes thick, and then infiltrated into a syringe with a diameter of about 10 m/m. drip like this. It took O1//-. The whole was then air-dried, but it took pt minutes for the incremental mass reduction rate to reach 7j% immediately after blood was dropped.

抽出ゲルとして寒天を用い、該血液搬送体から−/r− 寒天中にフェニルアラニンが抽出される速度を知る目的
で、雑誌Medloal Technology Vo
l J’、 Aりp7341−− p 7#に記載のフ
ェニルアラニン測走法によって・フェニルアラニン測定
に要する時間を測った。
Using agar as an extraction gel, for the purpose of knowing the rate at which phenylalanine is extracted from the blood carrier into the agar, the journal Medloal Technology Vo.
The time required for phenylalanine measurement was measured by the phenylalanine scanning method described in J', Ari p7341--p7#.

即ち、該血液搬送体によるディスク(直径3鶴)を寒天
中におき、フェニルアラニン抽出を示す発育円生成まで
の時間を測ったところ7〜り時間であった。
That is, when a disk (diameter 3 cranes) of the blood carrier was placed in agar and the time required to produce a growth circle indicating phenylalanine extraction was measured, it was 7 hours.

比較例コ 血液搬送体として、厚み0.3−鰭のp紙(第一化学薬
品(株)発売)を用いて実施例3と同じように血液を吸
収せしめ、乾燥させた。その結果、血液滴下直後におけ
る増分質量の減量割合が7j%に達するには一時間を喪
した。父、実施例3と同じく抽出したところ、フェニル
アラニン抽出を示す発育円生成まで#−,20時間を要
した。
Comparative Example Blood was absorbed in the same manner as in Example 3 using P paper (manufactured by Daiichi Kagaku Yakuhin Co., Ltd.) with a thickness of 0.3-fin as a blood carrier and dried. As a result, it took one hour for the incremental mass reduction rate to reach 7j% immediately after the blood was dropped. When the father was extracted in the same manner as in Example 3, it took 20 hours to produce a growth circle indicating phenylalanine extraction.

実施例≠ 血液搬送体として実施例/と同一のものを用意した。採
血された健康人血(ヘマトクリット値り5%)を1時間
静置93000回転/分でlj分間遠心分離し、得られ
た上層部を血清として注射筒に取り、血液搬送体シート
片に対し、直径1orn程度の大きさにしみるように滴
下する。O1/−を要した。実施例1と同じ室内条件下
でシート片を≠θ分間風乾したところ、血清滴下直後に
おける増分質量の減量割合が81に達したので、実用上
の乾燥状態と判断した。実施例1と同様に抽出を行った
が、遠心分離後の抽出液の観察では繊維片・プラスチッ
ク片が浮遊していないことがMidされた。
Example ≠ The same blood carrier as in Example was prepared. Collected healthy human blood (hematocrit value 5%) was left to stand for 1 hour and centrifuged at 93,000 rpm for lj minutes, and the obtained upper layer was taken as serum into a syringe barrel and applied to a piece of blood carrier sheet. Drop it so that it is about 1 orn in diameter. It took O1/-. When the sheet piece was air-dried for ≠θ minutes under the same indoor conditions as in Example 1, the incremental weight loss rate immediately after serum drop reached 81, which was determined to be in a practically dry state. Extraction was carried out in the same manner as in Example 1, but observation of the extract after centrifugation revealed that no fiber pieces or plastic pieces were floating.

抽出液中の総タン日量は/ 、 7 f/atであった
。又同一血清の同一量の血清を同一抽出液に添加して得
た標準液の総タン白蓋は1.ri/atであった。血清
部と血清部直近外における総タン日量の比率はioo対
Oであった。
The total tan-day amount in the extract was 7 f/at. In addition, the total protein content of the standard solution obtained by adding the same amount of the same serum to the same extract is 1. It was ri/at. The ratio of the total daily amount of tan to the serum part and immediately outside the serum part was ioo to O.

比較例3 血液搬送体として、実施例1の比較例と同一のものを用
いて、実施例≠と同じように血清を吸収せしめ乾燥させ
た。その結果、血清滴下直後における増分質量の減量割
合が1196に達するには2時間を要した。又、遠心分
離後の抽出液には細い繊維の浮遊が顕著に見られた。次
いで、抽出液中の総タン日量を測定したところl、5V
aLであった。
Comparative Example 3 Using the same blood carrier as in the comparative example of Example 1, serum was absorbed and dried in the same manner as in Example≠. As a result, it took 2 hours for the incremental mass reduction rate to reach 1196 immediately after dropping the serum. In addition, fine fibers were noticeably suspended in the extract after centrifugation. Next, the total amount of tanned water in the extract was measured, and it was 5V.
It was aL.

血清部と血清部直近外とで総タン日量を測定したところ
ioθ対Oであった。
When the total tanned amount was measured in the serum area and the area immediately outside the serum area, it was ioθ vs. O.

特許出願人 旭メディカル株式会社 代理人弁理士 星  野      透21−Patent applicant: Asahi Medical Co., Ltd. Representative Patent Attorney Hoshino Toru 21-

Claims (4)

【特許請求の範囲】[Claims] (1)  疎水性の多孔性物質の空隙内に親水性の無機
物質が分散された担体上に水膨潤性繊維状物質層が設け
られてなる生体液搬送体。
(1) A biological fluid carrier comprising a water-swellable fibrous material layer provided on a carrier in which a hydrophilic inorganic material is dispersed in the pores of a hydrophobic porous material.
(2)搬送体形状がシート状である特許請求の範囲第1
項記載の生体液搬送体。
(2) Claim 1 in which the conveyor shape is sheet-like
The biological fluid carrier described in Section 1.
(3)  多孔性物質が疎水性のプラスチック材料より
なる特許請求の範囲第1項記載の生体液搬送体。
(3) The biological fluid carrier according to claim 1, wherein the porous substance is made of a hydrophobic plastic material.
(4)生体液が血液である特許請求の範囲第1項記載の
生体液搬送体。
(4) The biological fluid carrier according to claim 1, wherein the biological fluid is blood.
JP5885082A 1982-04-08 1982-04-08 Novel bioliquid carrier Pending JPS58174849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5885082A JPS58174849A (en) 1982-04-08 1982-04-08 Novel bioliquid carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5885082A JPS58174849A (en) 1982-04-08 1982-04-08 Novel bioliquid carrier

Publications (1)

Publication Number Publication Date
JPS58174849A true JPS58174849A (en) 1983-10-13

Family

ID=13096146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5885082A Pending JPS58174849A (en) 1982-04-08 1982-04-08 Novel bioliquid carrier

Country Status (1)

Country Link
JP (1) JPS58174849A (en)

Similar Documents

Publication Publication Date Title
JP3664328B2 (en) Method for preparing plasma or serum sample
CA2014119C (en) Methods and devices for the separation of plasma or serum from whole blood, collection of plasma or serum, and reagent delivery system
US8097171B2 (en) Method of separating a fluid fraction from whole blood
RU1799472C (en) Method for determining component of hdl-cholesterol- bearing liquid
US5494638A (en) Support membrane
US5262067A (en) Device and its use for the separation of plasma from whole blood
EP0160916B1 (en) Part of an analytical element for the analysis of a solid in a liquid sample
EP3325126B1 (en) Blood separation media and lateral flow devices for blood samples
Wang et al. Electrospun polyurethane-core and gelatin-shell coaxial fibre coatings for miniature implantable biosensors
CN87102322A (en) Measure test carrier and method that agglutination parameter is used
JPH0642905B2 (en) Hemodialysis membrane
JP3870468B2 (en) Plasma or serum separation filter
JPS58174849A (en) Novel bioliquid carrier
JP3796315B2 (en) Graphite nonwoven fabric as functional layer in diagnostic test kits
US20220390335A1 (en) A Multi-Layered Membrane And A Method Of Preparing The Same
JP3644169B2 (en) Plasma or serum separation filter and plasma or serum separation method
JP3722255B2 (en) Plasma or serum separation filter
EP2808427A1 (en) Metal adsorption acrylic fiber, non-woven fabric, sheet-like product, and uses thereof as metal adsorbent
JPS60230062A (en) Analyzing element for solid-containing liquid sample
JP3175373B2 (en) Method for measuring enzyme activity
JPS60230063A (en) Analyzing element for solid-containing liquid sample
JPH1138001A (en) Blood filtration unit
Piatkiewicz et al. Hollow Fibre Based Modules For Blood Purification
PL206476B1 (en) Method for manufacture of semi-permeable polymer diaphragms on fibrous bed for fast chemical testing